Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal of Medicinal Mushrooms
Impact-faktor: 1.423 5-jähriger Impact-Faktor: 1.525 SJR: 0.431 SNIP: 0.716 CiteScore™: 2.6

ISSN Druckformat: 1521-9437
ISSN Online: 1940-4344

Volumes:
Volumen 22, 2020 Volumen 21, 2019 Volumen 20, 2018 Volumen 19, 2017 Volumen 18, 2016 Volumen 17, 2015 Volumen 16, 2014 Volumen 15, 2013 Volumen 14, 2012 Volumen 13, 2011 Volumen 12, 2010 Volumen 11, 2009 Volumen 10, 2008 Volumen 9, 2007 Volumen 8, 2006 Volumen 7, 2005 Volumen 6, 2004 Volumen 5, 2003 Volumen 4, 2002 Volumen 3, 2001 Volumen 2, 2000 Volumen 1, 1999

International Journal of Medicinal Mushrooms

DOI: 10.1615/IntJMedMushrooms.2020033250
pages 65-78

The Medicinal Mushroom Ganoderma neo−japonicum (Agaricomycetes) from Malaysia: Nutritional Composition and Potentiation of Insulin-Like Activity in 3T3-L1 Cells

Sarasvathy Subramaniam
Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
Vikineswary Sabaratnam
Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
Chua Kek Heng
Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
Umah Rani Kuppusamy
Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

ABSTRAKT

Ganoderma neo-japonicum is an annual polypore mushroom that is consumed by Malaysian indigenous tribes to treat various ailments including diabetes. The present study aimed to investigate the nutritive composition and in vitro antihyperglycemic effects of G. neo-japonicum extracts on 3T3-L1 preadipocytes. Nutritional analysis of G. neo-japonicum basidiocarps indicated a predominant presence of carbohydrates, proteins, dietary fiber, and microelements. Hot aqueous extract (AE) and its isolated (1,3)(1,6)−β−D−glucan polysaccharide (GNJP) from basidiocarps of G. neo-japonicum were evaluated for their ability to stimulate insulin independent adipogenesis, glucose uptake, adiponectin secretion, and regulate gene expression in 3T3-L1 adipocytes. GNJP showed a dose dependent stimulation of glucose uptake and adiponectin secretion but attenuated lipid accumulation in 3T3-L1 adipocytes. It upregulated the expressions of adiponectin, Aktl (protein kinase B), PPARγ (peroxisome proliferator activated receptor gamma), PRKAG2 (protein kinase, AMP activated), and Slc2a4 (glucose transporter) genes to stimulate glucose uptake in 3T3-L1 cells, which may have contributed to the insulin-mimicking activities observed in this study. In summary, the nutritive compositions and significant glucose uptake stimulatory activities of GNJP indicated that it may have potential use in the formulation of functional food for the management of hyperglycemia, insulin resistance, and related complications.

REFERENZEN

  1. Nowotny K, Jung T, Hohn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 2015;5:194-222.

  2. Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American diabetes association and the European association for the study of diabetes. Diabetes Care. 2009;32:193-203.

  3. Gedebjerg A, Almdal TP, Berencsi K, Rungby J, Nielsen JS, Witte DR, Friborg S, Brandslund I, Vaag A, Beck-Nielsen H, S0rensen HT. Prevalence of micro- and macrovascular diabetes complications at time of type 2 diabetes diagnosis and associated clinical characteristics: a cross-sectional baseline study of 6958 patients in the Danish DD2 cohort. J Diabetes Complicat. 2018;32:34-40.

  4. Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40-50.

  5. Ginter E, Simko V. Type 2 diabetes mellitus, pandemic in 21st century. In: Diabetes. New York: Springer; 2013. p. 42-50. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23393670.

  6. Hanhineva K, Torronen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkanen H, Poutanen K. Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci. 2010;11:1365-1402.

  7. Evans JL, Balkan B, Rushakoff RJ. Oral and injectable (non-insulin) pharmacological agents for type 2 diabetes. In endotext: diabetes mellitus and carbohydrate metabolism-DiabetesManager. 1st ed. De Groot LJ, Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM, Koch C, McLachlan R, New M, Rebar R, Singer F, Vinik A, Weickert MO, editors. South Dartmouth, MA, MDText.com, 2015. Available from: http://www.endotext.org/section/diabetes/.Cited Nov 27 2015.

  8. Greenfield JR, Campbell LV. Insulin resistance and obesity. Clin Dermatol. 2004;22:289-95.

  9. Lo H-Ch, Wasser SP. Medicinal mushrooms for glycemic control in diabetes mellitus: history, current status, future perspectives, and unsolved problems (review). Int J Med Mushrooms. 2011;13(5):401-26.

  10. Wasser SP. Medicinal mushroom science: history, current status, future trends, and unsolved problems. Int J Med Mushrooms. 2010;12(1):1-16.

  11. Tan WC, Kuppusamy UR, Phan CW, Tan YS, Raman J, Anuar AM, Sabaratnam V. Ganoderma neo-japonicum Imazeki revisited: domestication study and antioxidant properties of its basidiocarps and mycelia. Sci Rep. 2015;5:1-10.

  12. Lin JM, Lin CC, Chen MF, Ujiie T, Takada A. Radical scavenger and antihepatotoxic activity of Ganoderma formosanum, Ganoderma lucidum and Ganoderma neo-japonicum. J Ethnopharmacol. 1995;47:33-41.

  13. Subramaniam S, Sabaratnam V, Kuppusamy UR, Tan YS. Solid-substrate fermentation of wheat grains by mycelia of indigenous species of the genus Ganoderma (higher Basidiomycetes) to enhance the antioxidant activities. Int J Med Mushrooms. 2014;16:259-67.

  14. Subramaniam S, Sabaratnam V, Kuppusamy UR. Solid-substrate fermentation of wheat grains by mycelia of indigenous Ganoderma spp. enhanced adipogenesis and modulated PPARy expression in 3T3-L1 cells. Chiang Mai J Sci. 2015;42:269-81.

  15. Sabaratnam V, Kah-Hui W, Naidu M, David PR. Neuronal health-can culinary and medicinal mushrooms help? J Tradit Complement Med. 2013;3:62-68.

  16. Seow SL, Naidu M, David P, Wong KH, Sabaratnam V. Potentiation of neuritogenic activity of medicinal mushrooms in rat pheochromocytoma cells. BMC Complement Altern Med. 2013;13:157-67.

  17. Subramaniam S, Raman J, Vikineswary S, Heng CK, Kuppusamy UR. Functional properties of partially characterized polysaccharide from the medicinal mushroom Ganoderma neo-japonicum (Agaricomycetes). Int J Med Mushrooms. 2017;19:849-59.

  18. Ansil PN, Wills PJ, Varan R, Latha MS. Cytotoxic and apoptotic activities of Amorphophallus campanulatus (Roxb.) Bl. tuber extracts against human colon carcinoma cell line HCT-15. Saudi J Biol Sci. 2014;21:524-31.

  19. Arumugam B, Palanisamy UD, Chua KH, Kuppusamy UR. Potential antihyperglycaemic effect of myricetin derivatives from Syzygium malaccense. J Funct Foods. 2016;22:325-36.

  20. Chan PM, Kanagasabapathy G, Tan YS, Sabaratnam V, Kuppusamy UR. Amauroderma rugosum (Blume & T. Nees) Torrend: nutritional composition and antioxidant and potential anti-inflammatory properties. Evid Based Complement Alternat Med. 2013;2013:1-10.

  21. Ogbe AO, Obeka AD. Proximate, mineral and anti-nutrient composition of wild Ganoderma lucidum: implication on its utilization in poultry production. Iran J Appl Anim Sci. 2013;3:161-66.

  22. Lau BF, Abdullah N, Aminudin N. Chemical composition of the tiger's milk mushroom, Lignosus rhinocerotis (Cooke) Ryvarden, from different developmental stages. J Agric Food Chem. 2013;61:4890-97.

  23. Sharif S, Mustafa G, Munir H, Weaver CM, Jamil Y, Shahid M. Proximate composition and micronutrient mineral profile of wild Ganoderma lucidum and four commercial exotic mushrooms by ICP-OES and LIBS. J Food Nutr Res. 2016;4:703-8.

  24. Raseta M, Karaman M, Jaksic M, Sibul F, Kebert M, Novakovic A, Popovic M. Mineral composition, antioxidant and cytotoxic biopotentials of wild-growing Ganoderma species (Serbia): G. lucidum (Curtis) P. Karst vs. G. applanatum (Pers.) Pat. Int J Food Sci Technol. 2016;51:2583-90.

  25. Muhammad A, Dangoggo SM, Tsafe AI, Itodo AU, Atiku FA. Proximate, minerals and anti-nutritional factors of Gardenia aqualla (Gauden dutse) fruit pulp. Pak J Nutr. 2011;10:577-81.

  26. Ruthes AC, Smiderle FR, Iacomini M. D-Glucans from edible mushrooms: a review on the extraction, purification and chemical characterization approaches. Carbohydr Polym. 2015;117:753-61.

  27. Manaharan T, Ming CH, Palanisamy UD. Syzygium aqueum leaf extract and its bioactive compounds enhances pre-adipocyte differentiation and 2-NBDG uptake in 3T3-L1 cells. Food Chem. 2012;136:354-63.

  28. Ahn J, Lee H, Kim S, Park J, Ha T. The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem Biophys Res Commun. 2008;373:545-49.

  29. Gan CC, Ni TW, Yu Y, Qin N, Chen Y, Jin MN, Duan HQ. Flavonoid derivative (Fla-CN) inhibited adipocyte differentiation via activating AMPK and up-regulating microRNA-27 in 3T3-L1 cells. Eur J Pharmacol. 2017;797:45-52.

  30. Lim SL, Chai JW, Kuppusamy UR. Evaluation of Syzygium jambolanum methanolic leaf extract for insulin-like properties. Res J Biol Sci. 2008;3:1109-14.

  31. Kanagasabapathy G, Chua KH, Malek SNA, Vikineswary S, Kuppusamy UR. AMP-activated protein kinase mediates insulin-like and lipo-mobilising effects of B-glucan-rich polysaccharides isolated from Pleurotus sajorcaju (Fr.) Singer mushroom, in 3T3-L1 cells. Food Chem. 2014;145:198-204.

  32. Neschen S, Morino K, Rossbacher JC, Pongratz RL, Cline GW, Sono S, Gillum M, Shulman GI. Fish oil regulates adiponectin secretion by a peroxisome proliferator-activated receptor-y-dependent mechanism in mice. Diabetes. 2006;55:924-28.

  33. Wang ZV, Scherer PE. Adiponectin, the past two decades. J Mol Cell Biol. 2016;8:93-100.

  34. Yamauchi T, Kamon J, Minokoshi YA, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8:1288-95.

  35. Arslanian S, Bacha F, Caprio S, Goland R, Haymond MW, Levitsky L, Nadeau KJ, White NH, Willi SM. Adiponectin, insulin sensitivity, P-cell function, and racial/ethnic disparity in treatment failure rates in today. Diabetes Care. 2017;40:85-93.

  36. Bou M, Todorcevic M, Rodriguez J, Capilla E, Gutierrez J, Navarro I. Interplay of adiponectin, TNFa and insulin on gene expression, glucose uptake and PPARy, AKT and TOR pathways in rainbow trout cultured adipocytes. Gen Comp Endocrinol. 2014;205:218-225.

  37. Heimann E, Nyman M, Degerman E. Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes. Adipocyte. 2015;4:81-88.

  38. Mackenzie RW, Elliott BT. Akt/PKB activation and insulin signaling: a novel insulin signaling pathway in the treatment of type 2 diabetes. Diabetes Metab Syndr Obes. 2014;7:55-64.

  39. Choi SK, Park S, Jang S, Cho HH, Lee S, You S, Kim SH, Moon HS. Cascade regulation of PPARy2 and C/EBPa signaling pathways by celastrol impairs adipocyte differentiation and stimulates lipolysis in 3T3-L1 adipocytes. Metab Clin Exp. 2016;65:646-654.

  40. Jack BU, Malherbe CJ, Huisamen B, Gabuza K, Mazibuko-Mbeje S, Schulze AE, Joubert E, Muller CJF, Louw J, Pheiffer C. A polyphenol-enriched fraction of Cyclopia intermedia decreases lipid content in 3T3-L1 adipocytes and reduces body weight gain of obese db/db mice. S Afr J Bot. 2017;110:216-29.

  41. Ali AT, Hochfeld WE, Myburgh R, Pepper MS. Adipocyte and adipogenesis. Eur J Cell Biol. 2013;92:229-36.

  42. Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH, Schuster D. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARy): a review. Biochem Pharmacol. 2014;92:73-89.

  43. Liao W, Nguyen MA, Yoshizaki T, Favelyukis S, Patsouris D, Imamura T, Verma IM, Olefsky JM. Suppression of PPAR-y attenuates insulin-stimulated glucose uptake by affecting both GLUT1 and GLUT4 in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab. 2007;293:219-27.

  44. Shimojo Y, Kosaka K, Shirasawa T. Effect of Ganoderma lucidum extract on adipocyte differentiation and adiponectin gene expression in the murine pre-adipocyte cell line, 3T3-L1. Phytother Res. 2011;25:202-7.

  45. Joo JI, Kim DH, Yun JW. Extract of Chaga mushroom (Inonotus obliquus) stimulates 3T3-L1 adipocyte differentiation. Phytother Res. 2010;24:1592-99.

  46. Hu J, Zhou A, Cheung PC, Zheng B, Zeng S, Lin S. Expression of GPR43 in brown adipogenesis is enhanced by rosiglitazone and controlled by PPARy/RXR heterodimerization. PPAR Research. 2018;2018:1-8.

  47. Llaverias G, Vazquez-Carrera M, Sanchez RM, Noe V, Laguna JC, Alegret M. Rosiglitazone upregulates caveolin-1 expression in THP-1 cells through a PPAR-dependent mechanism. J Lipid Res. 2004;45:2015-24.

  48. Schultze SM, Hemmings BA, Niessen M, Tschopp O. PI3K/AKT, MAPK and AMPK signalling: protein kinases in glucose homeostasis. Expert Rev Mol Med. 2012;14:1-21.


Articles with similar content:

Giant Oyster Mushroom Pleurotus giganteus (Agaricomycetes) Enhances Adipocyte Differentiation and Glucose Uptake via Activation of PPARγ and Glucose Transporters 1 and 4 in 3T3-L1 Cells
International Journal of Medicinal Mushrooms, Vol.18, 2016, issue 9
Sri Nurestri Abdul Malek, Ravishankar Ram M, Puvaneswari Paravamsivam, Umah Rani Kuppusamy, Chua Kek Heng, Vikineswary Sabaratnam
Anti-Inflammatory Activity of Biomass Extracts of the Bay Mushroom, Imleria badia (Agaricomycetes), in RAW 264.7 Cells
International Journal of Medicinal Mushrooms, Vol.18, 2016, issue 9
Joanna Gdula Argasinska, Agata Grzywacz, Wlodzimierz Opoka, Katarzyna Kala, Bozena Muszynska
Immunomodulatory Effects of the Stout Camphor Medicinal Mushroom, Taiwanofungus camphoratus (Agaricomycetes)-Based Health Food Product in Mice
International Journal of Medicinal Mushrooms, Vol.20, 2018, issue 9
Chin-Chung Lin, K. J. Senthil Kumar, Chiu-Ping Lo, Sheng-Yang Wang, Jong-Tar Kuo, Yun-Yu Chen, Yu-Hsing Lin
Antihyperglycemic and Antilipidperoxidative Effects of Polysaccharides Extracted from Medicinal Mushroom Chaga, Inonotus obliquus (Pers.: Fr.) Pilát (Aphyllophoromycetideae) on Alloxan-Diabetes Mice
International Journal of Medicinal Mushrooms, Vol.12, 2010, issue 3
Yitong Zheng, Hong-Yu Xu, Xin Xu, Zhenming Lu, Chengjian Yang, Zheng-Hong Xu, Chong Pang
Proximal Composition, Nutraceutical Properties, and Acute Toxicity Study of Culinary-Medicinal Oyster Mushroom Powder, Pleurotus ostreatus (Agaricomycetes)
International Journal of Medicinal Mushrooms, Vol.20, 2018, issue 12
Marcos Meneses, Yaixa Beltrán, Isabelle Gaime-Perraud, Nora Garcia, Yamila Lebeque, Serge Moukha, Humberto J. Morris, Gabriel Llaurado, Rosa C. Bermúdez