Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal of Medicinal Mushrooms
Impact-faktor: 1.423 5-jähriger Impact-Faktor: 1.525 SJR: 0.431 SNIP: 0.716 CiteScore™: 2.6

ISSN Druckformat: 1521-9437
ISSN Online: 1940-4344

Volumes:
Volumen 22, 2020 Volumen 21, 2019 Volumen 20, 2018 Volumen 19, 2017 Volumen 18, 2016 Volumen 17, 2015 Volumen 16, 2014 Volumen 15, 2013 Volumen 14, 2012 Volumen 13, 2011 Volumen 12, 2010 Volumen 11, 2009 Volumen 10, 2008 Volumen 9, 2007 Volumen 8, 2006 Volumen 7, 2005 Volumen 6, 2004 Volumen 5, 2003 Volumen 4, 2002 Volumen 3, 2001 Volumen 2, 2000 Volumen 1, 1999

International Journal of Medicinal Mushrooms

DOI: 10.1615/IntJMedMushrooms.2019032976
pages 1207-1221

Employment of ARTP to Generate Phellinus baumii (Agaricomycetes) Strain with High Flavonoids Production and Validation by Liquid Fermentation

He-Nan Zhang
National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, P.R. China
Fuchun Jiang
Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, No. 1000 Jinqi Road, Shanghai 201403, China
Dehui Qu
Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, No. 1000 Jinqi Road, Shanghai 201403, China
Wen-Han Wang
National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
Yating Dong
School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P.R. China
Jing-Song Zhang
National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
Di Wu
Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China; National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
Yan Yang
Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, No. 1000 Jinqi Road, Shanghai 201403, China

ABSTRAKT

To obtain Phellinus baumii strain with high flavonoids yield, ARTP was employed to generate mutants of a Ph. baumii strain, which were screened for higher flavonoids content. After five rounds of screening, four mutants were identified to produce more flavonoids than the wild type strain under optimal conditions, of which A67 was the mutant with the highest flavonoids productive capacity. When cultured in shake flasks, the maximum intracellular total flavonoids production of A67 reached 0.56 g/L, 86.67% higher than the total flavonoids in CK. Antagonistic testing, RAPD, and HPLC analysis suggested that ARTP caused changes of the genetic material and metabolites in Ph. baumii. In addition, the superiority of A67 to CK was proved by liquid fermentation using unstructured kinetic models, which was performed in a 50-L fermentor. The maximum intracellular total flavonoids production and dry mycelium weight of A67 reached 0.64 g/L and 15.24 g/L, which was an increase of 88.24% and 18.23% compared with CK, respectively. This work could provide an efficient and practical strategy to obtain high flavonoids production strains and the superiority of A67 could also provide a reference to further increase flavonoids production of Ph. baumii in large-scale production mode by submerged fermentation process.

REFERENZEN

  1. Patel S, Goyal A. Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech. 2012;2:1-15.

  2. Ma XK, Zhang H, Fam H. Influence of rutin, FeSO4, Tween 80, aspartate and complex vitamins on synthesis of fungal exo-polysaccharide. Carbohydr Polym. 2013;92:1188-96.

  3. Lemieszek MK, Langner E, Kandefer-Szerszen M, Sanecka B, Mazurkiewicz W, Rzeski W. Anticancer effects of fraction isolated from fruiting bodies of Chaga medicinal mushroom, Inonotus obliquus (Pers.:Fr.) Pilat (Aphyllophoromycetideae): in vitro studies. Int J Med Mushrooms. 2011;13:131-43.

  4. Yeni L, Sena L, Ji Yeon K, Jae-Ho S, Oran K. A phellinus baumii-based supplement containing Salvia miltiorrhiza Bunge improves atherothrombotic profiles through endothelial nitric oxide synthase and cyclooxygenase pathways in vitro and in vivo. J Funct Foods. 2016;24:231-43.

  5. Dong W, Ning L, Lu WD, Li CC, Chen RP, Jia XN, Wang L, Guo LZ. Tumor-inhibitory and liver-protective effects of Phellinus igniarius extracellular polysaccharides. World J Microbiol Biotechnol. 2009;25:633-38.

  6. Jeon TI, Jung CH, Cho JY, Park DK, Moon JH. Identification of an anticancer compound against HT-29 cells from Phellinus linteus grown on germinated brown rice. Asian Pac J Trop Med. 2013;3:785-89.

  7. Sun J, Chen QJ, Zhu MJ, Wang HX, Zhang GQ. An extracellular laccase with antiproliferative activity from the sanghuang mushroom Inonotus baumii. J Mol Catal B Enzym. 2014;99:20-25.

  8. Song YS, Kim SH, Sa JH, Jin C, Lim CJ, Park EH. Anti-angiogenic, antioxidant and xanthine oxidase inhibition activities of the mushroom Phellinus linteus. J Ethnopharmacol. 2003;88:113-16.

  9. Lung MY, Tsai JC, Huang PC. Antioxidant properties of edible basidiomycete Phellinus igniarius in submerged cultures. J Food Sci. 2010;75:18-24.

  10. Shao Q, Yang Y, Li T, Feng J, Liu Y, Yan M, Zhu L, Tang C. Biological activities of ethanol extracts of Phellinus baumii (higher Basidiomycetes) obtained by different fermentation methods. Int J Med Mushrooms. 2015;17(4):361-69.

  11. Wang Y, Yu JX, Zhang CL, Li P, Zhao YS, Zhang MH, Zhou PG. Influence of flavonoids from Phellinus igniarius on sturgeon caviar: antioxidant effect and sensory characteristics. Food Chem. 2012;131:206-10.

  12. Luo JG, Liu J, Sun Y, Ye H, Zhou CH, Zeng XX. Medium optimization, preliminary characterization and antioxidant activity in vivo of mycelial polysaccharide from Phellinus baumii Pilat. Carbohydr Polym. 2010;81:533-40.

  13. Ma XK, Zhang H, Peterson EC, Chen L. Enhancing exopolysaccharide antioxidant formation and yield from Phellinus species through medium optimization studies. Carbohydr Polym. 2014;107:214-20.

  14. Kovacs B, Zomborszki ZP, Orban-Gyapai O, Csupor-Loffler B, Liktor-Busa E, Lazar A, Papp V, Urban E, Hohmann J, Vanyolos A. Investigation of antimicrobial, antioxidant, and xanthine oxidase-inhibitory activities of Phellinus (Agaricomycetes) mushroom species native to Central Europe. Int J Med Mushrooms. 2017;19(5):387-94.

  15. Luo JG, Liu J, Ke CL, Qiao DL, Ye H, Sun Y, Zeng XX. Optimization of medium composition for the production of exopolysaccharides from Phellinus baumii Pilat in submerged culture and the immune-stimulating activity of exopolysaccharides. Carbohydr Polym. 2009;78:409-415.

  16. Sung SK, Batbayar S, Lee DH, Kim HW. Activation of NADPH oxidase by P-glucan from Phellinus baumii (Agaricomycetes) in RAW 264.7 cells. Int J Med Mushrooms. 2017;19(11):957-965.

  17. Inagaki N, Shibata T, Itoh T, Suzuki T, Tanaka H, Nakamura T, Akiyama Y, Kawagishi H, Nagai H. Inhibition of IgE-dependent mouse triphasic cutaneous reaction by a boiling water fraction separated from mycelium of Phellinus linteus. Evid Based Complement Alternat Med. 2005;2:369-374.

  18. Shao Q, Yang Y, Li T, Liu Y, Yan M, Zhu L, Tang C. Biological activities of ethanol extracts of Phellinus baumii (higher Basidiomycetes) obtained by different fermentation methods. Int J Med Mushrooms. 2005;17:361-369.

  19. Chen LM, Xiao J, Li J, Zhang C. Research and development of Phellinus igniarius. Acta Agricult Jiangxi. 2007;19:88-90.

  20. Khaliq S, Akhtar K, Afzal Ghauri M, Iqbal R, Mukhtar Khalid A, Muddassar M. Change in colony morphology and kinetics of tylosin production after UV and gamma irradiation mutagenesis of Streptomyces fradiae NRRL-2702. Microbiol Res. 2009;164(4):469-477.

  21. Zhang HN, Ma HL, Zhou CS, Yang Y, Yin XL, Yan JK. Enhanced production and antioxidant activity of endo-polysaccharides from Phellinus igniarius mutants screened by low power He-Ne laser and ultraviolet induction. Bioactive Carbohydr Dietary Fibre. 2018;15:30-36.

  22. Li HG, Luo W, Gu QY, Wang Q, Hu WJ, Yu XB. Acetone, butanol, and ethanol production from cane molasses using Clostridium beijerinckii mutant obtained by combined low-energy ion beam implantation and N-methyl-N-nitrosoguanidine induction. Bioresour Technol. 2013;137:254-60.

  23. Shi JJ, Kong MG. Expansion of the plasma stability range in radio-frequency atmospheric-pressure glow discharges. Appl Phys Lett. 2005;87:1685-93.

  24. Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, Van D, Zimmermann JL. Plasma medicine: an introductory review. New J Phys. 2009;11:1-35.

  25. Zeng WZ, Du GC, Chen J, Li JH, Zhou JW. A high-throughput screening procedure for enhancing a-ketoglutaric acid production in Yarrowia lipolytica by random mutagenesis. Process Biochem. 2015;50:1516-22.

  26. Tan YY, Fang MY, Jin LH, Zhang C, Li HP, Xing XH. Culture characteristics of the atmospheric and room temperature plasma-mutated Spirulina platensis mutants in CO2 aeration culture system for biomass production. J Biosci Bioeng. 2015;120:438-43.

  27. Lu Y, Wang LY, Ma, Li G, Zhang C, Zhao HX, Lai QH, Li HP, Xing XH. Characteristics of hydrogen production of an Entero-bacter aerogenes mutant generated by a new atmospheric and room temperature plasma (ARTP). Biochem Eng J. 2011;55, 17-22.

  28. Wang LY, Huang ZL, Li G, Zhao HX, Xing XH, Sun WT, Li HP, Gou ZX, Bao CY. Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma. J Appl Microbiol. 2010;108:851-58.

  29. Wang Q, Feng LR, Wei L, Li HG, Wang L, Zhou Y, Yu XB. Mutation breeding of lycopene-producing strain Blakeslea trispora by a novel atmospheric and room temperature plasma (ARTP). Appl Biochem Biotechnol. 2014;174:452-60.

  30. Yalfmkaya B, Yumbul E, Mozioglu E, Akgoz M. Comparison of DNA extraction methods for meat analysis. Food Chem. 2017;221:1253-57.

  31. Luedekling R, Piret EL. A kinetic study of the lactic acid fermentation: batch process at controlled pH. Biotechnol Bioeng. 2000;67:636-44.

  32. Saqib AAN, Whitney PJ. Differential behaviour of dinitrosalicylic acid (DNS) reagent towards mono and disaccharide sugars. Biomass Bioenerg. 2011;35:4748-50.

  33. Jiang M, Wan Q, Liu RM, Liang LY, Chen X, Wu MK, Zhang HW, Chen KQ, Ma JF, Wei P, Ouyang PK. Succinic acid production from corn stalk hydrolysate in an E. coli mutant generated by atmospheric and room temperature plasmas and metabolic evolution strategies. J Ind Microbiol Biotechnol. 2014;1:115-23.

  34. Li XY, Liu RJ, Li J, Chang M, Liu YF, Jin QZ, Wang XG. Enhanced arachidonic acid production from Mortierella alpine combining atmospheric and room temperature plasma (ARTP) and diethyl sulfate treatments. Bioresour Technol. 2015;177:134-40.

  35. Zhu H, Sun SJ, Zhang SS. Enhanced production of total flavones and exopolysaccharides via Vitreoscilla hemoglobin biosyn-thesis in Phellinus igniarius. Bioresour Technol. 2011;102:1747-51.

  36. Ma YF, Yang HQ, Chen XZ, Sun B, Du GC, Zhou ZM, Song JN, Fan Y, Shen W. Significantly improving the yield of recom-binant proteins in Bacillus subtilis by a novel powerful mutagenesis tool (ARTP): alkaline a-amylase as a case study. Protein Exp Purif. 2015;114:82-88.

  37. Strachan AJ, Woodruff TM, Haaima G, Fairlie DP, Taylor SM. A new small molecule C5a receptor antagonist inhibits the reverse-passive Arthus reaction and endotoxic shock in rats. J Immunol. 2000;164:6560-65.

  38. Gloser JB. The chemistry of fungal antagonism and defense. Can J Bot. 2011;73:1265-74.

  39. Laroussi M. Low temperature plasma based sterilization: overview and state of the art. Plasma Process Polym. 2005;2:391-400.


Articles with similar content:

Biological Activities of Ethanol Extracts of Phellinus baumii (Higher Basidiomycetes) Obtained by Different Fermentation Methods
International Journal of Medicinal Mushrooms, Vol.17, 2015, issue 4
Lina Zhu, Mengqiu Yan, Yanfang Liu, Yan Yang, Qian Shao, Tingting Li, Chuanhong Tang, Jie Feng
Mycelial Submerged Culture of New Medicinal Mushroom, Humphreya coffeata (Berk.) Stey. (Aphyllophoromycetideae) for the Production of Valuable Bioactive Metabolites with Cytotoxicity, Genotoxicity, and Antioxidant Activity
International Journal of Medicinal Mushrooms, Vol.11, 2009, issue 4
Benjamin Rojano, Norma A. Valdez-Cruz, Sandra M. Porras-Arboleda, Mauricio Trujillo-Roldan, Leticia Rocha-Zavaleta, Cecilia Aguilar
Optimization of Submerged Fermentation Conditions for Lovastatin Production by the Culinary-Medicinal Oyster Mushroom, Pleurotus ostreatus (Higher Basidiomycetes)
International Journal of Medicinal Mushrooms, Vol.15, 2013, issue 5
Zeki Yildiz, Mustafa Yamac, Burcu Atli
Preserving and Maintaining Culinary-Medicinal Royal Sun Mushroom, Agaricus brasiliensis (Agaricomycetes), in Sterile Distilled Water
International Journal of Medicinal Mushrooms, Vol.19, 2017, issue 5
Sandra Montoya, J.C. Sepulveda-Arias, L.M. Vargas-del-Rlo
Production of Extracellular Polysaccharides by the Medicinal Mushroom Trametes trogii (Higher Basidiomycetes) in Stirred-Tank and Airlift Reactors
International Journal of Medicinal Mushrooms, Vol.15, 2013, issue 2
Wenye Zhang, Chunping Xu, Lujing Geng