Abo Bibliothek: Guest
Atomization and Sprays

Erscheint 12 Ausgaben pro Jahr

ISSN Druckformat: 1044-5110

ISSN Online: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

EXPERIMENTAL INVESTIGATION OF THE PHENOMENON OF OIL BREAKUP IN AN ENGINE CRANKCASE

Volumen 20, Ausgabe 9, 2010, pp. 801-819
DOI: 10.1615/AtomizSpr.v20.i9.50
Get accessGet access

ABSTRAKT

A phenomenological study of the characteristics of a two-phase, oil and air mixture was undertaken in a combustion engine crankcase model at speeds of up to 6000 rpm. The idealized model comprised production components and tolerances. Nonintrusive measurement techniques, such as PIV and PDA and high-speed photography, were applied to the study of the oil aerosol and liquid films. Agitated oil pools and impingement on the crankcase surfaces contributed to the aeration of oil in the sump due to windage effects. A mean, wakelike, flow pattern was observed that lagged the crankshaft rotation. Harmonic frequencies were recorded that could be identified with the passage of the position of the maximum crank profile radii and a delay time related to the involute-shaped cord and droplet trajectories induced by drag forces. Highly unsteady flow conditions were measured close to the chamber walls. Three classical breakup modes were identified over three speed ranges. Sheet, ligament, and droplet breakup were observed in the ranges of idle to 1800, 4200, and 6000 rpm. Classification of the particle size distribution for the break-up modes was carried out using the PDA technique. Droplet diameter and velocity data varied in the ranges of 2 μm (dmin) to 130 μm (dmax) and 0−40 ms−1 at 6000 rpm. The ratio of the droplet diameter, dmin;max to a characteristic diameter D at which the oil was observed to break away was compared to the disk Bond number, BoD. For the largest measured droplets, the ratio was approximated by dmax/D = 1.30BoD−0.33 . The disk Bond number was 2.21, while the empirical constant was in the range of 1.82−2.39. The result showed that an appropriate correction must be applied to the universal power law, proposed by Simpkins in 1997 for the estimate of the primary droplet size generated by a spinning disk homogenous atomizer, which had overpredicted the droplet sizes in the case of the crankshaft.

REFERENZIERT VON
  1. Dyson Christopher J., Priest Martin, Lee Peter M., Simulating the Misting of Lubricant in the Piston Assembly of an Automotive Gasoline Engine: The Effect of Viscosity Modifiers and Other Key Lubricant Components, Tribology Letters, 70, 2, 2022. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain