Abo Bibliothek: Guest
International Journal of Energy for a Clean Environment

Erscheint 8 Ausgaben pro Jahr

ISSN Druckformat: 2150-3621

ISSN Online: 2150-363X

SJR: 0.597 SNIP: 1.456 CiteScore™:: 3.7 H-Index: 18

Indexed in

PHASE FIELD LATTICE BOLTZMANN SIMULATIONS OF WATER DROPLET TRANSPORT IN A PROTON EXCHANGE MEMBRANE FUEL CELL FLOW CHANNEL

Volumen 22, Ausgabe 3, 2021, pp. 43-76
DOI: 10.1615/InterJEnerCleanEnv.2020035717
Get accessGet access

ABSTRAKT

The work involves the simulations of liquid water transport in the cathode gas flow channel of a proton exchange membrane fuel cell. The in-house developed phase-field multiphase lattice Boltzmann solver uses the model proposed by Zheng et al. (2006) as it handles multiphase flow without the loss of the advantages of the lattice Boltzmann method. The model captures the interface by the solution of the Cahn-Hilliard equation. Different liquid water flow patterns are captured from the 3D multiphase simulations for various values of capillary number, gas flow velocity, and wettability of gas diffusion layer and flow channel surfaces. The water removal rate and gas diffusion layer surface area coverage and the droplet detachment rate for each case are studied from simulations. It is seen that at a higher gas flow velocity, for water inflow from a single pore opening, the water slug from the pore opening elongates due to the shear of gas cross flow and develops into a steady continuous stream. Conversely, if the gas flow velocity is low, water removal is through the intermittent droplet detachment process. Simulations show that the gas diffusion layer surface coverage by liquid water can be significantly controlled with hydro-philic channel walls, although it may reduce the water removal rate.

REFERENZEN
  1. Anderson, R., Zhang, L., Ding, Y., Blanco, M., Bi, X., and Wilkinson, D.P., A Critical Review of Two-Phase Flow in Gas Flow Channels of Proton Exchange Membrane Fuel Cells, J. Power Sources, vol. 195, no. 15, pp. 4531-4553, 2010.

  2. Anger, S., Nitzsche, J., Krause, H., and Trimis, D., Optimization of Gas Processing in a High-Temperature Proton Exchange Membrane Fuel Cell Combined Heat and Power Plant on the Basis of the Numerical Pinch Method, Int. J. Energy Clean Environ., vol. 11, nos. 1-4, pp. 1-10, 2010.

  3. Ashrafi, M. and Shams, M., Effects of Heterogeneous Surface of Gas Diffusion Layers on Droplet Transport in Microchannels of PEM Fuel Cells, Int. J. Hydrogen Energy, vol. 41, no. 3, pp. 1974-1989, 2016.

  4. Banerjee, S. and Agarwal, R.K., Lagrangian Approach to Simulation of Reacting Flow of a Spouted Fluidized Bed for Chemical Looping Combustion with a Simulated Coal Direct Injection, Int. J. Energy Clean Environ., vol. 17, no. 1, pp. 39-56, 2016.

  5. Banerjee, S. and Agarwal, R.K., Review of Recent Advances in Process Modeling and Computational Fluid Dynamics Simulation of Chemical-Looping Combustion, Int. J. Energy Clean Environ., vol. 18, no. 1, pp. 1-37, 2017.

  6. Cai, Y., Hu, J., Ma, H., Yi, B., and Zhang, H., Effects of Hydrophilic/Hydrophobic Properties on the Water Behavior in the Micro-Channels of a Proton Exchange Membrane Fuel Cell, J. Power Sources, vol. 161, no. 2, pp. 843-848, 2006.

  7. Chen, J., Dominant Frequency of Pressure Drop Signal as a Novel Diagnostic Tool for the Water Removal in Proton Exchange Membrane Fuel Cell Flow Channel, J. Power Sources, vol. 195, no. 4, pp. 1177-1181, 2010.

  8. Chen, L., Kang, Q., Mu, Y., He, Y.-L., and Tao, W.-Q., A Critical Review of the Pseudopotential Multiphase Lattice Boltzmann Model: Methods and Applications, Int. J. Heat Mass Transf., vol. 76, pp. 210-236, 2014.

  9. d'Ortona, U., Salin, D., Cieplak, M., Rybka, R.B., and Banavar, J.R., Two-Color Nonlinear Boltzmann Cellular Automata: Surface Tension and Wetting, Phys. Rev. E, vol. 51, no. 4, p. 3718, 1995.

  10. Ding, Y., Bi, H., and Wilkinson, D., Three-Dimensional Numerical Simulation of Water Droplet Emerging from a Gas Diffusion Layer Surface in Micro-Channels, J. Power Sources, vol. 195, no. 21, pp. 7278-7288, 2010.

  11. Fakhari, A. and Rahimian, M.H., Phase-Field Modeling by the Method of Lattice Boltzmann Equations, Phys. Rev. E, vol. 81, no. 3, p. 036707, 2010.

  12. Ferreira, R.B., Falcao, D., Oliveira, V., and Pinto, A., Numerical Simulations of Two-Phase Flow in Proton Exchange Membrane Fuel Cells Using the Volume of Fluid Method-A Review, J. Power Sources, vol. 277, pp. 329-342, 2015.

  13. Fishman, J.Z., Leung, H., and Bazylak, A., Droplet Pinning by PEM Fuel Cell GDL Surfaces, Int. J. Hydrogen Energy, vol. 35, no. 17, pp. 9144-9150, 2010.

  14. Grunau, D., Chen, S., and Eggert, K., A Lattice Boltzmann Model for Multiphase Fluid Flows, Phys. Fluids A: Fluid Dynam., vol. 5, no. 10, pp. 2557-2562, 1993.

  15. Gunstensen A.K., Rothman, D.H., Zaleski, S., and Zanetti, G., Lattice Boltzmann Model of Immiscible Fluids, Phys. Rev. A, vol. 43, no. 8, p. 4320, 1991.

  16. Hao, L. and Cheng, P., Lattice Boltzmann Simulations of Liquid Droplet Dynamic Behavior on a Hydrophobic Surface of a Gas Flow Channel, J. Power Sources, vol. 190, no. 2, pp. 435-446, 2009.

  17. He, X., Chen, S., and Zhang, R., A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh-Taylor Instability, J. Comput. Phys., vol. 152, no. 2, pp. 642-663, 1999.

  18. Hou, Y., Deng, H., Du, Q., and Jiao, K., Multi-Component Multi-Phase Lattice Boltzmann Modeling of Droplet Coalescence in Flow Channel of Fuel Cell, J. Power Sources, vol. 393, pp. 83-91, 2018.

  19. Hussaini, I.S. and Wang, C.-Y., Visualization and Quantification of Cathode Channel Flooding in PEM Fuel Cells, J. Power Sources, vol. 187, no. 2, pp. 444-451, 2009.

  20. Inamuro, T., Konishi, N., and Ogino, F., A Galilean Invariant Model of the Lattice Boltzmann Method for Multiphase Fluid Flows Using Free-Energy Approach, Computer Phys. Commun., vol. 129, nos. 1-3, pp. 32-45, 2000.

  21. Inamuro, T., Ogata, T., Tajima, S., and Konishi, N., A Lattice Boltzmann Method for Incompressible Two-Phase Flows with Large Density Differences, J. Comput. Phys., vol. 198, no. 2, pp. 628-644, 2004.

  22. Jacqmin, D., Calculation of Two-Phase Navier-Stokes Flows Using Phase-Field Modeling, J. Comput. Phys, vol. 155, no. 1, pp. 96-127, 1999.

  23. Jarauta, A. and Ryzhakov, P., Challenges in Computational Modeling of Two-Phase Transport in Polymer Electrolyte Fuel Cells Flow Channels: A Review, Arch. Comput. Methods Eng., vol. 25, no. 4, pp. 1027-1057, 2018.

  24. Jiao, K. and Li, X., Water Transport in Polymer Electrolyte Membrane Fuel Cells, Prog. Energy Combust. Sci, vol. 37, no. 3, pp. 221-291, 2011.

  25. Kalarakis, K., Burganos, V., and Payatakes, A., Galilean-Invariant Lattice-Boltzmann Simulation of Liquid-Vapor Interface Dynamics, Phys. Rev. E, vol. 65, no. 5, p. 056702, 2002.

  26. Kim, H.-Y., Jeon, S., Song, M., and Kim, K., Numerical Simulations of Water Droplet Dynamics in Hydrogen Fuel Cell Gas Channel, J. Power Sources, vol. 246, pp. 679-695, 2014.

  27. Kumbur, E., Sharp, K., and Mench, M., Liquid Droplet Behavior and Instability in a Polymer Electrolyte Fuel Cell Flow Channel, J. Power Sources, vol. 161, no. 1, pp. 333-345, 2006.

  28. Li, Q., Luo, K., Gao, Y., and He, Y., Additional Interfacial Force in Lattice Boltzmann Models for Incompressible Multiphase Flows, Phys. Rev. E, vol. 85, no. 2, p. 026704, 2012.

  29. Lu, Z., Daino, M.M., Rath, C., and Kandlikar, S.G., Water Management Studies in PEM Fuel Cells, Part III: Dynamic Breakthrough and Intermittent Drainage Characteristics from GDLs with and without MPLs, Int. J. Hydrogen Energy, vol. 35, no. 9, pp. 4222-4233, 2010.

  30. Lu, Z., Rath, C., Zhang, G., and Kandlikar, S.G., Water Management Studies in PEM Fuel Cells, Part IV: Effects of Channel Surface Wettability, Geometry and Orientation on the Two-Phase Flow in Parallel Gas Channels, Int. J. Hydrogen Energy, vol. 36, no. 16, pp. 9864-9875, 2011.

  31. Montanes, C., Gomez-Samper, A., Fueyo, N., Ballesteros, J.C., and Gomez-Yague, P., Computational Evaluation of Wall Rings in Wet Flue-Gas Desulfurization Plants, Int. J. Energy Clean Environ., vol. 10, nos. 1-4, pp. 15-36, 2019.

  32. Niu, Z., Fan, L., Bao, Z., and Jiao, K., Numerical Investigation of Innovative 3D Cathode Flow Channel in Proton Exchange Membrane Fuel Cell, Int. J. Energy Res., vol. 42, no. 10, pp. 3328-3338, 2018a.

  33. Niu, Z., Jiao, K., Wang, Y., Du, Q., and Yin, Y., Numerical Simulation of Two-Phase Cross Flow in the Gas Diffusion Layer Microstructure of Proton Exchange Membrane Fuel Cells, Int. J. Energy Res, vol. 42, no. 2, pp. 802-816, 2018b.

  34. Niu, Z., Wang, R., Jiao, K., Du, Q., and Yin, Y., Direct Numerical Simulation of Low Reynolds Number Turbulent Air-Water Transport in Fuel Cell Flow Channel, Sci. Bull., vol. 62, no. 1, pp. 31-39, 2017.

  35. Obeisun, O.A., Finegan, D.P., Engebretsen, E., Robinson, J.B., Taiwo, O.O., Hinds, G., Shearing, P.R., and Brett, D.J., Ex Situ Characterisation of Water Droplet Dynamics on the Surface of a Fuel Cell Gas Diffusion Layer through Wettability Analysis and Thermal Characterization, Int. J. Hydrogen Energy, vol. 42, no. 7, pp. 4404-4414, 2017.

  36. Pooley, C. and Furtado, K., Eliminating Spurious Velocities in the Free-Energy Lattice Boltzmann Method, Phys. Rev. E, vol. 77, no. 4, p. 046702, 2008.

  37. Reis, T. and Phillips, T., Lattice Boltzmann Model for Simulating Immiscible Two-Phase Flows, J. Phys. A: Math. Theor, vol. 40, no. 14, p. 4033, 2007.

  38. Shan, X. and Chen, H., Lattice Boltzmann Model for Simulating Flows with Multiple Phases and Components, Phys. Rev. E, vol. 47, no. 3, p. 1815, 1993.

  39. Shan, X. and Chen, H., Simulation of Nonideal Gases and Liquid-Gas Phase Transitions by the Lattice Boltzmann Equation, Phys. Rev. E, vol. 49, no. 4, p. 2941, 1994.

  40. Shao, J., Shu, C., Huang, H., and Chew, Y., Free-Energy-Based Lattice Boltzmann Model for the Simulation of Multiphase Flows with Density Contrast, Phys. Rev. E, vol. 89, no. 3, p. 033309, 2014.

  41. Soopee, A., Sasmito, A.P., and Shamim, T., Water Droplet Dynamics in a Dead-End Anode Proton Exchange Membrane Fuel Cell, Appl. Energy, vol. 233, pp. 300-311, 2019.

  42. Suresh, P. and Jayanti, S., Effect of Air Flow on Liquid Water Transport through a Hydrophobic Gas Diffusion Layer of a Polymer Electrolyte Membrane Fuel Cell, Int. J. Hydrogen Energy, vol. 35, no. 13, pp. 6872-6886, 2010.

  43. Swift, M.R., Orlandini, E., Osborn, W., and Yeomans, J., Lattice Boltzmann Simulations of Liquid-Gas and Binary Fluid Systems, Phys. Rev. E, vol. 54, no. 5, p. 5041, 1996.

  44. Swift, M.R., Osborn, W., and Yeomans, J., Lattice Boltzmann Simulation of Nonideal Fluids, Phys. Rev. Lett, vol. 75, no. 5, p. 830, 1995.

  45. Tabe, Y., Lee, Y., Chikahisa, T., and Kozakai, M., Numerical Simulation of Liquid Water and Gas Flow in a Channel and a Simplified Gas Diffusion Layer Model of Polymer Electrolyte Membrane Fuel Cells Using the Lattice Boltzmann Method, J. Power Sources, vol. 193, no. 1, pp. 24-31, 2009.

  46. Voss, S., Posdziech, O., Valldorf, J., and Trimis, D., Preliminary Operational Results of a Domestic SOFC Based Micro-CHP System, Int. J. Energy Clean Environ., vol. 12, no. 1, pp. 1-13, 2011.

  47. Wang, S., Wang, D., Niu, P., and Zhang, X., Simulation and Experimental Study of Phase Isolation Induced by a Static Cyclone Device in a Vertical Upward Pipe, Int. J. Energy Clean Environ., vol. 16, nos. 1-4, pp. 139-156, 2015.

  48. Weber, A.Z. and Newman, J., Effects of Microporous Layers in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc., vol. 152, no. 4, pp. A677-A688, 2005.

  49. Wu, J. and Huang, J.-J., Dynamic Behaviors of Liquid Droplets on a Gas Diffusion Layer Surface: Hybrid Lattice Boltzmann Investigation, J. Appl. Phys, vol. 118, no. 4, p. 044902, 2015.

  50. Yu, J., Froning, D., Reimer, U., and Lehnert, W., Liquid Water Breakthrough Location Distances on a Gas Diffusion Layer of Polymer Electrolyte Membrane Fuel Cells, J. Power Sources, vol. 389, pp. 56-60, 2018.

  51. Zhang, G. and Jiao, K., Multi-Phase Models for Water and Thermal Management of Proton Exchange Membrane Fuel Cell: A Review, J. Power Sources, vol. 391, pp. 120-133, 2018.

  52. Zheng, H., Shu, C., and Chew, Y.-T., A Lattice Boltzmann Model for Multiphase Flows with Large Density Ratio, J. Comput. Phys., vol. 218, no. 1, pp. 353-371, 2006.

  53. Zhu, X., Sui, P., and Djilali, N., Three-Dimensional Numerical Simulations of Water Droplet Dynamics in a PEMFC Gas Channel, J. Power Sources, vol. 181, no. 1, pp. 101-115, 2008.

  54. Zu, Y. and He, S., Phase-Field-Based Lattice Boltzmann Model for Incompressible Binary Fluid Systems with Density and Viscosity Contrasts, Phys. Rev. E, vol. 87, no. 4, p. 043301, 2013.

Zukünftige Artikel

APPLICATION OF MICROBIAL FUEL CELL FOR CASSAVA FERMENTATION WASTEWATER TREATMENT Anwar Ma'ruf, Agus Mulyadi Purnawanto, Latiful Hayat, Novi Astuti Experimental and regression analysis of C. I engine powered by diesel surrogate fuel from waste lubricating oil using microwave pyrolysis Mohammad Nematullah Nasim, Ravindra Babu Yarasu, Satish J. Suryawanshi PREFACE sachindra Rout, Kamalakanta Muduli, Jnana Ranjan Senapati, Aruna Kumar Behura Thermal analysis and Improvement of Municipal Solid Waste Syngas Combustion applied on Micro Gas Turbine Amornrat Kaewpradap, Sumrerng Jugjai Numerical simulation of turbulent flow in a heat exchanger equipped with fins of different materials and geometries Abin Roy, Uddala Sreekanth, Joel Ashirvadam, Saboor Shaik, Aruna Kumar Behura, Bibin B.S Low-Cost Photovoltaic Emulator With a High-Dynamic Response for Small Satellite Applications Mauricio Troviano, Germán G. Oggier Collection efficiency analysis and structure optimization of fugitive fumes from aluminum electrolysis based on multi-field coupling Shuichang Liu, Qingyu Wang, Yong Zhang, Fengzhao Mao, Huijuan Zhao, Xindan Hu Transient Analysis of Liquid Hydrogen Transfer in Cryogenic Storage Tanks Ahmad M. Mahmoud, William E Lear, SA Sherif Pure Ammonia Combustion in a Bidirectional Swirling Flow Alexander Igorevich Guryanov, Oleg A. Evdokimov, Vladimir Burtsev, Nikita Burtsev, Sergey Veretennikov, Valeriy Koshkin CFD modeling of the combustion of Ukrainian coal and biomass in a flare boiler unit TPP-210a Alexandr Baranyuk, Nataliya Dunayevska, Artur Rachinsky, Nikita Vorobyov, Petro Merenger, Evgeniy Shevel An Experimental Study of the Cooling Efficiency on Curved Surfaces with Different Shaped Holes Sergey Veretennikov, Oleg Evdokimov, Anna Kolesova Employing Granulated Bimetallic Nanocomposite of Ni/Cu@CuMOF Nanocomposite in Steam Reforming of Methanol Process for Hydrogen Production Mohammad Saleh-Abadi, Mohsen Rostami, Amir Hamzeh Farajollahi, Rasool Amirkhani, Mahdi Ebrahimi Farshchi, Mahdi Simiari INVESTIGATION THE PERFORMANCE OF AN EVACUATED TUBE SOLAR COLLECTOR FILLED WITH AL2O3/WATER NANOFLUID UNDER THE CLIMATE CONDITIONS OF AL-HILLA(IRAQ) Nagham Albakry, Ahmed Kadhim Hussein The effect of carbonization temperature on the properties of carbonaceous material obtained from ethylene-propylene-diene-monomer (EPDM) wastes Muhammet Ramazan Eren, Işıl Güneş, Esin Varol THE SOCIAL COST OF CARBON EVALUATION BASED ON CARBON CAPTURE AND STORAGE TECHNOLOGIES FOR POWER GENERATION PLANTS Okan Kon, Ismail Caner
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain