Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.9

ISSN Druckformat: 2152-5102
ISSN Online: 2152-5110

Volumes:
Volumen 47, 2020 Volumen 46, 2019 Volumen 45, 2018 Volumen 44, 2017 Volumen 43, 2016 Volumen 42, 2015 Volumen 41, 2014 Volumen 40, 2013 Volumen 39, 2012 Volumen 38, 2011 Volumen 37, 2010 Volumen 36, 2009 Volumen 35, 2008 Volumen 34, 2007 Volumen 33, 2006 Volumen 32, 2005 Volumen 31, 2004 Volumen 30, 2003 Volumen 29, 2002 Volumen 28, 2001 Volumen 27, 2000 Volumen 26, 1999 Volumen 25, 1998 Volumen 24, 1997 Volumen 23, 1996 Volumen 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.2020030464
pages 273-290

INFLUENCE OF MAGNETIC FIELD ON THE STOKES FLOW THROUGH POROUS SPHEROID: HYDRODYNAMIC PERMEABILITY OF A MEMBRANE USING CELL MODEL TECHNIQUE

Pramod Kumar Yadav
Department of Mathematics,Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
Reviewer of Meccanica Journal and Member of Editorial Board of Applied Mathematics Journal

ABSTRAKT

The present work concerns an analysis of the creeping flow of steady, axisymmetric Stokes flow of an electrically conducting, viscous, incompressible fluid through a swarm of porous spheroidal particles in the presence of a uniform magnetic field. Cell model technique has been used to model the problem. Four known boundary conditions, Happel's, Kuwabara's, Kvashnin's, and Cunningham's (Mehta-Morse's), are used to find the hydrodynamic permeability of the membrane built up by porous spheroidal particles by using the perturbation method. The stress jump boundary condition for tangential stresses, along with the continuity of normal stress and velocity components, is used at the fluid-porous interface. The variation of the dimensionless hydrodynamic permeability of the membrane with the stress jump coefficient, the Hartmann number, and the dimensionless permeability of the porous region and particle volume fraction are discussed. The presented model can be used for the evaluation of changing hydrodynamic permeability of a membrane under the influence of a uniform magnetic field in pressure-driven processes (nano-, reverse osmosis, and microfiltration).

REFERENZEN

  1. Abramowitz, M. and Stegun, I.A., Handbook ofMathematicalFunctions,New York: Dover Publications, 1970.

  2. Barman, B., Flow of a Newtonian Fluid past an Impervious Sphere, Indian J. Pure Appl. Math., vol. 27, pp. 1249-1256,1996.

  3. Brinkman, H.C., A Calculation of the Viscous Force Exerted by a Flowing Fluid on a Dense Swarm of Particles, Appl. Sci. Res., vol. 2, pp. 155-161,1951.

  4. Dassios, G., Hadijincolaou, M., and Payatakes, A.C., Generalized Eigenfunctions and Complete Semiseparable Solutions for Stokes Flow in Spheroidal Coordinates, Q. Appl. Math., vol. 52, pp. 157-191,1994.

  5. Davidson, P.A., An Introduction to Magnetohydrodynamics, Cambridge, UK: Cambridge University Press, 2001.

  6. Deo, S. and Datta, S., Slip Flow past a Prolate Spheroid, Indian J. Pure Appl. Math., vol. 33, pp. 903-909,2002.

  7. Deo, S. and Gupta, B., Stokes Flow past a Swarm of Porous Approximately Spheroidal Particles with Kuwabara Boundary Condition, Acta Mech., vol. 203, pp. 241-254,2009.

  8. Dorrepaal, J.M., Majumdar, S.R., O'Neill, M.E., and Ranger, K.B., A Closed Torus in Stokes Flow, Q. J. Mech. Appl. Math, vol. 29, pp. 381-397,1976.

  9. Filippov, A.N., Vasin, S.I., and Starov, V.M., Mathematical Modeling of the Hydrodynamic Permeability of a Membrane Built Up from Porous Particles with a Permeable Shell, Colloids Surf, A, vols. 282-283, pp. 272-278,2006.

  10. Globe, S., Laminar Steady-State Magnetohydrodynamic Flow in an Annular Channel, Phys. Fluids, vol. 2, pp. 404-407,1959.

  11. Gold, R.R., Magnetohydrodynamic Pipe Flow (Part 1), J. Fluid Mech., vol. 13, pp. 505-512,1962.

  12. Happel, J. and Brenner, H., Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, Netherlands: Springer-Verlag, 1981.

  13. Happel, J., Viscous Flow in Multiparticle Systems: Slow Motion of Fluids Relative to Beds of Spherical Particles, AIChEJ, vol. 4, pp. 197-201,1958.

  14. Happel, J., Viscous Flow Relative to Arrays of Cylinders, AIChEJ., vol. 5, pp. 174-177,1959.

  15. Hartmann, J. and Lazarus, F., Hg-DYNAMICS II Experimental Investigations on the Flow of Mercury in a Homogeneous Magnetic Field, Kongelige Danske Videnskabernes Selskab, MatematiskJysiske Meddelels, vol. 15, no. 7, pp. 1-16, 1937.

  16. Hassanien, I.A. and Mansour, M.A., Unsteady Magnetohydrodynamic Flow through a Porous Medium between Two Infinite Parallel Plates, Astrophys. Space Sci., vol. 163, pp. 241-246,1990.

  17. Ismail, A.M., Ganesh, S., and Kirubhashankar, C.K., Unsteady MHD Flow between Two Parallel Plates through Porous Medium with One Plate Moving Uniformly and the Other Plate at Rest with Uniform Suction, Int. J. Sci, Eng. Technol. Res., vol. 3, pp. 6-10, 2014.

  18. Jayalakshmamma, D.V., Dinesh, P.A., and Sankar, M., Analytical Study of Creeping Flow past a Composite Sphere: Solid Core with Porous Shell in Presence of Magnetic Field, Mapana J. Sci., vol. 10, pp. 11-24,2011.

  19. Joseph, D.D. and Tao, L.N., The Effect of Permeability on the Slow Motion of a Porous Sphere in a Viscous Liquid, Z.A.M.M., vol. 44, pp. 361-364,1964.

  20. Khuri, S.A., Biorthogonal Series Solution of Stokes Flow Problems in Sectorial Regions, SIAMJ. Appl. Math., vol. 56, pp. 19-39, 1996.

  21. Kirubhashankar, C.K., Ganesh, S., and Ismail, A.M., An Exact Solution of the Problem of Unsteady MHD Flow Through Parallel Porous Plates, Int. J. Adv. Mech. Automobile Eng., vol. 1, pp. 39-42,2014.

  22. Kuwabara, S., The Forces Experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers, J. Phys. Soc. Jpn., vol. 14, pp. 527-532,1959.

  23. Kuznetsov, A.V., Analytical Investigation of Couette Flow in a Composite Channel Partially Filled with a Porous Media and Partially with a Clear Fluid, Int. J. Heat Mass Transf., vol. 41, pp. 2556-2560,1998.

  24. Kuznetsov, A.V., Analytical Investigation of the Fluid Flow in the Interface Region between a Porous Media and a Clear Fluid in Channels Partially Filled with Porous Medium, Appl. Sci. Res., vol. 56, pp. 53-67,1996.

  25. Kvashnin, A.G., Cell Model of Suspension of Spherical Particles, FluidDyn., vol. 14, pp. 598-602,1979.

  26. Liu, S. andMasliyah, J.H., Single Fluid Flow in Porous Media, Chem. Eng. Commun., vol. 148, pp. 653-732,1996.

  27. Loganathan, C. and Prathiba, S.R., Magnetohydrodynamic Flow past a Porous Spherical Aggregate with Stress Jump Condition, Prog. Nonlin. Dyn. Chaos, vol. 1, pp. 76-92,2013.

  28. Masliyah, J.H., Neale, G., Malysa, K., and Van De Ven, T.G.M., Creeping Flow over a Composite Sphere: Solid Core with Porous Shell, Chem. Eng. Sci., vol. 42, pp. 245-253,1987.

  29. Mehta, G.D. and Morse, T.F., Flow through Charged Membranes, J. Chem. Phys, vol. 63, pp. 1878-1889,1975.

  30. Ochoa-Tapia, J.A. and Whitaker, S., Momentum Transfer at the Boundary between a Porous Medium and a Homogeneous Fluid-I: Theoretical Development, Int. J. Heat Mass Transf, vol. 38, pp. 2635-2646,1995.

  31. Ochoa-Tapia, J.A. and Whitaker, S., Momentum Transfer at the Boundary between a Porous Medium and a Heterogeneous Fluid-II, Int. J Heat Mass Transf., vol. 38, pp. 2647-2655,1995.

  32. Ramkissoon, H., Slip Flow past an Approximate Spheroid, Acta Mech., vol. 123, pp. 227-233,1997.

  33. Saha, S. and Chakrabarti, S., Impact of Magnetic Field Strength on Magnetic Fluid Flow through a Channel, Int. J. Eng. Res. Technol., vol. 2, pp. 1-8,2013.

  34. Singh, C.B. and Ram, P.C., Unsteady Magnetohydrodynamic Fluid Flow through a Channel, J. Sci. Res., vol. 28, no. 2, pp. 5-7, 1978.

  35. Srivastava, A.C. and Srivastava, N., Flow past a Porous Sphere at Small Reynolds Number, Z.A.M.P., vol. 56, pp. 821-835,2005.

  36. Srivastava, B.G. and Deo, S., Effect of Magnetic Field on the Viscous Fluid Flow in a Channel Filled with Porous Medium of Variable Permeability, Appl. Math. Comput., vol. 219, pp. 8959-8964,2013.

  37. Srivastava, B.G., Yadav, P.K., Deo, S., Singh, P.K., andFilippov, A.N., Hydrodynamic Permeability of a Membrane Composed of Porous Spherical Particles in the Presence of Uniform Magnetic Field, Colloid J., vol. 76, pp. 725-738,2014.

  38. Uchida, S., Viscous Flow in Multi Particle Systems: Slow Viscous Flow through a Mass of Particles, Int. Sci. Technol. Univ. (transl. by T. Motai) Abstract. Ind. Eng. Chem., vol. 46, pp. 1194-1195,1954.

  39. Vasin, S.I.,Filippov, A.N., and Starov, V.M., Hydrodynamic Permeability of Membranes Built up by Particles, Adv. Colloid Interf. Sci., vol. 139, pp. 83-96,2008.

  40. Yadav, P.K. and Deo, S., Stokes Flow past a Porous Spheroid Embedded in Another Porous Medium, Meccanica, vol. 47, pp. 1499-1516,2012.

  41. Yadav, P.K., Deo, S., Yadav, M.K., and Filippov, A.N., On Hydrodynamic Permeability of a Membrane Built up by Porous Deformed Pheroidal Particles, Colloid J, vol. 75, pp. 611-622,2013.

  42. Yadav, P.K., Tiwari, A., Deo, S., Filippov, A., and Vasin, S., Hydrodynamic Permeability of Membranes Built Up by Spherical Particles Covered by Porous Shells: Effect of Stress Jump Condition, Acta Mech., vol. 215, pp. 193-209,2010.

  43. Yadav, P.K., Tiwari, A., and Singh, P., Hydrodynamic Permeability of a Membrane Built Up by Spheroidal Particles Covered by Porous Layer, Acta Mech., vol. 229,no. 4, pp. 1869-1892,2018.

  44. Zlatanovski, T., Axisymmetric Creeping Flow past a Porous Prolate Spheroidal Particle Using the Brinkman Model, Q. J. Mech. Appl. Math, vol. 52, pp. 111-126,1999.


Articles with similar content:

Potential Flow Past a Slightly Deformed Porous Circular Cylinder Embedded in a Porous Bed
Journal of Porous Media, Vol.11, 2008, issue 2
G. P. Raja Sekhar, Anindita Bhattacharyya
Stokes Flow Past a Swarm of Deformed Porous Spheroidal Particles with Happel Boundary Condition
Journal of Porous Media, Vol.12, 2009, issue 4
Satya Deo
STOKES FLOW OVER A NON-NEWTONIAN ENCAPSULATED DROP OF ANOTHER LIQUID: EFFECT OF STRESS JUMP
Journal of Porous Media, Vol.20, 2017, issue 9
Bali Ram Gupta, Bharat Raj Jaiswal
Numerical Solution to the MHD Flow of Micropolar Fluid Between Parallel Porous Plates
International Journal of Fluid Mechanics Research, Vol.35, 2008, issue 4
Mekonnen Shiferaw, Darbhasayanam Srinivasacharya
EFFECT OF MAGNETIC FIELDS ON THE MOTION OF POROUS PARTICLES FOR HAPPEL AND KUWABARA MODELS
Journal of Porous Media, Vol.21, 2018, issue 7
El-Sayed Ibrahim Saad