Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Druckformat: 2152-5102
ISSN Online: 2152-5110

Volumes:
Volumen 46, 2019 Volumen 45, 2018 Volumen 44, 2017 Volumen 43, 2016 Volumen 42, 2015 Volumen 41, 2014 Volumen 40, 2013 Volumen 39, 2012 Volumen 38, 2011 Volumen 37, 2010 Volumen 36, 2009 Volumen 35, 2008 Volumen 34, 2007 Volumen 33, 2006 Volumen 32, 2005 Volumen 31, 2004 Volumen 30, 2003 Volumen 29, 2002 Volumen 28, 2001 Volumen 27, 2000 Volumen 26, 1999 Volumen 25, 1998 Volumen 24, 1997 Volumen 23, 1996 Volumen 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v26.i5-6.80
pages 643-659

Oscillatory Natural Convection Flow of a Two-Phase Suspension over a Surface in the Presence of Magnetic Field and Heat Generation Effects

Ali J. Chamkha
Department of Mechanical Engineering, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Kingdom of Saudi Arabia; RAK Research and Innovation Center, American University of Ras Al Khaimah, United Arab Emirates, 10021
J. A. Adeeb
Department of Mechanical and Industrial Engineering, Kuwait University, Safat, Kuwait

ABSTRAKT

A continuous two-phase flow and heat transfer model is derived taking into account natural convection currents and is applied to the problem of laminar, hydromagnetic, oscillatory flow of a Newtonian, electrically-conducting, and heat generating or absorbing fluid with solid, monodispersed spherical suspended particles over a vertical infinite surface. The surface is assumed permeable so as to allow for possible wall fluid- and particle-phase suction or blowing and is maintained at a constant temperature. A uniform magnetic field is applied in the direction normal to that of the flow. The free stream velocity oscillates about a constant mean value. The solid particles and the vertical surface are assumed to be electrically non-conducting and the particle-phase density distribution is assumed to be uniform. In addition, the particle-phase is assumed to have an analog pressure and is endowed by a viscosity. Furthermore, the fluid phase is assumed to have temperature-dependent heat generation or absorption effects. In the absence of viscous dissipations of both phases, Joule heating, drag-type work, and the Hall effect of magnetohydrodynamics, the derived governing equations are solved analytically for the velocity and temperature profiles of both phases using the regular perturbation technique. The analytical results are compared with previously published work and are found to be in excellent agreement. The effects of the Grashof number, Hartmann number, particle loading, Prandtl number, heat generation or absorption coefficient, viscosity ratio, and the particulate wall slip on the velocity and temperature fields of both phases are illustrated graphically to show interesting features of the solutions.


Articles with similar content:

MAGNETOHYDRODYNAMIC FLOWOF A BI-VISCOSITY FLUID THROUGH POROUS MEDIUM IN A LAYER OF DEFORMABLE MATERIAL
Journal of Porous Media, Vol.14, 2011, issue 3
Nabil T. M. Eldabe, Khaled Elagamy, Gamal Saddeek
Hydromagnetic Flow and Heat Transfer of a Particulate Suspension Over a Non-Isothermal Surface with Variable Properties
International Journal of Fluid Mechanics Research, Vol.27, 2000, issue 2-4
Ali J. Chamkha
Analytical Solutions for Hydromagnetic Free Convection of a Participate Suspension from an Inclined Plate with Heat Absorption
International Journal of Fluid Mechanics Research, Vol.27, 2000, issue 2-4
H. M. Ramadan, Ali J. Chamkha
HEAT AND MASS TRANSFER ANALYSIS OF UNSTEADY NON-NEWTONIAN FLUID FLOW BETWEEN POROUS SURFACES IN THE PRESENCE OF MAGNETIC NANOPARTICLES
Journal of Porous Media, Vol.20, 2017, issue 12
Muhammad Farooq Iqbal, M. Zubair Akbar Qureshi, Kashif Ali, M. Ashraf
VISCOSITY AND FLUID SUCTION/INJECTION EFFECTS ON FREE CONVECTION FLOW FROM A VERTICAL PLATE IN A POROUS MEDIUM SATURATED WITH A PSEUDOPLASTIC FLUID
Computational Thermal Sciences: An International Journal, Vol.6, 2014, issue 3
M. El Haroui, M. Sriti, Driss Achemlal