Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Atomization and Sprays
Impact-faktor: 1.262 5-jähriger Impact-Faktor: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Druckformat: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v12.i123.90
pages 163-186

A PREFERENTIAL VAPORIZATION MODEL FOR MULTICOMPONENT DROPLETS AND SPRAYS

Yangbing Zeng
Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, Illinois, USA
Chia-Fon Lee
Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, 140 Mechanical Engineering Building, 1206 West Green Street, Urbana, IL 61801

ABSTRAKT

A multicomponent vaporization model for spray computations was developed to account for the temperature and concentration nonuniformity inside a droplet due to preferential vaporization and finite diffusion processes. The effect of internal circulation was also included using effective diffusivity. The model was validated through rigorous tests and the results agreed well with accurate finite-difference solutions for temperature temporal variations of nonvaporizing droplets and with the measured mole fraction temporal variations of bi-component droplets. The model was also applied to investigate the vaporization of solid-cone sprays and physical insights on preferential vaporization were revealed. Throughout the tests, comparisons with the widely used infinite diffusion model (limited accuracy, low computational cost) and the simplified vortex model(high accuracy, high cost) were also made. Overall, the accuracy of the present model is close to that of the simplified vortex model, while the computational cost is comparable to that of the infinite diffusion model.


Articles with similar content:

SOOT PROCESSES IN A STRONGLY-RADIATING TURBULENT FLAME FROM LASER SCATTERING/EXTINCTION EXPERIMENTS
ICHMT DIGITAL LIBRARY ONLINE, Vol.16, 2004, issue
Bo Yang, Umit O. Koylu
A SPHERICAL VOLUME INTERACTION DDM APPROACH FOR DIESEL SPRAY MODELING
Atomization and Sprays, Vol.25, 2015, issue 4
V. Ikonomou, R. M. McDavid, Tommaso Lucchini, Gianluca D'Errico, Roberto Torelli
MULTILEVEL DYNAMIC MESH REFINEMENT FOR MODELING TRANSIENT SPRAY AND MIXTURE FORMATION
Atomization and Sprays, Vol.19, 2009, issue 8
Song-Charng Kong, Qingluan Xue
VORTEX SHEDDING IN A VARICOSE MODE BEHIND A RISING BUBBLE
TSFP DIGITAL LIBRARY ONLINE, Vol.8, 2013, issue
Aristeu da Silveira Neto, Millena Martins Villar Valle, Marcio-Ricardo Pivello, Alexandre M. Roma
ADAPTIVE SOLUTIONS OF SPN−APPROXIMATIONS TO RADIATIVE HEAT TRANSFER IN GLASS
ICHMT DIGITAL LIBRARY ONLINE, Vol.11, 2004, issue
Axel Klar, Mohammed Seaid, Jens Lang