Abo Bibliothek: Guest
International Journal of Energy for a Clean Environment

Erscheint 8 Ausgaben pro Jahr

ISSN Druckformat: 2150-3621

ISSN Online: 2150-363X

SJR: 0.597 SNIP: 1.456 CiteScore™:: 3.7 H-Index: 18

Indexed in

COMPARATIVE STUDY OF ENERGY PERFORMANCE OF R600a/TiO2 AND R600a/MWCNT NANOLUBRICANTS IN A VAPOR COMPRESSION REFRIGERATION SYSTEM

Volumen 21, Ausgabe 4, 2020, pp. 317-332
DOI: 10.1615/InterJEnerCleanEnv.2020034660
Get accessGet access

ABSTRAKT

In this paper, multiwalled carbon nanotubes (MWCNT) and TiO2 nanoparticles were dispersed in mineral oil to form nanolubricant concentration (0.4 g/L) as an alternative to pure lubricant − oil − in a domestic vapor compression refrigeration system (VCRS). The temperature and pressure measuring instruments were fixed to the compressor inlet and outlet of the system components to capture the temperature and pressure at each condition. The measured outputs of the experiment were used in determining the performances of the system using the REFPROP software version 9.0. The result showed that R600a with MWCNT and with TiO2 nanolubricants have a lower pulldown time, evaporator-air temperature, higher coefficient of performance (COP), cooling capacity with the decrease in power consumption compared to the base lubricant. The COPs of R600a in both MWCNT and TiO2 nanolubricants were higher than that of the base lubricant. The power consumption of the refrigerator compressor with MWCNT and TiO2 nanolubricants decreases within the range of 0.9-25.5% and 6.1-18.0%, respectively. Therefore, MWCNT and TiO2 nanolubricants are potential substitutes for the pure mineral oil in domestic refrigeration systems.

SCHLÜSSELWÖRTER: R600a, COP, power consumption, TiO2, MWCNT
REFERENZEN
  1. Ahmad, R.H., Bhuiyan, A.A., Xu, F., A.B., Sujon, A.S., Karim, M.R., Moin, E.H., and Sadrul Islam, A.K.M., Comparative Analysis of Refrigerant Performance between LPG and R134a under Subtropical Climate, J. Therm. Anal. Calorim., vol. 139, pp. 2925-2935, 2020.

  2. Alawi, O.A., Sidik, N.A.C., and Beriache, M., Applications of Nanorefrigerant and Nanolubricants in Refrigeration, Air-Conditioning and Heat Pump Systems: A Review, Int. Commun. Heat Mass Transf., vol. 68, pp. 91-97, 2015.

  3. Arumugam, S. and Sriram, G., Preliminary Study of Nano and Microscale TiO2 Additives on Tribological Behavior of Chemically Modified Rapeseed Oil, Tribol. Trans., vol. 56, no. 5, pp. 797-805, 2013.

  4. Babarinde, T.O., Akinlabi, S.A., and Madyira, D.M., Enhancing the Performance of Vapor Compression Refrigeration System Using Nano Refrigerants: A Review, IOP Conf. Ser. Mater. Sci. Eng., vol. 413, no. 1, p. 012068, 2018. DOI: 10.1088/1757-899X/413/1/012068.

  5. Babarinde, T.O., Akinlabi, S.A., and Madyira, D.M., Experimental Investigation of R600a/Ti02/Mineral Oil as a Drop-In Replacement for R134a/POE Oil in a Household Refrigeration System, Int. J. Ambient Energy, pp. 1-13, 2019. DOI: 10.1080/01430750.2019.1653983.

  6. Babarinde, T.O., Ohunakin, O.S., Adelekan, D.S., Aasa, S.A., and Oyedepo, S., Experimental Study of LPG and R134a Refrigerants in Vapor Compression Refrigeration, Int. J. Energy Clean Enviran., vol. 16, nos. 1-4, pp. 71-80, 2015. DOI: 10.1615/InterJEnerCleanEnv.2015015644.

  7. Bhattad, A., Sarkar, J., and Ghosh, P., Improving the Performance of Refrigeration Systems by Using Nanofluids: A Comprehensive Review, Renew. Sustain. Energy Rev., vol. 82, pp. 3656-3669, 2018.

  8. Bobbo, S., Fedele, L., Fabrizio, M., Barison, S., Battiston, S., and Pagura, C., Influence of Nanoparticles Dispersion in POE Oils on Lubricity and R134a Solubility, Int. J. Refrig., vol. 33, no. 6, pp. 1180-1186, 2010.

  9. Bolaji, B.O. and Huan, Z., Ozone Depletion and Global Warming: Case for the Use of Natural Refrigerant - A Review, Renew. Sustain. Energy Rev., vol. 18, pp. 49-54, 2013.

  10. Cornelio, J.A.C., Cuervo, P.A., Hoyos-Palacio, L.M., Lara-Romero, J., and Toro, A., Tribological Properties of Carbon Nanotubes as Lubricant Additive in Oil and Water for a Wheel-Rail System, J. Mater. Res. Technol., vol. 5, no. 1, pp. 68-76, 2015.

  11. Das, S.K., Choi, S.U.S., and Patel, H.E., Heat Transfer in Nanofluids - A Review, Heat Transf. Eng., vol. 27, no. 10, pp. 3-19, 2006.

  12. Ekundayo, F.M. and Babarinde, T.O., Performance Investigation of TiO2 Nano Fluid Based Lubricant on Exergy of VCRS Working with a Mixture of R290/R600, Int. J. Sci. Technol. Res, vol. 8, no. 10, pp. 2672-2678, 2019.

  13. Esfe, M.H., Rostamian, H., Rejvani, M., and Emami, M.R.S., Rheological Behavior Characteristics of ZrO2-MWCNT/10w40 Hybrid Nano-Lubricant Affected by Temperature, Concentration, and Shear Rate: An Experimental Study and a Neural Network Simulating, Phys. E: Low-Dimens. Syst. Nanostruct, vol. 102, pp. 160-170, 2018.

  14. Ettefaghi, E.-o-L., Ahmadi, H., Rashidi, A., Nouralishahi, A., and Mohtasebi, S.S., Preparation and Thermal Properties of Oil-Based Nano Fluid from Multi-Walled Carbon Nanotubes and Engine Oil as Nano Lubricant, Int. Commun. Heat Mass Transf., vol. 46, pp. 142-147, 2013.

  15. Fatouh, M. and El Kafafy, M., Experimental Evaluation of a Domestic Refrigerator Working with LPG, Appl. Therm. Eng., vol. 26, nos. 14-15, pp. 1593-1603, 2006.

  16. Gupta, N.K., Tiwari, A.K., and Ghosh, S.K., Heat Transfer Mechanisms in Heat Pipes Using Nanofluids - A Review, Exp. Therm. Fluid. Sci, vol. 90, pp. 84-100, 2018.

  17. Harby, K., Hydrocarbons and Their Mixtures as Alternatives to Environmental Unfriendly Halogenated Refrigerants: An Updated Overview, Renew. Sustain. Energy Rev., vol. 73, pp. 1247-1264, 2017.

  18. Hung, Y.-H. and Gu, H.-J., Multiwalled Carbon Nanotube Nanofluids Used for Heat Dissipation in Hybrid Green Energy Systems, J. Nanomater, 2014; DOI: 10.1155/2014/196074.

  19. Hussain, T., Singh, A.K., Mittal, A., Verma, A., and Alam, Z., Performance Evaluation of Vapor Compression Refrigeration System by Varying Air Flow Rates in Air-Cooled and Evaporatively Cooled Condensers, Int. J. Energy Clean Environ., vol. 21, no. 1, pp. 1-13, 2020. DOI: 10.1615/InterJEnerCleanEnv.2020029330.

  20. Laptev, A.G. and Farakhov, T.M., Experimental Investigation and Modeling of Transfer Phenomena in Heat Exchangers with a Volumetric Intensifier, Int. J. Energy Clean Environ., vol. 21, no. 1, pp. 15-24, 2020. DOI: 10.1615/InterJEnerCleanEnv.2020032930.

  21. Lemmon, E.W., Huber, M.L., and Mclinden, M.O., NIST Standard Reference Database 23: Fluid Thermodynamic and Transport Properties Database (REFPROP): Version 9.0, 2010.

  22. Liu, M.-S., Lin, M.C.-C., Huang, I.-T., and Wang, C.-C., Enhancement of Thermal Conductivity with Carbon Nanotube for Nanofluids, Int. Commun. Heat Mass Transf., vol. 32, pp. 1202-1210, 2005.

  23. Madyira, D.M., Marangwanda, G., Ekundayo, F., Babarinde, T.0., and Akinalabi, S.A., Investigation of Household Refrigerator System with Varied Capillary Tube Length, J. Phys.: Conf. Series, vol. 1378, no. 4, p. 042056, 2019. D0I: 10.1088/1742-6596/1378/4/042056.

  24. Mahbubul, I.M., Saidur, R., and Amalina, M.A., Heat Transfer and Pressure Drop Characteristics of Al203-R141b Nanorefrigerant in Horizontal Smooth Circular Tube, Procedia Eng., vol. 56, pp. 323-329, 2013.

  25. Mota-Babiloni, A., Makhnatch, P., Khodabandeh, R., and Navarro-Esbri, J., Experimental Assessment of R134a and Its Lower GWP Alternative R513A, Int. J. Refrig, vol. 74, pp. 682-688, 2017.

  26. Redhwan, A.M., Azmi, W.H., Sharif, M.Z., Mamat, R., and Zawawi, N.N.M., Comparative Study of Thermo-Physical Properties of Si02 and Al203 Nanoparticles Dispersed in PAG Lubricant, Appl. Therm. Eng., vol. 116, pp. 823-832, 2017.

  27. Sanukrishna S.S. and Prakash, M.J., Experimental Studies on Thermal and Rheological Behavior of Ti02-PAG Nanolubricant for Refrigeration System, Int. J. Refrig., vol. 86, pp. 356-372, 2018.

  28. Sanukrishna, S.S., Vishnu, A.S., and Jose Prakash, M., Nanorefrigerants for Energy Efficient Refrigeration Systems, J. Mech. Sci. Technol, vol. 31, no. 8, pp. 3993-4001, 2017.

  29. Singh, G., Dasaroju, G., and Bulasara, V.K., Experimental Investigation of the Effect of Heat Transfer and Pressure Drop on Performance of a Flat Tube by Using Water-Based Al203 Nanofluids, Int. J. Energy Clean Environ., vol. 19, nos. 1-2, pp. 1-17, 2018a. D0I: 10.1615/InterJEner-CleanEnv.2018020966.

  30. Singh, P.K., Naruka, D.S., and Lee, P.S., Numerical Investigation of Flow and Heat Transfer of Nanofluids in a Wavy Microchannel, Int. J. Energy Clean Environ., vol. 19, nos. 1-2, pp. 19-35, 2018b. D0I: 10.1615/InterJEnerCleanEnv.2018021099.

  31. Su, Y., Tang, Z., Wang, G., and Wan, R., Influence of Carbon Nanotube on the Tribological Properties of Vegetable-Based 0il, Adv. Mech. Eng., vol. 10, no. 5, pp. 1-11, 2018.

  32. Subramani, N. and Prakash, M., Experimental Studies on a Vapor Compression System Using Nanorefrigerants, Int. J. Eng. Sci. Technol., vol. 3, no. 9, pp. 95-102, 2012.

  33. United Nations Environment Programme (UNEP), Handbook for the Montreal Protocol on Substances that Deplete the Ozone Layer, Nairobi, Kenya: UNEP/Earthprint, 2012.

  34. Wang, B.X., Zhou, L.P., and Peng, X.F., A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid with Suspension of Nanoparticles, Int. J. Heat Mass Transf., vol. 46, no. 14, pp. 2665-2672, 2003.

  35. Wu, H., Zhao, J., Xia, W., Cheng, X., He, A., Yun, J.H., Wang, L., Huang, H., Jiao, S., Huang, L., Zhang, S., and Jiang, Z., A Study of the Tribological Behavior of Ti02 Nanoadditive Water-Based Lubricants, Tribiology Int., vol. 109, pp. 398-408, 2017.

  36. Yu, W., France, D.M., Routbort, J.L., and Choi, S.U.S., Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements, Heat Transf. Eng., vol. 29, no. 5, pp. 432-460, 2008.

  37. Zhang, N., Zhang, X., Pan, Z., and Zhang, Z., A Brief Review of Enhanced C02 Absorption by Nanoparticles, Int. J. Energy Clean Environ., vol. 19, nos. 3-4, pp. 201-215, 2018. D0I: 10.1615/ InterJEnerCleanEnv.2018022831.

  38. Zhou, J., Wang, J., Yan, Z., and Gao, Q., Development and Application of a Microchannel Heat Exchanger for the Heat Pump, Int. J. Energy Clean Environ., vol. 19, nos. 1-2, pp. 137-141, 2018. D0I: 10.1615/InterJEnerCleanEnv.2018020983.

REFERENZIERT VON
  1. Singh Dwesh K., Kumar Sanjay, Kumar Satish, Kumar Ravinder, Potential of MWCNT/R134a nanorefrigerant on performance and energy consumption of vapor compression cycle: a domestic application, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43, 12, 2021. Crossref

Zukünftige Artikel

APPLICATION OF MICROBIAL FUEL CELL FOR CASSAVA FERMENTATION WASTEWATER TREATMENT Anwar Ma'ruf, Agus Mulyadi Purnawanto, Latiful Hayat, Novi Astuti Experimental and regression analysis of C. I engine powered by diesel surrogate fuel from waste lubricating oil using microwave pyrolysis Mohammad Nematullah Nasim, Ravindra Babu Yarasu, Satish J. Suryawanshi PREFACE sachindra Rout, Kamalakanta Muduli, Jnana Ranjan Senapati, Aruna Kumar Behura Thermal analysis and Improvement of Municipal Solid Waste Syngas Combustion applied on Micro Gas Turbine Amornrat Kaewpradap, Sumrerng Jugjai Numerical simulation of turbulent flow in a heat exchanger equipped with fins of different materials and geometries Abin Roy, Uddala Sreekanth, Joel Ashirvadam, Saboor Shaik, Aruna Kumar Behura, Bibin B.S Low-Cost Photovoltaic Emulator With a High-Dynamic Response for Small Satellite Applications Mauricio Troviano, Germán G. Oggier Collection efficiency analysis and structure optimization of fugitive fumes from aluminum electrolysis based on multi-field coupling Shuichang Liu, Qingyu Wang, Yong Zhang, Fengzhao Mao, Huijuan Zhao, Xindan Hu Transient Analysis of Liquid Hydrogen Transfer in Cryogenic Storage Tanks Ahmad M. Mahmoud, William E Lear, SA Sherif Pure Ammonia Combustion in a Bidirectional Swirling Flow Alexander Igorevich Guryanov, Oleg A. Evdokimov, Vladimir Burtsev, Nikita Burtsev, Sergey Veretennikov, Valeriy Koshkin CFD modeling of the combustion of Ukrainian coal and biomass in a flare boiler unit TPP-210a Alexandr Baranyuk, Nataliya Dunayevska, Artur Rachinsky, Nikita Vorobyov, Petro Merenger, Evgeniy Shevel An Experimental Study of the Cooling Efficiency on Curved Surfaces with Different Shaped Holes Sergey Veretennikov, Oleg Evdokimov, Anna Kolesova Employing Granulated Bimetallic Nanocomposite of Ni/Cu@CuMOF Nanocomposite in Steam Reforming of Methanol Process for Hydrogen Production Mohammad Saleh-Abadi, Mohsen Rostami, Amir Hamzeh Farajollahi, Rasool Amirkhani, Mahdi Ebrahimi Farshchi, Mahdi Simiari INVESTIGATION THE PERFORMANCE OF AN EVACUATED TUBE SOLAR COLLECTOR FILLED WITH AL2O3/WATER NANOFLUID UNDER THE CLIMATE CONDITIONS OF AL-HILLA(IRAQ) Nagham Albakry, Ahmed Kadhim Hussein The effect of carbonization temperature on the properties of carbonaceous material obtained from ethylene-propylene-diene-monomer (EPDM) wastes Muhammet Ramazan Eren, Işıl Güneş, Esin Varol THE SOCIAL COST OF CARBON EVALUATION BASED ON CARBON CAPTURE AND STORAGE TECHNOLOGIES FOR POWER GENERATION PLANTS Okan Kon, Ismail Caner
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain