Abo Bibliothek: Guest
Critical Reviews™ in Eukaryotic Gene Expression

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 1045-4403

ISSN Online: 2162-6502

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.6 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.2 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00058 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.345 SNIP: 0.46 CiteScore™:: 2.5 H-Index: 67

Indexed in

CRISPR/Cas: A Successful Tool for Genome Editing in Animal Models

Volumen 30, Ausgabe 3, 2020, pp. 239-243
DOI: 10.1615/CritRevEukaryotGeneExpr.2020028791
Get accessGet access

ABSTRAKT

CRISPR/Cas9 is an innovative molecular tool that is utilized in advanced biological applications. This review focuses on modifying the genomes of a wide range of animals by CRISPR/Cas9 for greater usability and higher efficiency, providing an overview of the function and mechanism of this system and the utilization of this system for medicinal research. The type II CRISPR-Cas system is found in the Enterobacteriaceae bacteria family, which uses this system as a defense against invading phages and plasmids. This system can be engineered to direct its action toward a targeted site for the modification of a specific genome.

REFERENZEN
  1. Rudin N, Sugarman E, Haber JE. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics. 1989;122(3):519-34.

  2. Miller J, McLachlan A, Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 1985;4(6):1609-14.

  3. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326(5959):1509-12.

  4. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429-33.

  5. Kamerbeek J, Schouls LE, Kolk A, Van Agterveld M, Van Soolingen D, Kuijper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, van Embden J. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Mirobiol. 1997;35(4):907-14.

  6. Mojica F, Ferrer C, Juez G, Rodriguez-Valera F. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol. 1995;17(1):85-93.

  7. Bibikova M, Golic M, Golic KG, Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. 2002;161(3):1169-75.

  8. Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science. 2009;326(5959):1501.

  9. Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics. 2007;8(1):172.

  10. Sawyer E. Editing genomes with the bacterial immune system. Scitable; 2015. Available from: https://www.nature.com/ scitable/blog/bio2.0/editing_genomes_with_the_bacterial/.

  11. Marraffini LA. CRISPR-Cas immunity in prokaryotes. Nature. 2015;526(7571):55.

  12. Morange M. What history tells us XXXVII. CRISPR-Cas: The discovery of an immune system in prokaryotes. J Biosci. 2015;40(2):221-3.

  13. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173-83.

  14. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 2015;13(11):722.

  15. Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang AP, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J. Generation of gene-modified cynomolgus monkey via Cas9/ RNA-mediated gene targeting in one-cell embryos. Cell. 2014;156(4):836-43.

  16. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471(7340): 602.

  17. Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Zhao Y, Liu M. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol. 2013;31(8):681.

  18. Bassett AR, Tibbit C, Ponting CP, Liu J-L. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/ Cas9 system. Cell Biol Int Rep. 2013;4(1):220-8.

REFERENZIERT VON
  1. Pickerill Ethan S., Bernstein Douglas A., CRISPR mediated genome editing, a tool to dissect RNA modification processes, in RNA Modification Enzymes, 658, 2021. Crossref

  2. Qadir M.I., Meet Our Editorial Board Member, Recent Patents on Biotechnology, 15, 1, 2021. Crossref

  3. Zeng Yong, Qian Haohua, Campos Maria Mercedes, Li Yichao, Vijayasarathy Camasamudram, Sieving Paul A., Rs1h−/y exon 3-del rat model of X-linked retinoschisis with early onset and rapid phenotype is rescued by RS1 supplementation, Gene Therapy, 29, 7-8, 2022. Crossref

Zukünftige Artikel

Fundamentals and translational applications of stem cells and biomaterials in dental, oral and craniofacial regenerative medicine Yasaman Daneshian, Eric Lewallen, Amr Badreldin, Allan Dietz , Gary Stein, Simon Cool, Hyun-Mo Ryoo, Young Dan Cho, Andre van Wijnen Inflammatory Markers Involved in the Pathogenesis of Dupuytren Contracture William Cates, Janet Denbeigh, Ralph Salvagno, Sanjeev Kakar, Andre van Wijnen, Charles Eaton PRMT6 promotes the immune evasion of gastric cancer via upregulating ANXA1 Liang Xu, Fenger Zhang, Binqi Yu, Shengnan Jia, Sunfu Fan SIAH1 promotes the pyroptosis of cardiomyocytes in diabetic cardiomyopathy via regulating IκB-α/NF-κB signaling Jinbin Wu, Yaoming Yan SLC7A2-mediated lysine catabolism inhibits immunosuppression in triple negative breast cancer Yuanyuan Sun, Yaqing Li, Chengying Jiang, Chenying Liu, Yuanming Song SIAH2-mediated degradation of ACSL4 inhibits the anti-tumor activity of CD8+ T cells in hepatocellular carcinoma Fangzheng Shu, Yuhua Shi, Xiangxiang Shan, Wenzhang Zha, Rengen Fan, Wanjiang Xue RBM15-mediated N6-methyl adenosine (m6A) modification of EZH2 drives the epithelial-mesenchymal transition of cervical cancer Ruixue Wang, Wenhua Tan Evidence-Based Storytelling and A Strategic Roadmap to Promote Cancer Prevention Via Adolescent HPV Vaccination in Northern New England Matthew Dugan, Gary Stein, Jan Carney, Sheila Clifford-Bova KDM4A-AS1 promotes cell proliferation, migration and invasion via the miR-4306/STX6 axis in hepatocellular carcinoma Wei Cao, Yuhan Ren, Ying Liu, Guoshu Cao, Zhen Chen, Fan Wang HDAC1-mediated downregulation of NEU1 exacerbates the aggressiveness of cervical cancer Nanzi Xie, Sisi Mei, Changlan Dai, Wei Chen Effect of miR-26b-5p on progression of acute myeloid leukemia by regulating USP48-mediated Wnt/β-catenin pathway Yu Xie, Lin Tan, Kun Wu, Deyun Li, Chengping Li
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain