Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Critical Reviews™ in Eukaryotic Gene Expression
Impact-faktor: 1.841 5-jähriger Impact-Faktor: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN Druckformat: 1045-4403
ISSN Online: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukarGeneExpr.v9.i3-4.100
pages 257-265

Lamins and Lamin-Binding Proteins in Functional Chromatin Organization

Josef Gotzmann
Institute of Tumor Biology-Cancer Research, University of Vienna, A-1090 Vienna, Austria
Roland Foisner
Department of Biochemistry and Molecular Cell Biology, University of Vienna, A-1030 Vienna, Austria

ABSTRAKT

Lamins are the major components of the nuclear lamina, a two-dimensional filamentous network at the periphery of the nucleus in higher eukaryotes, directly underlying the inner nuclear membrane. Several integral proteins of the inner nuclear membrane bind to lamins and may link the nuclear membrane to the core lamina network. The lamins and the lamin-binding proteins lamina-associated polypeptide (LAP)2β and lamin B receptor (LBR) have been described to bind to DNA or to interact with chromatin via histones, BAF-1, and HP1 chromodomain proteins, respectively, and may provide anchorage sites for chromatin fibers at the nuclear periphery. In addition, lamin A structures on intranuclear filaments, or lamin B in replication foci have been described in the nuclear interior, but their specific roles remain unclear. An isoform of the LAP2 protein family, LAP2α, has been found to colocalize with A-type lamins in the nucleoplasm and might be involved in intranuclear structure organization. In the course of cell-cycle-dependent dynamics of the nucleus in higher eukaryotes, lamins as well as lamin-binding proteins seem to possess important functions during various steps of post-mitotic nuclear reassembly, including cross-linking of chromatides, nuclear membrane targeting, nuclear lamina assembly, and the formation of a replication-competent nucleus.