Abo Bibliothek: Guest
Critical Reviews™ in Eukaryotic Gene Expression

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 1045-4403

ISSN Online: 2162-6502

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.6 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.2 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00058 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.345 SNIP: 0.46 CiteScore™:: 2.5 H-Index: 67

Indexed in

Advanced Approaches Based on Expression of Different Genes and Biomarkers for the Diagnosis and Treatment of Renal Disorders

Volumen 29, Ausgabe 4, 2019, pp. 319-332
DOI: 10.1615/CritRevEukaryotGeneExpr.2019025864
Get accessGet access

ABSTRAKT

This review focuses on the causes and complications of chronic kidney disease (CKD). The kidneys are major organs boasting various natural functions, chief among them the stable equilibrium of body fluids by eliminating waste. If the symptoms of CKD can be detected early, effective care is possible. CKD is a major area of investigation because it is the ninth most common cause of death in the United States. The incidence of kidney infection can be correlated with kidney malfunction. The main serological markers for renal disease are serum creatinine and creatinine clearance, which are insensitive and nonspecific to recognition of kidney injury. Standard therapy to prevent the progression of CKD includes dietary protein restriction, hypertension control, angiotensin converting enzyme inhibition (ACEi), and angiotensin receptor barricade (ARB). In this review we discuss advances in research on diagnostic biomarkers related to renal diseases and kidney-related injuries.

REFERENZEN
  1. Sharma M, Yadav I, Sharma CK. Applications of novel polymeric nanoparticles and natural plant products in drug delivery for various therapeutic purposes. Int J Agricult Stat Sci. 2018;14(2):529-37.

  2. Sharma CK, Sharma M, Sharma V. Therapeutic potential of medicinal plants in the drug development against cancer and hepatic injury-an overview. Vegetos. 2018;31(S):87-92.

  3. Sharma M, Singh RK, Sharma CK. Functioning of different plant heat-shock proteins in maize (Zea mays) and molecular chaperones-an insight. Int J Agricult Stat Sci. 2018;14 (1):203-10.

  4. Sharma M, Singh RK, Sharma CK. Production of biofuel as alternative sources of energy from various raw materials. Ecolo Environ Conser. 2018;24(3):1269-77.

  5. Sharma M, Yadav I, Sharma CK. An overview related to the different approaches of synthesis of different metallic nanoparticles with various advantages in modern science. Ecolo Environ Conser. 2018;24(2):721-6.

  6. Sharma CK, Sharma M. Upscaling strategies to improve the industrial production of bacitracin at large scale. Mini Rev Med Chem. 2017;17(16):1548-56.

  7. Sharma CK, Sharma M, Prasad K. Involvement of different genes expressions during immunological and inflammatory responses in vitiligo. Crit Rev Eukaryot Gene Expr. 2017;27(3):277-87.

  8. Sharma CK, Kanole S, Sharma M, Sharma V. Variety of applications of high performance liquid chromatography (HPLC) in plants. Ecolo Environ Conser. 2017;23(1):178- 83.

  9. Sharma CK, Sharma M, Sharma V. Therapeutic potential of a medicinal plant Aegle marmelos (L.) corr.: an insight. J Environ Pathol Toxicol Oncol. 2016;35(1):1-10.

  10. Sharma CK, Sharma M, Aggarwal B, Sharma V. Different advanced therapeutic approaches to treat vitiligo. J Environ Pathol Toxicol Oncol. 2015;34(4):321-34.

  11. Sharma CK, Sharma V. Reversal of acetaminophen induced acute and subchronic hepatic injury by jaggery in rats. Hepatol Int. 2013;7(S1):121-2.

  12. Sharma CK, Sharma M, Sharma V. Jaggery protects hepatorenal injury induced by acute exposure to carbon tetrachloride in Wistar rats. J Environ Pathol Toxicol Oncol. 2013;32(1):1-7.

  13. Sharma CK, Sharma V. Nephroprotective Effect of 28. jaggery against acute and subchronic toxicity of acetaminophen in wistar rats. J Environ Pathol Toxicol Oncol. 2012;31(3):265-272.

  14. Sharma CK, Sharma M, Sharma V. Effect of different concentrations of sucrose on "Picroliv" from hairy 29. root culture of Picrorhiza kurrooa. Biochem Cell Arch. 2008;8(1):155-9.

  15. Padavi DM, Rathod A, Chavhan S. Single drug treatment for chronic kidney disease-a case study. Int J Adv Ayurveda, Yoga, Unani, Siddha Homeopth. 30. 2014;3(1):213-8.

  16. Sands JM, Verlander JW. Anatomy and physiology of the kidneys. In: Toxicology of the kidney. 3rd edition. Boca Raton, FL: CRC Press; 2005. p. 3-56.

  17. Plantinga LC, Tuot S, Powe NR. Awareness of chronic kidney disease among patients and providers. Adv 31. Chronic Kidney Dis. 2010;17(3):225-36.

  18. Selzer R. Chronic kidney disease (CKD): Clinical practice recommendations for primary care physicians and healthcare providers-a collaborative approach. Yee J, Gregory KD, editors. 6th ed. American Society of Nephrology; 1996. p. 1-76. 32.

  19. Anathhanam S, Lewington AJ. Acute kidney injury. J R Coll Physicians Edinb. 2013;43 (4):323-9.

  20. Nand N, Sharma M, Kumar H, Mehta P. Assessment of reversible risk factors causing acute-on-chronic renal failure. J Ind Acad Clin Med. 2012;13 (3):210-3.

  21. Thomas R, Kanso A, Sedor JR. Chronic kidney disease and its complication. Prim Care: Clin Off Pract. 2008;35(2):329-44.

  22. Margaret B. Chronic kidney disease: detection and 34. evaluation, Commonwealth University School of Medicine. Am Fam Physician. 2011;84(10):1138-48.

  23. Chadban S. The Anzdata registry annual report Australia and New Zealand dialysis and transplant registry Adelaide. Clayton P, McDonald S, Hurst K, editors. Royal Adelaide Hospital; 2013. p. 1-224.

  24. Nordqvist C. Chronic kidney disease: causes, symptoms and treatments, National Institute of Health. 2016. Available from: https://www.medicalnewstoday.com/ articles/179316.php.

  25. Abbott P, Coleman J, Couzos S, Fitzsimons E, Hall G, James J, Lusis N, Meihubers S, Mein J, Nori A, Peiris D, 36. Rafter E, Senior T, Usherwood T, Zoete ND. NACCHO: National guide to a preventive health assessment for aboriginal and Torres Strait islander people. Peiris D, Couzos S, Senior T, editors. South Melbourne, Australia: 37. RACGP; 2012. p. 1-100.

  26. Wu I, Parikh CR. Screening for kidney disease: older measures versus novel biomarkers. Clin J Am Soc 38. Nephrol. 2008;3(6):1895-901.

  27. Shah NA, Lerma EV. Novel biomarkers of renal function: introduction and overview. J Clin Kidney. 2012;5 (2):102-8.

  28. Ichimura T, Asseldonk EJ, Humphreys BD, Gunaratnam L, Duffield JS, Bonventre JV. Kidney injury molecule-1 is a phosphatidyl serine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest. 2008;118 (5):1657-68.

  29. Maatman RG, van de Westerlo EM, van Kuppevelt TH, Veer amp JH. Molecular identification of the liver- and the heart-type fatty acid-binding proteins in human and rat kidney. Use of the reverse transcriptase polymerase chain reaction. Biochem J. 1992;288 (Pt 1):285-90.

  30. Yamamoto T, Noiri E, Ono Y, Doi K, Negishi K, Kamijo A, Kimura K, Fujita T, Kinukawa T, Taniguchi H, Nakamura K, Goto M, Shinozaki N, Ohshima S, Sugaya T. Renal L-type fatty acid-binding protein in acute ischemic injury. J Am Soc Nephrol. 2007;18(11):2894-902.

  31. Nickolas TL, O'Rourke MJ, Yang J, Sise ME, Canetta PA, Barasch N, Buchen C, Khan F, Mori K, Giglio J, Devarajan P, Barasch J. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann Intern Med. 2008;148(11):810-9.

  32. Koyner JL, Garg AX, Coca SG, Sint K, Thiessen-Philbrook H, Patel UD, Shlipak MG, Parikh CR. Biomarkers predict progression of acute kidney injury after cardiac surgery. JAm Soc Nephrol. 2012;23(5):905-14.

  33. Ahn JY, Lee MJ, Seo JS, Choi D, Park JB. Plasma neutrophil gelatinase-associated lipocalin as a predictive biomarker for the detection of acute kidney injury in adult poisoning. Clin Toxicol (Phila). 2016;54(2):127-33.

  34. Paragas N, Qiu A, Zhang Q, Samstein B, Deng SX, Schmidt-Ott KM, Viltard M, Yu W, Forster CS, Gong G, Liu Y, Kulkarni R, Mori K, Kalandadze A, Ratner AJ, Devarajan P, Landry DW, D'Agati V, Lin CS, Barasch J. The NGAL reporter mouse detects the response of the kidney to injury in real time. Nat Med. 2011;17(2):216-22.

  35. Ho J, Tangri N, Komenda P, Kaushal A, Sood M, Brar R, Gill K, Walker S, MacDonald K, Hiebert BM, Arora RC, Rigatto C. Urinary, plasma, and serum biomarkers' utility for predicting acute kidney injury associated with cardiac surgery in adults: a meta-analysis. Am J Kidney Dis. 2015;66(6):993-1005.

  36. Wu H, Craft ML, Wang P, Wyburn KR, Chen G, Ma J, Hambly B, Chadban SJ. IL-18 contributes to renal damage after ischemia-reperfusion. J Am Soc Nephrol. 2008;19(12):2331-41.

  37. Gonzalez F, Vincent F. Biomarkers for acute kidney injury in critically ill patients. Minerva Anestesiol. 2012;78(12):1394-403.

  38. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62(1):237-44.

  39. Parikh CR, Jani A, Melnikov VY, Faubel S, Edelstein CL. Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis. 2004;43(3):405-14.

  40. Vaidya VS, Ford GM, Waikar SS, Wang Y, Clement MB, Ramirez V, Glaab WE, Troth SP, Sistare FD, Prozialeck WC, Edwards JR, Bobadilla NA, Mefferd SC, Bonventre JV.A rapid urine test for early detection of kidney injury. Kidney Int. 2009;76(1):108-14.

  41. Koyner JL, Vaidya VS, Bennett MR, Ma Q, Worcester E, Akhter SA, Raman J, Jeevanandam V, O'Connor MF, Devarajan P, Bonventre JV, Murray PT. Urinary biomarkers in the clinical prognosis and early detection of acute kidney injury. Clin J Am Soc Nephrol. 51. 2010;5(12):2154-65.

  42. Ghatanatti R, Teli A, Tirkey SS, Bhattacharya S, Sengupta G, Mondal A. Role of renal biomarkers as predictors of acute kidney injury in cardiac surgery. Asian Cardiovasc Thorac Ann. 2014;22(2):234-41.

  43. Arthur JM, Hill EG, Alge JL, Lewis EC, Neely BA, Janech MG, Tumlin JA, Chawla LS, Shaw AD. Evaluation of 32 urine biomarkers to predict the progression of acute kidney injury after cardiac surgery. Kidney Int. 2014;85(2):431-8.

  44. Parr SK, Clark AJ, Bian A, Shintani AK, Wickersham NE, Ware LB, Ikizler TA, Siew ED. Urinary L-FABP predicts poor outcomes in critically ill patients with early acute kidney injury. Kidney Int. 2015;87(3):640-8.

  45. Susantitaphong P, Siribamrungwong M, Doi K, Noiri E, Terrin N, Jaber BL. Performance of urinary liver-type fatty acid-binding protein in acute kidney injury: a meta-analysis. Am J Kidney Dis. 2013;61(3):430-9.

  46. Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, Schmidt-Ott KM, Chen X, Li JY, Weiss S, Mishra J, Cheema FH, Markowitz G, Suganami T, Sawai K, Mukoyama M, Kunis C, D'Agati V, Devarajan P, Barasch J. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest. 2005;115(3):610-21.

  47. Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw 56. SM, Bell M, Bihorac A, Birkhahn R, Cely CM, Chawla LS, Davison DL, Feldkamp T, Forni LG, Gong MN, Gunnerson KJ, Haase M, Hackett J, Honore PM, Hoste EA, Joannes-Boyau O, Joannidis M, Kim P, Koyner JL, Laskowitz DT, Lissauer ME, Marx G, McCullough PA, Mullaney S, Ostermann M, Rimmele T, Shapiro NI, Shaw AD, Shi J, Sprague AM, Vincent JL, Vinsonneau C, Wagner L, Walker MG, Wilkerson RG, Zacharowski K, Kellum JA. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17(1):R25.

  48. Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, Cate RL, Sanicola M. Kidney injury 58. molecule-1(KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. 1998;273(7):4135-42.

  49. Ehrchen JM, Sunderkotter C, Foell D, Vogl T, Roth J. The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol. 2009;86(3):557-66.

  50. Ebbing J, Mathia S, Seibert FS, Pagonas N, Bauer F, Erber B, Gunzel K, Kilic E, Kempkensteffen C, Miller K, Bachmann A, Rosenberger C, Zidek W, Westhoff TH. Urinary calprotectin: a new diagnostic marker in urothelial carcinoma of the bladder. World J Urol. 2014;32(6):1485-92.

  51. Seibert FS, Rosenberger C, Mathia S, Arndt R, Arns W, Andrea H, Pagonas N, Bauer F, Zidek W, Westhoff TH. Urinary calprotectin differentiates between prerenal and intrinsic acute renal allograft failure. Transplant. 2017;101(2):387-94.

  52. Yang X, Chen C, Tian J, Zha Y, Xiong Y, Sun Z, Chen P, Li J, Yang T, Ma C, Liu H, Wang X, Hou FF. Urinary angiotensinogen level predicts AKI in acute decompensated heart failure: a prospective, two-stage study. J Am Soc Nephrol. 2015;26(8):2032-41.

  53. Chen C, Yang X, Lei Y, Zha Y, Liu H, Ma C, Tian J, Chen P, Yang T, Hou FF. Urinary biomarkers at the time of AKI diagnosis as predictors of progression of AKI among patients with acute cardiorenal syndrome. Clin J Am Soc Nephrol. 2016;11(9):1536-44.

  54. Inker LA, Tighiouart H, Coresh J, Foster MC, Anderson AH, Beck GJ, Contreras G, Greene T, Karger AB, Kusek JW, Lash J, Lewis J, Schelling JR, Navaneethan SD, Sondheimer J, Shafi T, Levey AS. GFR estimation using P-trace protein and p2-microglobulin in CKD. Am J Kidney Dis. 2016;67(1):40-8.

  55. Viau A, El Karoui K, Laouari D, Burtin M, Nguyen C, Mori K, Pillebout E, Berger T, Mak TW, Knebelmann B, Friedlander G, Barasch J, Terzi F. Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J Clin Invest. 2010;120(11):4065-76.

  56. De Silva PM, Mohammed Abdul KS, Eakanayake EM, Jayasinghe SS, Jayasumana C, Asanthi HB, Perera HS, Chaminda GG, Chandana EP, Siribaddana SH. Urinary biomarkers KIM-1 and NGAL for detection of chronic kidney disease of uncertain etiology (CKDu) among agricultural communities in Sri Lanka. PLoS Negl Trop Dis. 2016;10(9):1-17.

  57. Humphreys BD, Xu F, Sabbisetti V, Grgic I, Naini SM, Wang N, Chen G, Xiao S, Patel D, Henderson JM, Ichimura T, Mou S, Soeung S, McMahon AP, Kuchroo VK, Bonventre JV. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J Clin Invest. 2013;123(9):4023-35.

  58. Sabbisetti VS, Waikar SS, Antoine DJ, Smiles A, Wang C, Ravisankar A, Ito K, Sharma S, Ramadesikan S, Lee M, Briskin R, De Jager PL, Ngo TT, Radlinski M, Dear JW, Park KB, Betensky R, Krolewski AS, Bonventre JV. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J Am Soc Nephrol. 2014;25(10):2177-86.

  59. Kamijo A, Sugaya T, Hikawa A, Okada M, Okumura F, Yamanouchi M, Honda A, Okabe M, Fujino T, Hirata Y, Omata M, Kaneko R, Fujii H, Fukamizu A, Kimura K. Urinary excretion of fatty acid-binding protein reflects stress overload on the proximal tubules. Am J Pathol. 2004;165(4):1243-55.

  60. Kamijo A, Sugaya T, Hikawa A, Yamanouchi M, Hirata Y, Ishimitsu T, Numabe A, Takagi M, Hayakawa H, Tabei F, Sugimoto T, Mise N, Kimura K. Clinical evaluation of urinary excretion of liver-type fatty acid-binding protein as a marker for the monitoring of chronic kidney disease: a multicenter trial. J Lab Clin Med. 2005;145(3):125-33.

  61. Fliser D, Kronenberg F, Kielstein JT, Morath C, Bode-Boger SM, Haller H, Ritz E. Asymmetric dimethylarginine and progression of chronic kidney disease: the mild to moderate kidney disease study. J Am Soc Nephrol. 2005;16(8):2456-61.

  62. Hanai K, Babazono T, Nyumura I, Toya K, Tanaka N, 73. Tanaka M, Tanaka M, Ishii A, Iwamoto Y. Asymmetric dimethylarginine is closely associated with the development and progression of nephropathy in patients with type 2 diabetes. Nephrol Dial Transplant. 2009;24(6):1884-8.

  63. Ravani P, Tripepi G, Malberti F, Testa S, Mallamaci F, Zoccali C. Asymmetrical dimethylarginine predicts progression to dialysis and death in patients with chronic kidney disease: a competing risks modeling approach. J Am Soc Nephrol. 2005;16(8):2449-55.

  64. Prajczer S, Heidenreich U, Pfaller W, Kotanko P, Lhotta K, Jennings P. Evidence for a role of uromodulin in chronic kidney disease progression. Nephrol Dial Transplant. 2010;25(6):1896-903.

  65. Steubl D, Block M, Herbst V, Nockher WA, Schlumberger W, Satanovskij R, Angermann S, Hasenau AL, Stecher L, Heemann U, Renders L, Scherberich J. Plasma uromodulin correlates with kidney function and identifies early stages in chronic kidney disease patients. Med. 2016;95(10):1-9.

  66. Nassirpour R, Raj D, Townsend R, Argyropoulos C. MicroRNA biomarkers in clinical renal disease: from diabetic nephropathy renal transplantation and beyond. Food Chem Toxicol. 2016;98(Pt A):73-88.

  67. Khurana R, Ranches G, Schafferer S, Lukasser M, Rudnicki M, Mayer G, Huttenhofer A. Identification of urinary exosomal noncoding RNAs as novel biomarkers in chronic kidney disease. RNA Soc. 2017;23(2):142-52.

  68. Svendsen KB, Ellingsen T, Bech JN, Jensen MP, Pedersen KS, Pedersen EB. Urinary excretion of alpha-GST and albumin in rheumatoid arthritis patients treated with methotrexate or other DMARDs alone or in combination with NSAIDs. Scand J Rheumatol. 2005;34(1):34-9.

  69. Keirstead ND, Wagoner MP, Bentley P, Blais M, Brown C, Cheatham L, Ciaccio P, Dragan Y, Ferguson D, Fikes J, Galvin M, Gupta A, Hale M, Johnson N, Luo W, McGrath F, Pietras M, Price S, Sathe AG, Sasaki JC, Snow D, Walsky RL, Kern G. Early prediction of polymyxin-induced nephrotoxicity with next-generation urinary kidney injury biomarkers. Toxicol Sci. 2014;137(2):278-91.

  70. Whiting PH, Brown PA. The relationship between enzymuria and kidney enzyme activities in experimental gentamicin nephrotoxicity. Ren Fail. 1996;18(6):899-909.

  71. Naghibi B, Ghafghazi T, Hajhashemi V, Talebi A. Vancomycin-induced nephrotoxicity in rats: is enzyme elevation a consistent finding in tubular injury? J Nephrol. 2007;20(4):482-8.

  72. Zhou Y, Vaidya VS, Brown RP, Zhang J, Rosenzweig BA, Thompson KL, Miller TJ, Bonventre JV, Goering PL. Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury and chromium. Toxicol Sci. 2008;101(1):159-70.

  73. Moldoveanu Z, Wyatt RJ, Lee JY, Tomana M, Julian BA, Mestecky J, Huang WQ, Anreddy SR, Hall S, Hastings MC, Lau KK, Cook WJ, Novak J. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int. 2007;71(11):1148-54.

  74. Zhao N, Hou P, Lv J, Moldoveanu Z, Li Y, Kiryluk K, Gharavi AG, Novak J, Zhang H. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int. 2012;82(7):790-6.

  75. Bazzi C, Rizza V, Raimondi S, Casellato D, Napodano P, D'Amico G. In crescentic IgA nephropathy, fractional excretion of IgG in combination with nephron loss is the best predictor of progression and responsiveness to immunosuppression. Clin J Am Soc Nephrol. 2009;4(5):929-35.

  76. Van Es LA, de Heer E, Vleming LJ, van der Wal A, Mallat M, Bajema I, Bruijn JA, de Fijter JW. GMP-17-positive T-lymphocytes in renal tubules predict progression in early stages of IgA nephropathy. Kidney Int. 2008;73(12):1426-33.

  77. Torres DD, Rossini M, Manno C, Mattace-Raso F, D'Altri C, Ranieri E, Pontrelli P, Grandaliano G, Gesualdo L, Schena FP. The ratio of epidermal growth factor to monocyte chemotactic peptide-1 in the urine predicts renal prognosis in IgA nephropathy. Kidney Int. 2008;73(3):327-33.

  78. Beck LH Jr, Bonegio RG, Lambeau G, Beck DM, Powell DW, Cummins TD, Klein JB, Salant DJ. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med. 2009;361(1):11-21.

  79. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, Kusek JW, Manzi J, Van Lente F, Zhang YL, Coresh J, Levey AS. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012;367(1):20-9.

  80. Wrone EM, Carnethon MR, Palaniappan L, Fortmann SP. Association of dietary protein intake and microalbuminuria in healthy adults: Third National Health and Nutrition Examination Survey. Am J Kidney Dis. 2003;41(3):580-7.

  81. Lambers Heerspink HJ, Zeeuw DD. Novel drugs and intervention strategies for the treatment of chronic kidney disease. Br Pharmacol Soc. 2013;6(4):536-50.

  82. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861-9.

  83. GISEN Group (Gruppo Italiano di Studi Epidemiologic in Nefrologia). Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet. 1997;349(9069):1857-63.

  84. Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, Fyhrquist F, Ibsen H, Kristiansson K, Lederballe-Pedersen O, Lindholm LH, Nieminen MS, Omvik P, Oparil S, Wedel H. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint Reduction in Hypertension (LIFE) study: a randomised trial against atenolol. Lancet 2002;359(9311):995-1003.

  85. Kunz R, Friedrich C, Wolbers M, Mann JF. Meta-analysis effect of monotherapy and combination therapy with inhibitors of the renin angiotensin system on proteinuria in renal disease. Ann Intern Med. 2008;148(1):30-48.

  86. Mann JF, Schmieder RE, McQueen M, Dyal L, Schumacher H, Pogue J, Wang X, Maggioni A, Budaj A, Chaithiraphan S, Dickstein K, Keltai M, Metsarinne K, Oto A, Parkhomenko A, Piegas LS, Svendsen TL, Teo KK, Yusuf S. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET Study): a multicentre, randomised, double-blind, controlled trial. Lancet. 2008;372(9638):547-53.

  87. Hattori S. Sitagliptin reduces albuminuria in patients with type 2 diabetes. Endocr J. 2011;58(1):69-73.

  88. Eynatten MV, Emser A, Cooper M, Perkovic V, Rosenstock J, Wanner C, Woerle HJ. Renal safety and outcomes with linagliptin: meta-analysis of individual data for 5466 patients with type 2 diabetes. J Am Soc Nephrol. 2012;23(1):913.

  89. Bailey CJ, Gross JL, Pieters A, Bastien A, List JF. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomized, double-blind, placebo-controlled trial. Lancet. 2010;375(9733):2223-33.

  90. Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348(5):383-93.

  91. Ruggenenti P, Perticucci E, Cravedi P, Gambara V, Costantini M, Sharma SK, Perna A, Remuzzi G. Role of remission clinics in the longitudinal treatment of CKD. J Am Soc Nephrol. 2008;19(6):1213-24.

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain