Abo Bibliothek: Guest
ICHMT DL Home Aktuelles Jahr Archive Vorstand International Centre for Heat and Mass Transfer

INVESTIGATIONS OF COOLING LOADS IN HIGH-RISE RESIDENTIAL BUILDINGS IN HONG KONG

DOI: 10.1615/ICHMT.2000.TherSieProcVol2TherSieProcVol1.680
pages 505-510

M. Bojic
Department of Building Services Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China

F. Yik
Department of Building Services Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China

K. Wan
Department of Building Services Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China

John Burnett
Department of Building Services Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China

Abstrakt

To minimize yearly cooling loads of high-rise residential buildings in Hong Kong, it is essential to take into account special space and time cooling pattern that exists in their apartments and then determine proper thickness, composition, and location of walls and doors in apartments. In these apartments, some rooms are cooled as dining rooms and bedrooms, and some are not cooled as bathrooms and kitchens. The dining rooms and bedrooms have different cooling schedule. Yearly cooling loads are determined by using the multi-zone HTB2 software. In the apartments during these investigations, the basic design of some walls is modified with 5 cm of thermal insulation and/or 10 to 30 cm of concrete, and the basic design of some doors is modified with 5 cm of thermal insulation. These modified walls and doors are placed in eight different locations within the apartment envelope and partitions. Calculation results show that the yearly cooling load is minimized in several cases: 1. when thermally insulated walls and doors are located optimally, 2. when thermal insulation of walls is applied together with proper thickness of concrete, 3. when concrete is uniformly distributed within apartment walls.

ICHMT Digital Library

Bow shocks on a jet-like solid body shape. Thermal Sciences 2004, 2004. Pulsed, supersonic fuel jets - their characteristics and potential for improved diesel engine injection. PULSED, SUPERSONIC FUEL JETS - THEIR CHARACTERISTICS AND POTENTIAL FOR IMPROVED DIESEL ENGINE INJECTION
View of engine compartment components (left). Plots of temperature distributions in centreplane, forward of engine (right). CHT-04 - Advances in Computational Heat Transfer III, 2004. Devel... DEVELOPMENT AND CURRENT STATUS OF INDUSTRIAL THERMOFLUIDS CFD ANALYSIS
Pratt & Whitney's F-135 Joint Strike Fighter Engine under test in Florida is a 3600F class jet engine. TURBINE-09, 2009. Turbine airfoil leading edge stagnation aerodynamics and heat transfe... TURBINE AIRFOIL LEADING EDGE STAGNATION AERODYNAMICS AND HEAT TRANSFER - A REVIEW
Refractive index reconstructed field. (a) Second iteration. (b) Fourth iteration. Radiative Transfer - VI, 2010. Theoretical development for refractive index reconstruction from a radiative ... THEORETICAL DEVELOPMENT FOR REFRACTIVE INDEX RECONSTRUCTION FROM A RADIATIVE TRANSFER EQUATION-BASED ALGORITHM
Two inclusion test, four collimated sources. Radiative Transfer - VI, 2010. New developments in frequency domain optical tomography. Part II. Application with a L-BFGS associated to an inexa... NEW DEVELOPMENTS IN FREQUENCY DOMAIN OPTICAL TOMOGRAPHY. PART II. APPLICATION WITH A L-BFGS ASSOCIATED TO AN INEXACT LINE SEARCH