Abo Bibliothek: Guest
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.9

ISSN Druckformat: 2152-5102
ISSN Online: 2152-5110

# International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.2019027635
pages 99-119

## A FINITE VOLUME SIMULATION OF VISCOELASTIC FLUID FLOW THROUGH AN ANNULUS USING THE EXTENDED POM-POM MODEL

Department of Petroleum Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, 1591634311, P.O. Box 15875-4413, Tehran, Iran

### ABSTRAKT

During the well-drilling operation, it is common practice to circulate non-Newtonian fluids as drilling mud through the annular spaces between the (rock) formation and the drill string. To have an efficient operation, it is crucial to predict the stress and velocity fields in this space precisely. Hence, to simulate the flow pattern of the drilling mud, a numerical study employing a finite volume method is performed for a laminar, steady state, and axial flow of non-Newtonian fluids through an annulus. The rheological behavior of fluid is interpreted by using the viscoelastic single extended pom-pom (XPP) model. To run the simulation, the integration operator is used on a staggered grid to discretize the governing equations in the control volume. In addition, an iterative solution algorithm that decouples the computation of momentum from that of the XPP differential equations is used to solve the discrete equations. In this study, the axial velocity; shear stress; all relevant normal stresses; and stretch, axial, and radial pressure gradients are presented. This study also refers to the influence of all rheological parameters on the solution as well as on the flow behavior. The outcome shows that despite the other differential viscoelastic models, the XPP model can predict the third normal stress tensor for viscoelastic fluid in two-dimensional axial annular flows; this eventuates in the precise prediction of the second normal stress difference, as well as the first normal stress difference. Finally, the results are compared with the analytical solution of the Giesekus viscoelastic model (implemented) in an annulus, which shows good agreement.

### REFERENZEN

1. Aboubacar, M., Aguayo, J., Phillips, P., Phillips, T., Tamaddon-Jahromi, H., Snigerev, B., and Webster, M., Modelling Pom-Pom Type Models with High-Order Finite Volume Schemes, J. Non-Newton. Fluid, vol. 126, no. 2, pp. 207-220,2005. DOI: 10.1016/j.jnnfm.2004.09.012.

2. Aboubacar, M., Phillips, T.N., Tamaddon-Jahromi, H., Snigerev, B., and Webster, M., High-Order Finite Volume Methods for Viscoelastic Flow Problems, J. Comput. Phys., vol. 199,no. 1,pp. 16-40,2004. DOI: 10.1016/j.jcp.2004.01.033.

3. Aboubacar, M. and Webster, M., A Cell-Vertex Finite Volume/Element Method on Triangles for Abrupt Contraction Viscoelastic Flows, J Non-Newton. Fluid, vol. 98, no. 2, pp. 83-106,2001. DOI: 10.1016/S0377-0257(00)00196-8.

4. Aguayo, J., Tamaddon-Jahromi, H., and Webster, M., Extensional Response of the Pom-Pom Model through Planar Contraction Flows for Branched Polymer Melts, J. Non-Newton. Fluid, vol. 134, no. 1, pp. 105-126, 2006. DOI: 10.1016/j.jnnfm.2005.12.006.

5. Aguayo, J.P., Phillips, P., Phillips, T.N., Tamaddon-Jahromi, H.R., Snigerev, B., and Webster, M.F., The Numerical Prediction of Planar Viscoelastic Contraction Flows Using the Pom-Pom Model and Higher-Order Finite Volume Schemes, J. Comput. Phys, vol. 220, no. 2, pp. 586-611,2007. DOI: 10.1016/j.jcp.2006.05.039.

6. Bird, R.B., Viscous Heat Effects in Extrusion of Molten Plastics, J. Soc. Plast. Eng., vol. 11, pp. 35-40, 1955. DOI: 10.1002/pen.23464.

7. Bird, R.B., Transport Phenomena, Appl. Mechan. Rev, vol. 55, no. 1, pp. R1-R4,2002. DOI: 10.1115/1.1424298.

8. Bishko, G., Harlen, O., McLeish, T., and Nicholson, T., Numerical Simulation of the Transient Flow of Branched Polymer Melts through a Planar Contraction Using the Pom-Pom Model, J. Non-Newton. Fluid, vol. 82, no. 2, pp. 255-273, 1999. DOI: 10.1016/S0377-0257(98)00165-7.

9. Blackwell, R.J., McLeish, T.C., and Harlen, O.G., Molecular Drag-Strain Coupling in Branched Polymer Melts, J. Rheol., vol. 44, no. 1,pp. 121-136,2000. DOI: 10.1122/1.551081.

10. Doi, M. and Edwards, S.F., The Theory of Polymer Dynamics, Oxford, UK: Oxford University Press, 1988.

11. Fredrickson, A. and Bird, R.B., Non-Newtonian Flow in Annuli, J. Ind. Eng. Chem., vol. 50, no. 3, pp. 347-352, 1958. DOI: 10.1021/ie50579a035.

12. Inkson, N., Phillips, T.N., and Van Os, R., Numerical Simulation of Flow past a Cylinder Using Models of XPP Type, J. Non-Newton. Fluid, vol. 156, no. 1,pp. 7-20,2009. DOI: 10.1016/j.jnnfm.2008.06.004.

13. Khorsand Movaghar, M.R., Rashidi, F., Goharpey, F., Mirzazadeh, M., and Amani, E., Effect of Elasticity Parameter on Viscoelastic Fluid in Pipe Flow Using Extended Pom-Pom Model, Iran J. Chem. Chem. Eng., vol. 29, no. 3, pp. 83-94,2010.

14. Khorsand Movaghar, M.R., Rashidi, F., Goharpey, F., Mirzazadeh, M., and Amani, E., Numerical Predictions of Viscoelastic Fluid in Pipe Flow Using Extended Pom-Pom Model, Nihon Reoroji Gakk., vol. 39, nos. 1-2, pp. 75-85,2011. DOI: 10.1678/rheology.39.75.

15. Machado, J.C.V., Rheology and Fluid Flow: An Emphasis on the Oil Industry. 1, Ed Rio de Janeiro. Interscience: Petrobras, pp. 156-258,2002.

16. McEachern, D.W., Axial Laminar Flow of a Non-Newtonian Fluid in an Annulus, AIChE J, vol. 12, no. 2, pp. 328-332, 1966. DOI: 10.1002/aic.690120222.

17. McLeish, T. and Larson, R., Molecular Constitutive Equations for a Class of Branched Polymers: The Pom-Pom Polymer, J. Rheol., vol. 42, no. 1,pp. 81-110,1998. DOI: 10.1122/1.550933.

18. Mostafaiyan, M., Khodabandehlou, K., and Sharif, F., Analysis of a Viscoelastic Fluid in an Annulus Using Giesekus Model, J. Non-Newton. Fluid, vol. 118,no. 1,pp. 49-55,2004. DOI: 10.1016/j.jnnfm.2004.01.007.

19. Oishi, C., Martins, F., Tome, M.F., Cuminato, J., and Mckee, S., Numerical Solution of the Extended Pom-Pom Model for Viscoelastic Free Surface Flows, J. Non-Newton. Fluid, vol. 166, no. 3, pp. 165-179,2011. DOI: 10.1016/j.jnnfm.2010.11.001.

20. Patankar, S., Numerical Heat Transfer and Fluid Flow, CRC Press, 1980.

21. Phillips, T. and Williams, A., Viscoelastic Flow through a Planar Contraction Using a Semi-Lagrangian Finite Volume Method, J. Non-Newton. Fluid, vol. 87, no. 2, pp. 215-246,1999. DOI: 10.1016/S0377-0257(99)00065-8.

22. Pinho, F.T. and Oliveira, P. J., Axial Annular Flow of a Nonlinear Viscoelastic Fluid-An Analytical Solution, J. Non-Newton. Fluid, vol. 93, no. 2, pp. 325-337,2000. DOI: 10.1016/S0377-0257(00)00113-0.

23. Pletcher, R.H., Tannehill, J.C., and Anderson, D., Computational Fluid Mechanics and Heat Transfer, CRC Press, 2012.

24. Ugbaja, M.I., Onuoha, F.N., Onuegbu, G., and Ezeh, V., Mechanical Properties of Drilling Mud Waste-Filled Low Density Polyethylene Composites, Acad. Res. Int., vol. 4, no. 5, p. 178,2013.

25. Van Os, R. and Phillips, T., Spectral Element Methods for Transient Viscoelastic Flow Problems, J. Comput. Phys., vol. 201, no. 1,pp. 286-314,2004. DOI: 10.1016/j.jcp.2004.05.016.

26. Van Os, R. and Phillips, T., Efficient and Stable Spectral Element Methods for Predicting the Flow of an XPP Fluid past a Cylinder, J Non-Newton. Fluid, vol. 129, no. 3, pp. 143-162,2005. DOI: 10.1016/j.jnnfm.2005.06.004.

27. Verbeeten, W.M., Peters, G.W., and Baaijens, F.P., Differential Constitutive Equations for Polymer Melts: The Extended Pom-Pom Model, J Rheol, vol. 45, no. 4, pp. 823-843,2001. DOI: 10.1122/1.1380426.

28. Verbeeten, W.M., Peters, G.W., and Baaijens, F.P., Viscoelastic Analysis of Complex Polymer Melt Flows Using the Extended Pom-Pom Model, J Non-Newton. Fluid, vol. 108, no. 1, pp. 301-326,2002. DOI: 10.1016/S0377-0257(02)00136-2.

29. Versteeg, H.K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Harlow, U.K.: Pearson Education, 2007.

30. Wu, W.-T., Aubry, N., Antaki, J.F., McKoy, M.L., and Massoudi, M., Heat Transfer in a Drilling Fluid with Geothermal Applications, Energies, vol. 10, no. 9, p. 1349,2017. DOI: 10.3390/en10091349.

31. Yoo, J.Y. and Na, Y., A Numerical Study of the Planar Contraction Flow of a Viscoelastic Fluid Using the SIMPLER Algorithm, J Non-Newton. Fluid, vol. 39, no. 1, pp. 89-106,1991. DOI: 10.1016/0377-0257(91)80005-5.

### Articles with similar content:

DIFFERENTIAL TRANSFORMATION METHOD-PADÉ TREATMENT FOR MAGNETOHYDRODYNAMIC SLIP FLOWS OF UPPER-CONVECTED MAXWELL FLUIDS ABOVE POROUS STRETCHING SHEETS
Special Topics & Reviews in Porous Media: An International Journal, Vol.9, 2018, issue 4
S. R. Sayyed, Nasreen Bano, B. B. Singh
A SOLUTION METHOD FOR COMPLEX GEOMETRY FLOWS USING NON-STAGGERED BODY-FITTED MESH
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
SURESH SAHU, A. M. Vaidya, N. K. Maheshwari
UNIDIRECTIONAL FLOWS OF TWO IMMISCIBLE MICROPOLAR AND NEWTONIAN FLUIDS THROUGH NONPOROUS AND POROUS MEDIUM IN A HORIZONTAL CIRCULAR CYLINDER
Journal of Porous Media, Vol.21, 2018, issue 3
M. Devakar, N. Ch. Ramgopal
On the accuracy and robustness of implicit LES / under-resolved DNS approaches based on spectral element methods
TSFP DIGITAL LIBRARY ONLINE, Vol.10, 2017, issue
Spencer J. Sherwin, Joaquim Peiro, Rodrigo C. Moura
Mixed Convection Flow Along a Thin Vertical Cylinder with Localized Heating or Cooling in a Porous Medium
International Journal of Fluid Mechanics Research, Vol.34, 2007, issue 1
Ioan Pop, Mahesh Kumari, C. Bercea