Abo Bibliothek: Guest
Annual Review of Heat Transfer
Vish Prasad (open in a new tab) Department of Mechanical Engineering, University of North Texas, Denton, Texas 76207, USA
Yogesh Jaluria (open in a new tab) Department of Mechanical and Aerospace Engineering, Rutgers-New Brunswick, The State University of New Jersey, Piscataway, NJ 08854, USA
Zhuomin M. Zhang (open in a new tab) George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

ISSN Print: 1049-0787

ISSN Online: 2375-0294

SJR: 0.363 SNIP: 0.21 CiteScore™:: 1.8

Indexed in

Clarivate CBCI (Books) Scopus Google Scholar CNKI Portico Copyright Clearance Center iThenticate Scientific Literature

PUMP-PROBE THERMOREFLECTANCE

pages 159-181
DOI: 10.1615/AnnualRevHeatTransfer.v16.60
Get accessGet access

ABSTRAKT

Pump-probe thermoreflectance is an optical technique used to measure heat transfer in bulk materials and micro- and nanoscale samples. The measurement typically uses two light sources, referred to as the pump and the probe. The pump generates a time-dependent heat flux at the sample surface, while the probe monitors the temperature response through a proportional change in surface reflectivity. Combined with a heat transfer model, the measured temperature response is used to infer transport properties such as the cross-plane thermal conductivity, in-plane thermal conductivity, heat capacity, and the thermal boundary conductance between materials. The measurement has diffraction-limited lateral spatial resolution and is effective on bulk materials and films as thin as a few nanometers. This chapter begins with a nonexhaustive overview of pump-probe thermoreflectance tailored to the measurement of heat transfer in small scale. This is followed by a description of the experimental setup and data analysis used in typical implementations of time- and frequency-domain thermoreflectance, and then a discussion on the measurement of in-plane and cross-plane heat transfer in bulk materials and thin films.

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain