Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.9

ISSN Druckformat: 2152-5102
ISSN Online: 2152-5110

Volumen 47, 2020 Volumen 46, 2019 Volumen 45, 2018 Volumen 44, 2017 Volumen 43, 2016 Volumen 42, 2015 Volumen 41, 2014 Volumen 40, 2013 Volumen 39, 2012 Volumen 38, 2011 Volumen 37, 2010 Volumen 36, 2009 Volumen 35, 2008 Volumen 34, 2007 Volumen 33, 2006 Volumen 32, 2005 Volumen 31, 2004 Volumen 30, 2003 Volumen 29, 2002 Volumen 28, 2001 Volumen 27, 2000 Volumen 26, 1999 Volumen 25, 1998 Volumen 24, 1997 Volumen 23, 1996 Volumen 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.2020026831
pages 135-152


Khaled S. Mekheimer
Mathematical Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
R. E. Abo-Elkhair
Mathematical Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
A. M. A. Moawad
Mathematical Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt


Blood-intervened nanoparticle conveyance is a new and developing field in the improvement of therapeutics and diagnostics. This empowers balance of resistant framework collaborations, blood freedom profile, communication with target cells, also the iridium-covered gold nanoparticles are utilized as luminescent tests for the optical imaging in blood. Our objective is to consider the electro-thermal transport by means of gold nanoparticles as antimicrobials of blood move through an electro-osmosis overlapping stenotic artery with an endoscope. The governing equations for the two-dimensional flow of a Jeffrey fluid in the presence of gold nanoparticles (GNPs) and an external electric field are modeled. The model is explained under the mild stenosis assumption. The impact of various parameters related the model, such as the electro-osmosis parameter m, the Helmholtz-Smoluchowski velocity parameter UHS, the Brownian diffusion constant Br, and the Grashof number Gr are interpreted by plotting the diagrams of the axial velocity, wall shear stress, resistance impedance to gold nanoparticle flow. The results pointed to that the gold nanoparticles enhance the heat transfer in the fluid flow which is useful for the purpose of thermal therapy in the treatment of cancer cells.


  1. Abo-Elkhair, R., Mekheimer, K.S., and Moawad, A., Combine Impacts of Electrokinetic Variable Viscosity and Partial Slip on Peristaltic MHD Flow through a Micro-Channel, Iran. J. Sci. Techno. Trans. A: Sci., vol. 43, no. 1, pp. 1-12, 2017.

  2. Akbar, N.S., Nadeem, S., and Ali, M., Jeffrey Fluid Model for Blood Flow through a Tapered Artery with a Stenosis, J. Mech. Med. Biol., vol. 11, no. 3, pp. 529-545, 2011.

  3. Akbar, N.S., Nadeem, S., Hayat, T., and Hendi, A.A., Effects of Heat and Chemical Reaction on Jeffrey Fluid Model with Stenosis, Appl. Anal, vol. 91, no. 9, pp. 1631-1647, 2012.

  4. Akbarzadeh, M., Rashidi, S., Bovand, M., and Ellahi, R., A Sensitivity Analysis on Thermal and Pumping Power for the Flow of Nanofluid inside a Wavy Channel, J. Mol. Liq., vol. 220, pp. 1-13, 2016.

  5. Baieth, H.A., Physical Parameters of Blood as a Non-Newtonian Fluid, Int. J. Biomed. Sci, vol. 4, no. 4, p. 323,2008.

  6. Bhatti, M., Zeeshan, A., and Ellahi, R., Simultaneous Effects of Coagulation and Variable Magnetic Field on Peristaltically Induced Motion of Jeffrey Nanofluid Containing Gyrotactic Microorganism, Microvasc. Res, vol. 110, pp. 32-42,2017a.

  7. Bhatti, M., Zeeshan, A., Ellahi, R., and Ijaz, N., Heat and Mass Transfer of Two-Phase Flow with Electric Double Layer Effects Induced due to Peristaltic Propulsion in the Presence of Transverse Magnetic Field, J. Mol. Liq., vol. 230, pp. 237-246, 2017b.

  8. Domachuk, P., Tsioris, K., Omenetto, F.G., and Kaplan, D.L., Bio-Microfluidics: Biomaterials and Biomimetic Designs, Adv. Mater., vol. 22, no. 2, pp. 249-260, 2010.

  9. Ellahi, R., Rahman, S., and Nadeem, S., Blood Flow of Jeffrey Fluid in a Catherized Tapered Artery with the Suspension of Nanoparticles, Phys. Lett. A, vol. 378, no. 40, pp. 2973-2980,2014.

  10. Elnaqeeb, T., Mekheimer, K.S., and Alghamdi, F., Cu-Blood Flow Model through a Catheterized Mild Stenotic Artery with a Thrombosis, Math. Biosci., vol. 282, pp. 135-146, 2016.

  11. Esfahani, J.A., Akbarzadeh, M., Rashidi, S., Rosen, M., and Ellahi, R., Influences of Wavy Wall and Nanoparticles on Entropy Generation over Heat Exchanger Plat, Int. J. Heat Mass Transf., vol. 109, pp. 1162-1171, 2017.

  12. Ghosal, S., Electrokinetic Flow and Dispersion in Capillary Electrophoresis, Annu. Rev. Fluid Mech., vol. 38, pp. 309-338, 2006.

  13. Ghosh, U. and Chakraborty, S., Electroosmosis of Viscoelastic Fluids over Charge Modulated Surfaces in Narrow Confinements, Phys. Fluids, vol. 27, no. 6, p. 062004, 2015.

  14. Hatami, M., Hatami, J., and Ganji, D.D., Computer Simulation of MHD Blood Conveying Gold Nanoparticles as a Third Grade Non-Newtonian Nanofluid in a Hollow Porous Vessel, Comput. Methods Prog. Biomed., vol. 113, no. 2, pp. 632-641, 2014.

  15. Hayat, T. and Ali, N., Peristaltic Motion of a Jeffrey Fluid under the Effect of a Magnetic Field in a Tube, Commun. Nonlinear Sci. Numer. Simul., vol. 13, no. 7, pp. 1343-1352, 2008.

  16. Huang, X. and El-Sayed, M.A., Gold Nanoparticles: Optical Properties and Implementations in Cancer Diagnosis and Photothermal Therapy, J. Adv. Res, vol. 1, no. 1, pp. 13-28, 2010.

  17. Ismail, Z., Abdullah, I., Mustapha, N., and Amin, N., A Power-Law Model of Blood Flow through a Tapered Overlapping Stenosed Artery, Appl. Math. Comput, vol. 195, no. 2, pp. 669-680, 2008.

  18. Jhorar, R., Tripathi, D., Bhatti, M., and Ellahi, R., Electroosmosis Modulated Biomechanical Transport through Asymmetric Microfluidics Channel, Ind. J. Phys, vol. 92, pp. 1229-1238, 2018.

  19. Kang, Y., Yang, C., and Huang, X., Electroosmotic Flow in a Capillary Annulus with High Zeta Potentials, J. ColloidInterf. Sci., vol. 253, no. 2, pp. 285-294, 2002.

  20. Keramati, H., Sadeghi, A., Saidi, M.H., and Chakraborty, S., Analytical Solutions for Thermo-Fluidic Transport in Electroosmotic Flow through Rough Microtubes, Int. J. Heat Mass Transf., vol. 92, pp. 244-251,2016.

  21. Kumar, K.P., Paul, W., and Sharma, C.P., Green Synthesis of Gold Nanoparticles with Zingiber Officinale Extract: Characterization and Blood Compatibility, Proc. Biochem., vol. 46, no. 10, pp. 2007-2013, 2011.

  22. Malek, C.G.K., Laser Processing for Bio-Microfluidics Applications (PartI), Anal. Bioanal. Chem., vol. 385, no. 8, pp. 1351-1361, 2006.

  23. Mekheimer, K.S., Abo-Elkhair, R., and Moawad, A., Electro-Osmotic Flow of Non-Newtonian Biofluids through Wavy Micro-Concentric Tubes, BioNanoScience, vol. 8, no. 3, pp. 723-734,2018a.

  24. Mekheimer, K.S. and El Kot, M., Mathematical Modeling of Axial Flow between Two Eccentric Cylinders: Application on the Injection of Eccentric Catheter through Stenotic Arteries, Int. J. Non-Linear Mech., vol. 47, no. 8, pp. 927-937, 2012.

  25. Mekheimer, K.S. and El Kot, M., Suspension Model for Blood Flow through Catheterized Curved Artery with Time-Variant Overlapping Stenosis, Eng. Sci. Technol. Int. J, vol. 18, no. 3, pp. 452-462, 2015.

  26. Mekheimer, K.S., Elnaqeeb, T., El Kot, M., and Alghamdi, F., Simultaneous Effect of Magnetic Field and Metallic Nanoparticles on a Micropolar Fluid through an Overlapping Stenotic Artery: Blood Flow Model, Phys. Essays, vol. 29, no. 2, pp. 272-283, 2016a.

  27. Mekheimer, K.S., Hasona, W., Abo-Elkhair, R., and Zaher, A., Peristaltic Blood Flow with Gold Nanoparticles as a Third Grade Nanofluid in Catheter: Application of Cancer Therapy, Phys. Lett. A, vol. 382, nos. 2-3, pp. 85-93,2018b.

  28. Mekheimer, K.S., Mohamed, M., and Elnaqeeb, T., Metallic Nanoparticles Influence on Blood Flow through a Stenotic Artery, Int. J. Pure Appl. Math, vol. 107, no. 1, pp. 201-220,2016b.

  29. Prabhakaran, R.A., Zhou, Y., Patel, S., Kale, A., Song, Y., Hu, G., and Xuan, X., Joule Heating Effects on Electroosmotic Entry Flow, Electrophoresis, vol. 38, no. 5, pp. 572-579, 2017.

  30. Rahbari, A., Fakour, M., Hamzehnezhad, A., Vakilabadi, M.A., and Ganji, D., Heat Transfer and Fluid Flow of Blood with Nanoparticles through Porous Vessels in a Magnetic Field: A Quasi-One Dimensional Analytical Approach, Math. Bioscie., vol. 283, pp. 38-47,2017.

  31. Rashidi, S., Akar, S., Bovand, M., and Ellahi, R., Volume of Fluid Model to Simulate the Nanofluid Flow and Entropy Generation in a Single Slope Solar Still, Renew. Energy, vol. 115, pp. 400-410,2018.

  32. Reddy, J.R., Srikanth, D., and Murthy, S.K., Mathematical Modelling of Pulsatile Flow of Blood through Catheterized Unsymmetric Stenosed Artery-Effects of Tapering Angle and Slip Velocity, Eur. J. Mech.-B/Fluids, vol. 48, pp. 236-244, 2014.

  33. Sheikholeslami, M., Gorji-Bandpy, M., and Soleimani, S., Two Phase Simulation of Nanofluid Flow and Heat Transfer Using Heatline Analysis, Int. Commun. Heat Mass Transf., vol. 47, pp. 73-81,2013.

  34. Sheikholeslami, M. and Shehzad, S., CVFEM for Influence of External Magnetic Source on Fe3O4-H2O Nanofluid Behavior in a Permeable Cavity Considering Shape Effect, Int. J. Heat Mass Transf, vol. 115, pp. 180-191, 2017.

  35. Shu, Y., Chang, C., Chen, Y., and Wang, C., Electro-Osmotic Flow in a Wavy Microchannel: Coherence between the Electric Potential and the Wall Shape Function, Phys. Fluids, vol. 22, no. 8, p. 082001, 2010.

  36. Srivastava, V. and Rastogi, R., Blood Flow through a Stenosed Catheterized Artery: Effects of Hematocrit and Stenosis Shape, Comput. Math. Appl, vol. 59, no. 4, pp. 1377-1385, 2010.

  37. Tripathi, D., Pandey, S., and Beg, O.A., Mathematical Modelling of Heat Transfer Effects on Swallowing Dynamics of Viscoelastic Food Bolus through the Human Oesophagus, Int. J. Therm. Sci, vol. 70, pp. 41-53, 2013.

  38. Tripathi, D., Yadav, A., and Beg, O.A., Electro-Kinetically Driven Peristaltic Transport of Viscoelastic Physiological Fluids through a Finite Length Capillary: Mathematical Modeling, Math. Biosci., vol. 283, pp. 155-168, 2017.

  39. Yadav, D., Agrawal, G., and Bhargava, R., Thermal Instability of Rotating Nanofluid Layer, Int. J. Eng. Sci, vol. 49, no. 11, pp. 1171-1184,2011.

  40. Zahn, J.D., Methods in Bioengineering: Biomicrofabrication and Biomicrofluidics, Norwood, MA: Artech House, 2009.

  41. Zeeshan, A., Shehzad, N., and Ellahi, R., Analysis of Activation Energy in Couette-Poiseuille Flow of Nanofluid in the Presence of Chemical Reaction and Convective Boundary Conditions, Results Phys., vol. 8, pp. 502-512,2018.

Articles with similar content:

Computational Thermal Sciences: An International Journal, Vol.11, 2019, issue 1-2
Marcello Iasiello, Assunta Andreozzi, Kambiz Vafai, Nicola Bianco
Computational Thermal Sciences: An International Journal, Vol.8, 2016, issue 4
Shahin Shareghi , Davood Toghraie
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Rakesh Kumar, Shashi Bhushan, Dharmendra Tripathi, Abhishek Kumar Tiwari
Influence of Pulsatile Blood Flow on Temperature Uniformity during Hyperthermia Treatment
International Heat Transfer Conference 13, Vol.0, 2006, issue
Ramon Berguer, Joseph L. Bull, Khalil Khanafer
Composites: Mechanics, Computations, Applications: An International Journal, Vol.6, 2015, issue 2
Kari Thangaratnam, Monslin Sugirtha Singh