Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Druckformat: 2152-5102
ISSN Online: 2152-5110

Volumes:
Volumen 46, 2019 Volumen 45, 2018 Volumen 44, 2017 Volumen 43, 2016 Volumen 42, 2015 Volumen 41, 2014 Volumen 40, 2013 Volumen 39, 2012 Volumen 38, 2011 Volumen 37, 2010 Volumen 36, 2009 Volumen 35, 2008 Volumen 34, 2007 Volumen 33, 2006 Volumen 32, 2005 Volumen 31, 2004 Volumen 30, 2003 Volumen 29, 2002 Volumen 28, 2001 Volumen 27, 2000 Volumen 26, 1999 Volumen 25, 1998 Volumen 24, 1997 Volumen 23, 1996 Volumen 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.2018024591
pages 459-477

HEAT AND MASS TRANSFER ON UNSTEADY, MAGNETOHYDRODYNAMIC, OSCILLATORY FLOW OF SECOND-GRADE FLUID THROUGH A POROUS MEDIUM BETWEEN TWO VERTICAL PLATES, UNDER THE INFLUENCE OF FLUCTUATING HEAT SOURCE/SINK, AND CHEMICAL REACTION

M. Veera Krishna
Department of Mathematics, Rayalaseema University, Kurnool, Andhra Pradesh - 518007, India
Kamboji Jyothi
Department of Mathematics, Rayalaseema University, Kurnool, Andhra Pradesh-518007, India
Ali J. Chamkha
Department of Mechanical Engineering, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Kingdom of Saudi Arabia; RAK Research and Innovation Center, American University of Ras Al Khaimah, United Arab Emirates, 10021

ABSTRAKT

We consider the unsteady, magnetohydrodynamic, oscillatory flow of an incompressible, electrically conducting, second-grade fluid through a saturated, porous medium between two vertical plates that are under the influence of a uniform, transverse, magnetic field normal to the plates, with heat source and chemical reaction. One plate of the vertical channel is kept stationary, whereas the other is oscillating with uniform velocity; the two plates are subjected to constant injection and suction velocities, respectively. The flow through the porous medium is governed by the equation for Brinkman's model for momentum. The closed-form solutions of the governing equations are obtained for velocity, temperature, and concentration profiles, with use of the perturbation technique. The effects of various governing parameters on these three profiles are computationally discussed and graphically presented. Skin friction, Nusselt number, and Sherwood number are obtained analytically, and their behaviors are computationally discussed.


Articles with similar content:

HEAT AND MASS TRANSFER ON MHD FREE CONVECTIVE FLOW OVER AN INFINITE NONCONDUCTING VERTICAL FLAT POROUS PLATE
International Journal of Fluid Mechanics Research, Vol.46, 2019, issue 1
M. Veera Krishna, M. Gangadhar Reddy, Ali J. Chamkha
SORET AND DUFOUR EFFECTS ON MIXED CONVECTION FLOW OF COUPLE STRESS FLUID IN A NON-DARCY POROUS MEDIUM WITH HEAT AND MASS FLUXES
Journal of Porous Media, Vol.17, 2014, issue 2
Kaladhar Kolla, D. Srinivasacharya
THERMAL DIFFUSION AND RADIATION EFFECT ON UNSTEADY MAGNETOHYDRODYNAMIC FREE-CONVECTION FLOW PAST AN IMPULSIVELY MOVING PLATE WITH RAMPED WALL TEMPERATURE AND RAMPED WALL CONCENTRATION
Special Topics & Reviews in Porous Media: An International Journal, Vol.9, 2018, issue 3
Konda Jayarami Reddy, M. C Raju, M. S. N. Reddy, R. Chandra Sekhar Reddy
Soret and Dufour Effects on Free Convection of Non-Newtonian Power Law Fluids with Yield Stress from a Vertical Flat Plate in Saturated Porous Media
Journal of Porous Media, Vol.12, 2009, issue 10
Adrian Postelnicu, P. V. S. N. Murthy, P. A. Lakshmi Narayana
BUOYANCY EFFECTS ON UNSTEADY REACTIVE VARIABLE PROPERTIES FLUID FLOW IN A CHANNEL FILLED WITH A POROUS MEDIUM
Journal of Porous Media, Vol.21, 2018, issue 8
Oluwole Daniel Makinde, Lazarus Rundora