Abo Bibliothek: Guest
THMT-12. Proceedings of the Seventh International Symposium On Turbulence Heat and Mass Transfer
September, 24-27, 2012, Palermo, Italy

DOI: 10.1615/ICHMT.2012.ProcSevIntSympTurbHeatTransfPal


ISBN Print: 978-1-56700-302-4

ISSN: 2377-2816

Heat exchange between a vapour bubble and superheated liquid

pages 329-340
DOI: 10.1615/ICHMT.2012.ProcSevIntSympTurbHeatTransfPal.370
Get accessGet access

ABSTRAKT

The problem of the thermal growth of a vapor bubble moving in superheated liquid is solved here for two models of phase interface: a 'rigid' sphere (no-slip condition) and 'soft sphere' (slip condition). In contrast to known solutions, both first and second self-similarities in the problem on the motion of a 'soft' growing bubble were found. With the double self-similar solution obtained an approximate dependence of the dimensionless heat flux to the bubble interface was determined as the function of the Jacob and Peclet numbers, which coincides with the known solutions in two limiting cases: for a motionless growing vapour bubble and for a moving bubble of constant radius. The theoretical solutions are compared with the experimental data for rising vapour bubbles in a superheated liquid. The results of the comparison show that as long as the bubble radius is less than a critical size acr, determined by the liquid superheat, the experimental data fit the results of calculations based on the model of a rigid interface. When the bubble radius is greater than acr, the experimental data fit the calculations based on the soft surface model.

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain