Abo Bibliothek: Guest
ICHMT DL Home Aktuelles Jahr Archive Vorstand International Centre for Heat and Mass Transfer

THEORETICAL INVESTIGATION ON THE THERMAL PERFORMANCE OF FLAT TWO-PHASE HEAT SPREADERS WITH MICROCHANNELS

DOI: 10.1615/ICHMT.2008.CHT.1940
26 pages

Jed Mansouri
University of Carthage Institut National des Sciences Appliquées et de Technologie (INSAT) Laboratoire Matériaux, Mesures et Applications (MMA), Centre Urbain Nord, 1080 Tunis, Tunisia

Samah Maalej
University of Carthage Institut National des Sciences Appliquées et de Technologie (INSAT) Laboratoire Matériaux, Mesures et Applications (MMA), Centre Urbain Nord, 1080 Tunis, Tunisia

Mohamed Chaker Zaghdoudi
Laboratoire Matériaux, Mesures et Applications (MMA)

Abstrakt

A detailed mathematical model of a two-phase heat spreader with axial microchannels is developed in which the fluid flow is considered along with the heat and mass transfer processes during evaporation and condensation. The model is based on the equations of the mass, momentum and energy conservation, which are written for the evaporator, adiabatic, and condenser zones. The model, which permits to simulate several shapes of microchannels, can predict the maximum heat transfer capacity of the two-phase heat spreader, the optimal fluid mass, and the temperatures and pressure gradients along the microchannel. The effect of shear stresses at the free liquid surface in a microchannel due to the frictional liquid-vapor interaction on the liquid flow is taken into consideration. The heat transfer through the liquid films in both evaporator and condenser is accounted for in the model, which is described with respect to the disjoining pressure, interfacial thermal resistance, surface roughness, and curvature. The thermal resistances of the evaporator and condenser are determined by accounting for the longitudinal distribution of the meniscus curvature, which is dependent on heat load and heat spreader inclination.

ICHMT Digital Library

Bow shocks on a jet-like solid body shape. Thermal Sciences 2004, 2004. Pulsed, supersonic fuel jets - their characteristics and potential for improved diesel engine injection. PULSED, SUPERSONIC FUEL JETS - THEIR CHARACTERISTICS AND POTENTIAL FOR IMPROVED DIESEL ENGINE INJECTION
View of engine compartment components (left). Plots of temperature distributions in centreplane, forward of engine (right). CHT-04 - Advances in Computational Heat Transfer III, 2004. Devel... DEVELOPMENT AND CURRENT STATUS OF INDUSTRIAL THERMOFLUIDS CFD ANALYSIS
Pratt & Whitney's F-135 Joint Strike Fighter Engine under test in Florida is a 3600F class jet engine. TURBINE-09, 2009. Turbine airfoil leading edge stagnation aerodynamics and heat transfe... TURBINE AIRFOIL LEADING EDGE STAGNATION AERODYNAMICS AND HEAT TRANSFER - A REVIEW
Refractive index reconstructed field. (a) Second iteration. (b) Fourth iteration. Radiative Transfer - VI, 2010. Theoretical development for refractive index reconstruction from a radiative ... THEORETICAL DEVELOPMENT FOR REFRACTIVE INDEX RECONSTRUCTION FROM A RADIATIVE TRANSFER EQUATION-BASED ALGORITHM
Two inclusion test, four collimated sources. Radiative Transfer - VI, 2010. New developments in frequency domain optical tomography. Part II. Application with a L-BFGS associated to an inexa... NEW DEVELOPMENTS IN FREQUENCY DOMAIN OPTICAL TOMOGRAPHY. PART II. APPLICATION WITH A L-BFGS ASSOCIATED TO AN INEXACT LINE SEARCH