Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal of Medicinal Mushrooms
Impact-faktor: 1.423 5-jähriger Impact-Faktor: 1.525 SJR: 0.431 SNIP: 0.661 CiteScore™: 1.38

ISSN Druckformat: 1521-9437
ISSN Online: 1940-4344

Volumen 22, 2020 Volumen 21, 2019 Volumen 20, 2018 Volumen 19, 2017 Volumen 18, 2016 Volumen 17, 2015 Volumen 16, 2014 Volumen 15, 2013 Volumen 14, 2012 Volumen 13, 2011 Volumen 12, 2010 Volumen 11, 2009 Volumen 10, 2008 Volumen 9, 2007 Volumen 8, 2006 Volumen 7, 2005 Volumen 6, 2004 Volumen 5, 2003 Volumen 4, 2002 Volumen 3, 2001 Volumen 2, 2000 Volumen 1, 1999

International Journal of Medicinal Mushrooms

DOI: 10.1615/IntJMedMushrooms.2019032566
pages 1007-1018

Effects of Extraction Conditions on Crude Polysaccharides and Antioxidant Activities of the Lion's Mane Medicinal Mushroom, Hericium erinaceus (Agaricomycetes)

Shengjuan Jiang
College of Life and Health Science, Anhui Science and Technology University, Anhui Fengyang 233100, China
Shanshan Liu
Clinical Laboratory, Jinan Municipal Hospital of Traditional Chinese Medicine, Shandong Jinan 250012, China
Meisong Qin
College of Life and Health Science, Anhui Science and Technology University, Anhui Fengyang 233100, China


Dietary supplements are important to sustain an adequate level of antioxidants to balance reactive oxygen species (ROS) in vivo. Hericium erinaceus is one of the rare wood-rotting mushrooms with polysaccharides, which play antioxidant roles in multiple physiological systems of the organism. Can higher polysaccharide content yield higher antioxidant activity? The research on this is scarce. Therefore, the influence of extraction conditions on contents and antioxidant activities of polysaccharide from H. erinaceus was investigated by response surface methodology. Three main independent variables (extraction temperature, time, solid-liquid ratio) were taken into consideration. The extraction and the antioxidant activities were optimized using a Box-Behnken design. Interestingly, the effects of each factor were personalized. Extraction temperature was the dominant factor influencing the polysaccharide contents and antioxidant activities. In addition, the optimal condition to obtain the highest yield of polysaccharide was not in accord with the optimal condition to maximize the antioxidant activities. The effects of every extraction factor on antioxidant activities were various, probably because different components obtained under different extraction conditions had diverse antioxidant mechanisms. This study will help researchers to focus more on the effective components and their antioxidant abilities, rather than blindly pursue the yields of total polysaccharides.


  1. Czarnocka W, Karpinski S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med. 2018;122:4-20.

  2. Guo JD, Zhao X, Li Y, Li GR, Liu XL. Damage to dopaminergic neurons by oxidative stress in Parkinson's disease (review). Int J Mol Med. 2018;41(4):1817-1825.

  3. Grochowski C, Litak J, Kamieniak P, Maciejewski R. Oxidative stress in cerebral small vessel disease. Role of reactive species. Free Radic Res. 2018;52(1):1-13.

  4. Chung E, Mo H, Wang S, Zu Y, Elfakhani M, Rios SR, Chyu MC, Yang RS, Shen CL. Potential roles of vitamin E in age-related changes in skeletal muscle health. Nutr Res. 2018;49:23-36.

  5. Liu Y, Li M, Song Y, Liu X, Zhao J, Deng B, Peng A, Qin L. Association of serum bilirubin with renal outcomes in Han Chinese patients with chronic kidney disease. Clin Chim Acta. 2018;480:9-16.

  6. Vallejo MJ, Salazar L, Grijalva M. Oxidative stress modulation and ROS-mediated toxicity in cancer: a review on in vitro models for plant-derived compounds. Oxid Med Cell Longev. 2017;2017:4586068.

  7. Pietraforte D, Paulicelli E, Patrono C, Gambardella L, Scorza G, Testa A, Fattibene P. Protein oxidative damage and redox imbalance induced by ionising radiation in CHO cells. Free Radic Res. 2018;52(4):465-79.

  8. Moro-Garcia MA, Mayo JC, Sainz RM, Alonso-Arias R. Influence of inflammation in the process of T lymphocyte differentiation: proliferative, metabolic, and oxidative changes. Front Immunol. 2018;9:339.

  9. El-Kenawi A, Ruffell B. Inflammation, ROS, and mutagenesis. Cancer Cell. 2017;32(6):727-29.

  10. Qin M, Geng Y, Lu Z, Xu H, Shi JS, Xu X, Xu ZH. Anti-inflammatory effects of ethanol extract of Lion's Mane medicinal mushroom, Hericium erinaceus (Agaricomycetes), in mice with ulcerative colitis. Int J Med Mushrooms. 2016;18(3):227-34.

  11. Vi M, Yang X, Zeng X, Chen R, Guo L, Lin J, He Q, Zheng Q, Wei T. Improvement of nutritional and bioactive compound production by Lion's Mane medicinal mushroom, Hericium erinaceus (Agaricomycetes), by spraying growth regulators. Int J Med Mushrooms. 2018;20(3):271-81.

  12. Jiang SJ, Wang SH, Sun YJ, Zhang Q. Medicinal properties of Hericium erinaceus and its potential to formulate novel mush-room-based pharmaceuticals. Appl Microbiol Biotechnol. 2014;98(18):7661-70.

  13. Jiang S, Wang Y, Zhang X. Comparative studies on extracts from Hericium erinaceus by different polarity reagents to gain higher antioxidant activities. Exp Ther Med. 2016;12(1):513-17.

  14. Jiang S, Ma Y, Song L, Ren Y. Effect of extraction conditions on antioxidant activities of water and ethanol extractions from Lentinus edodes, Flammulina velutipes, Hericium erinaceus and Ganoderma lucidum. Oxid Commun. 2015;38(3):1233-43.

  15. Ren Y, Geng Y, Du Y, Li W, Lu ZM, Xu HY, Xu GH, Shi JS, Xu ZH. Polysaccharide of Hericium erinaceus attenuates colitis in C57BL/6 mice via regulation of oxidative stress, inflammation-related signaling pathways and modulating the composition of the gut microbiota. J Nutr Biochem. 2018;57:67-76.

  16. Wang XY, Yin JY, Zhao MM, Liu SY, Nie SP, Xie MY. Gastroprotective activity of polysaccharide from Hericium erinaceus against ethanol-induced gastric mucosal lesion and pylorus ligation-induced gastric ulcer, and its antioxidant activities. Carbohydr Polym. 2018;186:100-9.

  17. Ofosu FK, Yu X, Wang Q, Li H. Nutrient optimization using response surface methodology for simultaneous biomass and bioactive compound production by Lion's Mane medicinal mushroom, Hericium erinaceus (Agaricomycetes). Int J Med Mushrooms. 2016;18(3):215-26.

  18. Nair AT, Makwana AR, Ahammed MM. The use of response surface methodology for modelling and analysis of water and wastewater treatment processes: a review. Water Sci Technol. 2014;69(3):464-78.

  19. Xu Y, Shen M, Chen Y, Lou Y, Luo R, Chen J, Zhang Y, Li J, Wang W. Optimization of the polysaccharide hydrolysate from Auricularia auricula with antioxidant activity by response surface methodology. Int J Biol Macromol. 2018;113:543-49.

  20. Wang K, Li M, Wen X, Chen X, He Z, Ni Y. Optimization of ultrasound-assisted extraction of okra (Abelmoschus esculentus (L.) Moench) polysaccharides based on response surface methodology and antioxidant activity. Int J Biol Macromol. 2018;114:1056-63.

  21. Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F. A colorimetric method for the determination of sugars. Nature. 1951;168(4265):167.

  22. Jiang S, Ma Y, Yan D. Antioxidant and antimicrobial properties of water soluble polysaccharide from Arachis hypogaea seeds. J Food Sci Technol. 2014;51(10):2839-44.

  23. Negro C, Tommasi L, Miceli A. Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresour Technol. 2003;87(1):41-44.

  24. Chen H, Yan M, Zhu J, Xu X. Enhancement of exo-polysaccharide production and antioxidant activity in submerged cultures of Inonotus obliquus by lignocellulose decomposition. J Ind Microbiol Biotechnol. 2011;38(2):291-98.

  25. Zhong K, Wang Q, He Y, He X. Evaluation of radicals scavenging, immunity-modulatory and antitumor activities of longan polysaccharides with ultrasonic extraction on in S180 tumor mice models. Int J Biol Macromol. 2010;47(3):356-60.

  26. Wang M, Konishi T, Gao Y, Xu D, Gao Q. Anti-gastric ulcer activity of polysaccharide fraction isolated from mycelium culture of Lion's Mane medicinal mushroom, Hericium erinaceus (higher Basidiomycetes). Int J Med Mushrooms. 2015;17(11):1055-60.

  27. Wu F, Zhou C, Zhou D, Ou S, Zhang X, Huang H. Structure characterization of a novel polysaccharide from Hericium erinaceus fruiting bodies and its immunomodulatory activities. Food Funct. 2018;9(1):294-306.

  28. Wang M, Zhang Y, Xiao X, Xu D, Gao Y, Gao Q. A polysaccharide isolated from mycelia of the Lion's Mane medicinal mushroom Hericium erinaceus (Agaricomycetes) induced apoptosis in precancerous human gastric cells. Int J Med Mushrooms. 2017;19(12):1053-60.

  29. Rossi P, Cesaroni V, Brandalise F, Occhinegro A, Ratto D, Perrucci F, Lanaia V, Girometta C, Orru G, Savino E. Dietary supplementation of Lion's Mane medicinal mushroom, Hericium erinaceus (Agaricomycetes), and spatial memory in wild-type mice. Int J Med Mushrooms. 2018;20(5):485-94.

  30. He X, Wang X, Fang J, Chang Y, Ning N, Guo H, Huang L, Huang X, Zhao Z. Structures, biological activities, and industrial applications of the polysaccharides from Hericium erinaceus (Lion's Mane) mushroom: a review. Int J Biol Macromol. 2017;97:228-237.

  31. Li QZ, Wu D, Zhou S, Liu YF, Li ZP, Feng J, Yang Y. Structure elucidation of a bioactive polysaccharide from fruiting bodies of Hericium erinaceus in different maturation stages. Carbohydr Polym. 2016;144:196-204.

  32. Wang M, Gao Y, Xu D, Gao Q. A polysaccharide from cultured mycelium of Hericium erinaceus and its anti-chronic atrophic gastritis activity. Int J Biol Macromol. 2015;81:656-61.

  33. Wang M, Kanako N, Zhang Y, Xiao X, Gao Q, Tetsuya K. A unique polysaccharide purified from Hericium erinaceus mycelium prevents oxidative stress induced by H2O2 in human gastric mucosa epithelium cell. PLoS One. 2017;12(7):e0181546.

  34. Vamanu E. In vitro antimicrobial and antioxidant activities of ethanolic extract of lyophilized mycelium of Pleurotus ostreatus PQMZ91109. Molecules. 2012;17(4):3653-71.

  35. Nahar L, Nasrin F, Zahan R, Haque A, Haque E, Mosaddik A. Comparative study of antidiabetic activity of Cajanus cajan and Tamarindus indica in alloxan-induced diabetic mice with a reference to in vitro antioxidant activity. Pharmacognosy Res. 2014;6(2):180-87.

  36. Mensor LL, Menezes FS, Leitao GG, Reis AS, dos Santos TC, Coube CS, Leitao SG. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res. 2001;15(2):127-30.