Abo Bibliothek: Guest
Third Symposium on Turbulence and Shear Flow Phenomena
June, 25-27, 2003, International Center, Sendai, Japan

DOI: 10.1615/TSFP3

TURBULENT ENERGY AND DAMPING FUNCTIONS AT GAS-LIQUID INTERFACES AND WAVY WALLS

pages 203-208
DOI: 10.1615/TSFP3.350
Get accessGet access

ABSTRAKT

Reynolds averaged turbulence models require damping function models, e.g. those of Van Driest and Miner, to correctly describe the behavior of the various turbulence quantities of interest in Computational Fluid Dynamics (CFD). The behavior of such models when boundaries and boundary conditions are complicated is poorly understood. Direct Numerical Simulations (DNS) are presented here for two cases, viz. gas-liquid flow with a flat, horizontal interface (the high surface-tension limit) and gas flow over a wavy boundary. The DNS results are used to validate simple forms of the damping functions. The Miner formulation of the damping function gives satisfactory results on the gas side, whereas the Van Driest formulation is more suitable on the liquid side for the case of turbulent gas and liquid streams coupled across a flat interface. In the case of flow over the wavy wall, Miner's model gives acceptable predictions for u'1u'3 and u'1u'1 but fails to predict u'3u'3. The results are of some practical interest considering that these simple formulations of damping functions are routinely used in CFD codes to solve problems with complex geometries and boundary conditions.

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain