Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.9

ISSN Druckformat: 2152-5102
ISSN Online: 2152-5110

Volumes:
Volumen 47, 2020 Volumen 46, 2019 Volumen 45, 2018 Volumen 44, 2017 Volumen 43, 2016 Volumen 42, 2015 Volumen 41, 2014 Volumen 40, 2013 Volumen 39, 2012 Volumen 38, 2011 Volumen 37, 2010 Volumen 36, 2009 Volumen 35, 2008 Volumen 34, 2007 Volumen 33, 2006 Volumen 32, 2005 Volumen 31, 2004 Volumen 30, 2003 Volumen 29, 2002 Volumen 28, 2001 Volumen 27, 2000 Volumen 26, 1999 Volumen 25, 1998 Volumen 24, 1997 Volumen 23, 1996 Volumen 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v34.i2.30
pages 129-144

Effects of Thermal Radiation on Natural Convection in a Porous Medium

Mohamed F. El-Amin
Mathematics Department, Aswan Faculty of Science, South Valley University, Aswan, 81258; King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
Ibrahim Abbas
Mathematics Department, Sohag Faculty of Science, South Valley University, Sohag
Rama Subba Reddy Gorla
Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, 44115 USA; Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA; Department of Mechanical & Civil Engineering, Purdue University Northwest, Westville, IN 46391, USA

ABSTRAKT

An analysis is presented for the thermal radiation effect on the non-Darcy natural convection over a vertical flat plate in a fluid saturated porous medium. Forchheimer extension is considered in the flow equations. Rosseland approximation is used to describe the radiative heat flux in the energy equation. The nondimensional governing partial equations are solved by the finite element method. The resulting nonlinear integral equations are linearized and solved by the Newton-Raphson iteration. Results for the details of the stream function, velocity and temperature contours and profiles as well as heat transfer rate in terms of Nusselt number are shown graphically.


Articles with similar content:

VISCOUS DISSIPATION EFFECT ON NATURAL CONVECTION IN A FLUID SATURATED POROUS MEDIUM
Journal of Porous Media, Vol.13, 2010, issue 11
Mohamed F. El-Amin, Amgad Salama, Ibrahim Abbas
NATURAL CONVECTION IN A NON-DARCY POROUS MEDIUM WITH DOUBLE STRATIFICATION AND CROSS DIFFUSION EFFECTS
Heat Transfer Research, Vol.47, 2016, issue 1
O. Surender, D. Srinivasacharya
HYDROMAGNETIC NATURAL CONVECTION FLOW WITH RADIATIVE HEAT TRANSFER PAST AN ACCELERATED MOVING VERTICAL PLATE WITH RAMPED TEMPERATURE THROUGH A POROUS MEDIUM
Journal of Porous Media, Vol.17, 2014, issue 1
Gauri Shanker Seth, Syed Modassir Hussain, Subharthi Sarkar
NUMERICAL STUDY ON MIXED CONVECTION IN A POWER-LAW FLUID SATURATED POROUS MEDIUM WITH VARIABLE PROPERTIES AND THERMOPHORESIS EFFECTS VIA LIE SCALING GROUP TRANSFORMATIONS
Computational Thermal Sciences: An International Journal, Vol.10, 2018, issue 6
G. Venkata Suman, Janapatla Pranitha, D. Srinivasacharya
NON-DARCY MIXED CONVECTION INDUCED BY A VERTICAL PLATE IN A DOUBLY STRATIFIED POROUS MEDIUM
Journal of Porous Media, Vol.17, 2014, issue 3
O. Surender, D. Srinivasacharya