Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Critical Reviews™ in Eukaryotic Gene Expression
Impact-faktor: 1.841 5-jähriger Impact-Faktor: 1.927 SJR: 0.627 SNIP: 0.516 CiteScore™: 1.96

ISSN Druckformat: 1045-4403
ISSN Online: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukarGeneExpr.v21.i1.10
pages 1-12

Heparan Sulfate-based Treatments for Regenerative Medicine

Bina Rai
Institute of Medical Biology, A*STAR, Singapore
Victor Nurcombe
Institute of Molecular and Cell Biology; and Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
Simon M. Cool
Institute of Molecular and Cell Biology; and Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

ABSTRAKT

This review summarizes the emerging strategies that exploit the glycosaminoglycan sugar, heparan sulfate (HS), either as a substitute for, or as a supplement to growth factor (GF) therapy for regenerative medicine. Excluding autograft, the administration of GFs is currently the most effective treatment for critical bone repair and restoration. However, major hurdles in the clinical development of GF therapies include the high cost, the unwanted side effects, and the toxicity associated with the physiological overdosing required to achieve a successful outcome. These drawbacks may be overcome with the application of particular HS fractions that have been optimized to bind, recruit and enhance the biological activity of endogenous GF at the site of injury. Three HS-based treatments are discussed here: first, the single, localized, and sustained delivery of HS as a stand-alone therapeutic agent; then, the inclusion of an HS component within a delivery device so as to stabilize and potentiate the bioactivity of the incorporated GF; and finally, the growing use of HS mimetics, particularly for bone repair.


Articles with similar content:

Recent Advances in Nanoparticle-Based Targeted Drug-Delivery Systems Against Cancer and Role of Tumor Microenvironment
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.34, 2017, issue 4
Usman Ali Ashfaq, Muhammad Zubair Yousaf, Erum Yasmeen, Muhammad Riaz
Scaffolds for Articular Cartilage Repair
Journal of Long-Term Effects of Medical Implants, Vol.22, 2012, issue 3
Daniel A. Grande, Adam Graver, Ashley Olson
Liposome-Based Nanomedicine Therapeutics for Rheumatoid Arthritis
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.34, 2017, issue 4
Richard T. Addo, Vikas Kumar, Ruhi Ubale, Firoz Anwar, Mahfoozur Rahman, Sarwar Beg, Sohail Akhter, Raisuddin Ali
Review Article: Fabricated Microparticles: An Innovative Method to Minimize the Side Effects of NSAIDs in Arthritis
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.33, 2016, issue 5
Shaivad Shabee Hulhasan Abadi, Afrasim Moin, Gangadharappa Hosahalli Veerabhadrappa
Scaffolds for Tissue Engineering of Cartilage
Critical Reviews™ in Eukaryotic Gene Expression, Vol.12, 2002, issue 3
J. M. Bezemer, C. A. van Blitterswijk, J. Riesle, T. B. F. Woodfield, J. S. Pieper