Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Druckformat: 2152-5102
ISSN Online: 2152-5110

Volumes:
Volumen 46, 2019 Volumen 45, 2018 Volumen 44, 2017 Volumen 43, 2016 Volumen 42, 2015 Volumen 41, 2014 Volumen 40, 2013 Volumen 39, 2012 Volumen 38, 2011 Volumen 37, 2010 Volumen 36, 2009 Volumen 35, 2008 Volumen 34, 2007 Volumen 33, 2006 Volumen 32, 2005 Volumen 31, 2004 Volumen 30, 2003 Volumen 29, 2002 Volumen 28, 2001 Volumen 27, 2000 Volumen 26, 1999 Volumen 25, 1998 Volumen 24, 1997 Volumen 23, 1996 Volumen 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v34.i3.30
pages 224-243

A Nonlinear Model for the Atomization of Attenuating Liquid Sheets

E. A. Ibrahim
Mechanical Engineering Department, Tuskegee University, Tuskegee, Alabama 36088,USA
D. Sree
Mechanical Engineering Department, Tuskegee University, Tuskegee, Alabama 36088, USA
T. R. McKinney
Mechanical Engineering Department, Tuskegee University, Tuskegee, Alabama 36088, USA

ABSTRAKT

The problem of predicting the characteristics of the spray produced by the disintegration of an attenuating liquid sheet emanated into a surrounding gas is considered. A second-order nonlinear perturbation analysis is employed to investigate the evolution of the instability waves that lead to sheet breakup. The sheet breakup length, thickness, and time as well as size of drops formed upon sheet fragmentation are estimated. It is found that the breakup length, breakup time, and drop size decrease as the Weber number is increased. The breakup thickness increases by raising the Weber number. An initial disturbance of larger amplitude induces faster sheet atomization and larger drops. A higher gas-to-liquid density ratio causes a shorter sheet breakup (intact) length and reduced resultant drop size associated with larger dominant wave numbers. The present theoretical predictions are compared to experimental data, and empirical correlations and favorable agreement is observed.


Articles with similar content:

DEVELOPMENT AND VALIDATION OF A CASCADE ATOMIZATION AND DROP BREAKUP MODEL FOR HIGH-VELOCITY DENSE SPRAYS
Atomization and Sprays, Vol.14, 2004, issue 3
Franz X. Tanner
TWO-DIMENSIONAL INSTABILITY RESPONSE OF AN ELECTRIFIED VISCOELASTIC PLANAR LIQUID SHEET SUBJECTED TO UNRELAXED AXIAL ELASTIC TENSION
Atomization and Sprays, Vol.25, 2015, issue 2
Ming-Xi Tong, Qing-Fei Fu, Li-Jun Yang
DROP IMPACT EXPERIMENT AS A MODEL EXPERIMENT TO INVESTIGATE THE ROLE OF OIL-IN-WATER EMULSIONS IN CONTROLLING THE DROP SIZE DISTRIBUTION OF AN AGRICULTURAL SPRAY
Atomization and Sprays, Vol.26, 2016, issue 8
Christian Ligoure, Laurence Ramos, Jean-Paul Douzals, Rajesh Goyal, Clara Vernay, Jean-Christophe Castaing
EXPERIMENTAL INVESTIGATION OF AERODYNAMIC FRAGMENTATION OF LIQUID DROPS MODIFIED BY ELECTROSTATIC SURFACE CHARGE
Atomization and Sprays, Vol.21, 2011, issue 2
Paul E. Sojka, Daniel R. Guildenbecher
EFFECT OF LIQUID SWIRL-VELOCITY PROFILE ON THE INSTABILITY OF A SWIRLING ANNULAR LIQUID SHEET
Atomization and Sprays, Vol.16, 2006, issue 3
S. M. Jeng, Milind A. Jog, A. A. Ibrahim