Abo Bibliothek: Guest
International Journal of Fluid Mechanics Research

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 2152-5102

ISSN Online: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

A Unified Correlation of Laminar Convective Heat Transfer from Hot and Cold Circular Cylinders in a Uniform Flow

Volumen 25, Ausgabe 4-6, 1998, pp. 482-495
DOI: 10.1615/InterJFluidMechRes.v25.i4-6.30
Get accessGet access

ABSTRAKT

Effects of variable properties of fluid on the heat transfer between a circular cylinder and the external uniform flow were numerically investigated in the present study. The flow and temperature fields were solved using a Finite Volume Method for the uniform flow and wall temperatures. The cold as well as hot cylinders in the uniform flow of constant temperature were investigated. Heat transfer coefficient on a cylinder in a uniform flow increases as the wall temperature increases. However, it decreases as the free stream temperature increases for a cylinder of constant temperature. The variation of heat transfer rate with temperatures depends on the variation of viscosity, boundary layer thickness, temperature gradient and conductivity over the wall. Heat transfer rate is strongly influenced by the variation of conductivity over the wall. A unified correlation was obtained in the present study using the ratio of wall and free stream temperatures to take into account the variation of properties. The correlation is valid for both hot and cold cylinders in a uniform stream.

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain