Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Critical Reviews™ in Eukaryotic Gene Expression
Impact-faktor: 2.156 5-jähriger Impact-Faktor: 2.255 SJR: 0.649 SNIP: 0.599 CiteScore™: 3

ISSN Druckformat: 1045-4403
ISSN Online: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukaryotGeneExpr.v14.i4.60
12 pages

A Hierarchical Approach to Finite Element Modeling of the Human Spine

Alistair Templeton
Department of Bioengineering, Rice University, Houston, TX
Michael Liebschner
Baylor College of Medicine


Finite element modeling has become an important part of biomechanics research in the last 30 years. In particular, virtual experimentation on the spine bypasses several limitations on mechanical testing: any load and constraint may be applied to a finite element model, and experiments may be repeated with slight alterations on the same specimen. Because computer power is still limited, each virtual model is designed with a particular scale in mind. To analyze spinal motion, a motion segment consisting of two or more vertebrae and the connective tissue is modeled. For vertebral strength, a single vertebra, with or without posterior elements, is analyzed. To understand the biomechanics of the cancellous bone and to examine bone remodeling, the individual trabeculae comprising the cancellous bone are examined. These three areas represent the bulk of current research. Scientists also explore whole-spine mechanics and ultrastructural dynamics, but these suffer greatly from a lack of physiological data on the observed phenomena. To a large extent, the spinal physiological loading scenario and the load distribution at the different structural levels are unknown. As in vivo measurement techniques and computational power grow, so will the usefulness of finite element modeling.

Articles with similar content:

Effects of Intervertebral Disk Degeneration on the Flexibility of the Human Thoracolumbar Spine
Journal of Long-Term Effects of Medical Implants, Vol.18, 2008, issue 4
J. P. McGarry, P. E. McHugh, M. A. Tyndyk, Michael Liebschner, D. O'Mahoney, V. Barron, W. Tawackoli
Multisegmental Foot Modeling: A Review
Critical Reviews™ in Biomedical Engineering, Vol.36, 2008, issue 2-3
Gerald F. Harris, Leah Rankine, Jason T Long, Karl Canseco
Application of the Finite Element Method in Orthopedic Implant Design
Journal of Long-Term Effects of Medical Implants, Vol.19, 2009, issue 1
Amit Roychowdhury
Biomechanics of Single Chondrocytes and Osteoarthritis
Critical Reviews™ in Biomedical Engineering, Vol.30, 2002, issue 4-6
Kyriacos A. Athanasiou, Adrian C. Shieh
Hypersurface for the Combined Loading Rate and Specimen Size Effects on Material Properties
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 4
H. Eliot Fang, Yong Gan, Luming Shen, Zhen Chen