Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Atomization and Sprays
Impact-faktor: 1.189 5-jähriger Impact-Faktor: 1.596 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Druckformat: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v12.i123.120
pages 229-245

A COMPARISON OF SPRAY CHARACTERISTICS BETWEEN AN AIR-ASSISTED FUEL INJECTOR AND A HIGH-PRESSURE SWIRL INJECTOR FOR GASOLINE DIRECT-INJECTION ENGINE APPLICATION

C. Jang
Precision Instrument R&D Center, Samsung Techwin Co., Ltd., Sungnam City, Kyungki, Korea

ABSTRAKT

The spray characteristics of two preferred injection tools for gasoline direct-injection (DI) application were compared. An air-assisted fuel injector (AAFI) and a high-pressure swirl injector (HPSI) were designed and fabricated, and the characterization strategies and processes for both injector sprays were arranged in parallel. In this article, the overall spray characteristics, defined as spray pattern, penetration, internal spray structure, atomization performance and drop size distribution, are discussed. A spray shape factor is introduced to describe the development of intermittent sprays from both injectors. Axial penetration appears to be almost linear in the case of the AAFI, while its instantaneous speed continuously decreases with time in the HPSI. Large droplets are distributed at the tail end of the AAFI spray, while they are concentrated on the head portion of the HPSI spray. From the viewpoint of mean drop diameter, feasible ranges of injection and of ambient pressure are found to be broader in the HPSI. Drop size distributions of the HPSI are found to be more uniform than those of the AAFI.


Articles with similar content:

SHEAR COAXIAL INJECTOR ATOMIZATION PHENOMENA FOR COMBUSTING AND NONCOMBUSTING CONDITIONS
Atomization and Sprays, Vol.6, 1996, issue 2
Robert J. Santoro, H. M. Ryan, Sibtosh Pal, M. J. Foust, M. D. Moser
TIME-RESOLVED CHARACTERIZATION OF LOW-PRESSURE PULSED INJECTOR
Atomization and Sprays, Vol.26, 2016, issue 8
Pramod S. Mehta, Rohit Singh Pathania, Satyanarayanan R. Chakravarthy
DYNAMIC STRUCTURE OF DIRECT-INJECTION GASOLINE ENGINE SPRAYS: AIR FLOW AND DENSITY EFFECTS
Atomization and Sprays, Vol.12, 2002, issue 4
Julian T. Kashdan, John S. Shrimpton, C. Arcoumanis
SPRAY STRUCTURE FROM DOUBLE FUEL INJECTION IN MULTIHOLE INJECTORS FOR GASOLINE DIRECT-INJECTION ENGINES
Atomization and Sprays, Vol.19, 2009, issue 6
Nicholas Mitroglou, J. M. Nouri, C. Arcoumanis
AN EXPERIMENTAL AND ANALYTICAL STUDY OF THE SPRAY CHARACTERISTICS OF AN INTERMITTENT AIR-ASSISTED FUEL INJECTOR
Atomization and Sprays, Vol.10, 2000, issue 2
Sangmin Choi, Changsoo Jang, Sung-Soo Kim