Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Interfacial Phenomena and Heat Transfer
ESCI SJR: 0.146

ISSN Druckformat: 2169-2785
ISSN Online: 2167-857X

Interfacial Phenomena and Heat Transfer

DOI: 10.1615/InterfacPhenomHeatTransfer.2020033129
pages 1-9


Dmitry Yu. Kochkin
Kutateladze Institute of Thermophysics SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State Technical University, Novosibirsk, 630073, Russia
Dmitry V. Zaitsev
Kutateladze Institute of Thermophysics SB RAS, 1, Lavrentiev Ave, Novosibirsk, 630090, Russia; Novosibirsk State University, 2, Pirogova str., Novosibirsk, 630090, Russia
Oleg A. Kabov
Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences, 1, Acad. Lavrentyev Ave., Novosibirsk, 630090, Russia; Institute of Power Engineering, National Tomsk Polytechnic Research University, 7, Usova Street, Tomsk, 634050, Russia; Novosibirsk State University, 2, Pirogova str., Novosibirsk, 630090, Russia


The experimental study of the rupture of a horizontal liquid layer placed on a stainless-steel substrate non-uniformly heated from below was conducted. Deformation profiles in the liquid film were measured using the confocal Micro-Epsilon sensor. Propagation of a dry spot over the substrate surface was studied using an optical schlieren system coupled with a high-speed camera. The initial thickness of the liquid film varied from 300 to 1100 μm. It was found that with an increase in the liquid layer thickness, the threshold substrate temperature for rupture increases. At the initial stage of film rupture, the contact line velocity has a maximum increasing with the initial film thickness.


  1. Ajaev, V.S., Instability and Rupture of Thin Liquid Films on Solid Substrates, Interf. Phenom. Heat Transf., vol. 1, no. 1, pp. 81-92, 2013.

  2. Ajaev, V.S. and Kabov, O.A., Heat and Mass Transfer near Contact Lines on Heated Surfaces, Int. J. Heat Mass Transf., vol. 108, pp. 918-932,2017.

  3. Burelbach, J.P., Bankoff, S.G., and Davis, S.H., Steady Thermocapillary Flows of Thin Liquid Layers. II. Experiment, Phys. Fluids A FluidDyn., vol. 2, no. 3, pp. 322-333, 1990.

  4. Chinnov, E.A. Kabov, O.A., Marchuk, I.V., and Zaitsev, D.V., Heat Transfer and Breakdown of Subcooled Falling Water Film on a Vertical Middle Size Heater, Int. J. Heat Technol., vol. 20, no. 1, pp. 69-78,2002.

  5. Chinnov, E.A., Kabov, O.A., Muzykantov, A.V., and Zaitsev, D.V., Influence of Plate Inclination on Heat Transfer and Breakdown ofLocally Heated Flowing Liquid Film, Int. J. Heat Technol., vol. 19,no. 1,pp. 31-44,2001.

  6. Chinnov, E.A., Kharlamov, S.M., Nazarov, A.D., Sokolov, E.E., Markovich, D.M., Serov, A.F., and Kabov, O.A., Integrated Measurement of the Wave Characteristics of Heated Film of Liquid by the Capacitance and Fluorescence Methods, High Temp, vol. 46, no. 5, pp. 647-653, 2008.

  7. Cook, R., Tung, C.Y., and Wayner, P.C., Use of Scanning Microphotometer to Determine the Evaporative Heat Transfer Characteristics of the Contact Line Region, J. Heat Transf., vol. 103, pp. 325-330, 1981.

  8. Fang, G. and Amirfazli, A., Understanding the Edge Effect in Wetting?: A Thermodynamic Approach, Langmuir, vol. 28, pp. 9421-9430, 2012.

  9. Gibbs, J.W., Scientific Papers, London: Longmans, vol. 1, p. 326, 1906.

  10. Gong, S., Ma, W., and Dinh, T.-N., Diagnostic Techniques for the Dynamics of a Thin Liquid Film under Forced Flow and Evaporating Conditions, Microfluid Nanofluid, vol. 9, pp. 1077-1089, 2010.

  11. Gong, S., Ma, W., and Dinh, T.-N., An Experimental Study of Rupture Dynamics of Evaporating Liquid Films on Different Heater Surfaces, Int. J. Heat Mass Transf, vol. 54, pp. 1538-1547, 2011.

  12. Grishaev, V., Amirfazli, A., Chikov, S., Lyulin, Y., and Kabov, O., Study of Edge Effect to Stop Liquid Spillage for Microgravity Application, Micrograv. Sci. Technol, vol. 25, pp. 27-33, 2013.

  13. Kabov, O.A., Breakdown of a Liquid Film Flowing over the Surface with a Local Heat Source, Thermophys. Aeromech., vol. 7, no. 4, pp. 513-520,2000.

  14. Kabov, O.A., Bartashevich, M.V., and Cheverda, V., Rivulet Flows in Microchannels and Minichannels, Int. J. Emerg. Multidiscip. FluidSci, vol. 2, nos. 2-3, pp. 161-182, 2010.

  15. Kabov, O.A., Zaitsev, D.V., Kirichenko, D.P., and Ajaev, V.S., Interaction of Levitating Microdroplets with Moist Air Flow in the Contact Line Region, Nanoscale Microscale Thermophys. Eng., vol. 21, no. 2, pp. 60-69,2017.

  16. Kunkelmann, C., Ibrahem, K., Schweizer, N., Herbert, S., Stephan, P., and Gambaryan-Roisman, T., The Effect of Three-Phase Contact Line Speed on Local Evaporative Heat Transfer: Experimental and Numerical Investigations, Int. J. Heat Mass Transf., vol. 55, pp. 1896-1904,2012.

  17. Lel, V.V., Al-Sibai, F., Leefken, A., and Renz, U., Local Thickness and Wave Velocity Measurement of Wavy Films with a Chromatic Confocal Imaging Method and a Fluorescence Intensity Technique, Exp. Fluids, vol. 39, pp. 856-864, 2005.

  18. Lyulin, Y.V., Spesivtsev, S.E., Marchuk, I.V., and Kabov, O.A., Investigation of Disruption Dynamics of the Horizontal Liquid Layer with Spot Heating from the Substrate Side, Tech. Phys. Lett., vol. 41, no. 11, pp. 1034-1037,2015.

  19. Orell, A., Formation of a Dry Spot in a Horizontal Liquid Film Heated from below, Int. J. Heat Mass Transf., vol. 14, pp. 1835-1842,1971.

  20. Panchamgam, S.S., Chatterjee, A., Plawsky, J.L., and Wayner, P.C., Comprehensive Experimental and Theoretical Study of Fluid Flow and Heat Transfer in a Microscopic Evaporating Meniscus in a Miniature Heat Exchanger, Int. J. Heat Mass Transf., vol. 51, pp. 5368-5379, 2008.

  21. Potash, M. and Wayner, P.C., Evaporation from a Two-Dimensional Extended Meniscus, Int. J. Heat Mass Transf., vol. 15, pp. 1851-1863, 1972.

  22. Redon, C., Brochard-Wyart, F., andRondelez, F., Dynamics of Dewetting, Phys. Rev. Lett., vol. 66, no. 6, pp. 715-719, 1991.

  23. Scheid, B., Kabov, O.A., Minetti, C., Colinet, P., and Legros, J.C., Measurement of Free Surface Deformation by Reflectance Schlieren Method, 3rd Eur. Therm. Sci. Conf, Sept. 10-13, Heidelberg, Germany, 2000.

  24. Settles, G.S., Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media, Berlin: Springer-Verlag, 2001.

  25. Sheng, X., Zhang, J., and Jiang, L., Application of the Restricting Flow of Solid Edges in Fabricating Super Hydrophobic Surfaces, Langmuir, vol. 25, pp. 9903-9907,2009.

  26. Stephan, P.C. andBusse, C.A., Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls, Int. J. Heat Mass Transf, vol. 35, no. 2, pp. 383-391, 1992.

  27. Zaitsev, D.V., Chinnov, E.A., Kabov, O.A., and Marchuk, I.V., Experimental Study of the Wave Flow of a Liquid Film on a Heated Surface, Tech. Phys. Lett., vol. 30, no. 3, pp. 231-233, 2004.

  28. Zaitsev, D.V. and Kabov, O.A., Study of the Thermocapillary Effect on a Wavy Falling Film Using a Fiber Optical Thickness Probe, Exp. Fluids, vol. 39, pp. 712-721, 2005.

  29. Zaitsev, D.V. and Kabov, O.A., An Experimental Modeling of Gravity Effect on Rupture of a Locally Heated Liquid Film, Micro- gravity Sci. Technol., vol. 19, nos. 3-4, pp. 174-177,2007.

  30. Zaitsev, D.V., Kabov, O.A., and Evseev, A.R., Measurement of Locally Heated Liquid Film Thickness by a Double-Fiber Optical Probe, Exp. Fluids, vol. 34, no. 6, pp. 748-754, 2003.

  31. Zaitsev, D.V., Rodionov, D.A., and Kabov, O.A., Study of Thermocapillary Film Rupture Using a Fiber Optical Thickness Probe, Micrograv. Sci. Technol, vol. 19, nos. 3-4, pp. 100-103, 2007.

  32. Zaitsev, D.V., Semenov, A.A., and Kabov, O.A., Effect of Viscosity on Thermocapillary Breakdown of a Falling Liquid Film, Thermophys. Aeromechan., vol. 23, no. 4, pp. 625-628,2016.

  33. Zhou, D.W., Gambaryan-Roisman, T., and Stephan, P., Measurement of Water Falling Film Thickness to Flat Plate Using Confocal Chromatic Sensoring Technique, Exp. Therm. Fluid Sci., vol. 33, pp. 273-283, 2009.