Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Atomization and Sprays
Impact-faktor: 1.262 5-jähriger Impact-Faktor: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Druckformat: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2013007198
pages 71-95

DIESEL SPRAY CFD SIMULATIONS BASED ON THE Σ-Υ EULERIAN ATOMIZATION MODEL

Jose M. Garcia-Oliver
CMT Motores Termicos−Universitat Politecnica de Valencia, Camino Vera s/n−46022 Valencia, Spain
Jose M. Pastor
CMT-Motores Termicos - Universitat Politecnica de Valencia
Adrian Pandal
Universidad de Oviedo
N. Trask
Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts, USA
E. Baldwin
Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts, USA
David P. Schmidt
Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA

ABSTRAKT

This work presents an implementation and evaluation of the Σ-Υ atomization model for Diesel spray CFD simulations. The Σ-Υ model is based on an Eulerian representation of the spray atomization and dispersion by means of a single-fluid variable density turbulent flow within a RANS framework. The locally homogeneous flow approach has been applied in order to develop a spray vaporization model based on state relationships. A finite-volume solver for model equations has been created using the OpenFOAM CFD open-source C++ library. Model predictions have been compared to experimental data from free Diesel sprays under nonvaporizing and vaporizing conditions. High-speed imaging, PDPA, and Rayleigh-scattering measurements have been used in order to assess the CFD model. Accurate predictions of liquid and vapor spray penetration, as well as axial velocity and mixture fraction profiles, can be simultaneously achieved for a wide range of injection pressure and ambient conditions, despite only having qualitatively correct predictions of droplet size. The success of these predictions supports the mixing-limited vaporization hypothesis. Model accuracy is better for high ambient density and injection pressure conditions. It is proposed that under low ambient density and injection pressure conditions, interfacial dynamics become more important and the single velocity field assumption is less appropriate.

SCHLÜSSELWÖRTER: Eulerian, Diesel, evaporation, CFD

Articles with similar content:

A COMPARISON OF DIESEL SPRAYS CFD MODELING APPROACHES: DDM VERSUS Σ-Y EULERIAN ATOMIZATION MODEL
Atomization and Sprays, Vol.26, 2016, issue 7
Jose M. Desantes, Jose M. Pastor, Adrian Pandal, Jose M. Garcia-Oliver
A SPHERICAL VOLUME INTERACTION DDM APPROACH FOR DIESEL SPRAY MODELING
Atomization and Sprays, Vol.25, 2015, issue 4
V. Ikonomou, R. M. McDavid, Tommaso Lucchini, Gianluca D'Errico, Roberto Torelli
ASSESSMENT OF DROPLET BREAKUP MODELS IN HIGH-SPEED CROSS-FLOW
Atomization and Sprays, Vol.27, 2017, issue 1
Debasis Chakraborty, P. Manna, Anand Bhandarkar
LARGE EDDY SIMULATION OF HIGH-VELOCITY FUEL SPRAYS: STUDYING MESH RESOLUTION AND BREAKUP MODEL EFFECTS FOR SPRAY A
Atomization and Sprays, Vol.23, 2013, issue 5
Martti Larmi, Ossi Kaario, Armin Wehrfritz, Ville Vuorinen
LINKING NOZZLE FLOW WITH SPRAY CHARACTERISTICS IN A DIESEL FUEL INJECTION SYSTEM
Atomization and Sprays, Vol.8, 1998, issue 3
Manolis Gavaises, C. Arcoumanis