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This paper examines two stochastic methods stemming from polynomial dimensional decomposition (PDD) and polyno-
mial chaos expansion (PCE) for solving random eigenvalue problems commonly encountered in dynamics of mechanical
systems. Although the infinite series from PCE and PDD are equivalent, their truncations endow contrasting dimen-
sional structures, creating significant differences between the resulting PDD and PCE approximations in terms of
accuracy, efficiency, and convergence properties. When the cooperative effects of input variables on an eigenvalue atten-
uate rapidly or vanish altogether, the PDD approximation commits a smaller error than does the PCE approximation for
identical expansion orders. Numerical analyses of mathematical functions or simple dynamic systems reveal markedly
higher convergence rates of the PDD approximation than the PCE approximation. From the comparison of computa-
tional efforts, required to estimate with the same precision the frequency distributions of dynamic systems, including a
piezoelectric transducer, the PDD approximation is significantly more efficient than the PCE approximation.
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1. INTRODUCTION

Random eigenvalue problems (REPs) comprising stochastic matrix, differential, or integral operators frequently ap-
pear in many fields of engineering, science, and mathematics. They are commonly solved by stochastic methods that
determine the statistical moments, probability law, and other relevant properties of eigensolutions. The solutions may
represent oscillatory modes of a mechanical or structural system (e.g., vehicles, buildings, bridges), disposition of
electrons around an atom or a molecule, acoustic modes of a concert hall, eigenfaces in computer vision technology,
spectral properties of a graph, and numerous other physical or mathematical quantities.

Many REPs are focused on the second-moment properties of eigensolutions, for which there exist a multitude of
methods or approaches. Prominent among them are the classical perturbation method [1], the iteration method [1], the
Ritz method [2], the crossing theory [3], the stochastic reduced basis approach [4], and the asymptotic method [5].
More recent developments on solving REPs include the stochastic expansion methods, notably, the polynomial chaos
expansion (PCE) [6] and polynomial dimensional decomposition (PDD) [7] methods, both employing Fourier expan-
sions in terms of orthogonal polynomials for approximating eigensolutions. The latter two methods also provide the
probability distributions of eigensolutions, although the concomitant approximations are guaranteed to converge only
in the mean-square sense, provided that the eigensolutions are square-integrable functions of the random input with
respect to its probability measure. A distinguishing feature of these expansion methods is their effective exploitation of
the smoothness properties of eigensolutions, if they exist, with the attendant convergence rates markedly higher than
those obtained from the sampling-based methods. However, due to the contrasting dimensional structures of PDD
and PCE, the convergence properties of their truncations are not the same and may differ significantly, depending
on the eigensolution and dimension of the problem. Therefore, uncovering their mathematical properties, which have
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ramifications in stochastic computing, including solving REPs, is a major motivation for this current work. Is PDD
superior to PCE or vice versa? It is also desirable to compare the errors from the PDD and PCE approximations and
thereby establish appropriate criteria for grading these two methods.

This paper presents a rigorous comparison of the PDD and PCE methods for calculating the statistical moments
and tail probability distributions of random eigenvalues commonly encountered in dynamics of mechanical systems.
The methods are based on (i) a broad range of orthonormal polynomial bases consistent with the probability measure
of the random input and (ii) an innovative dimension-reduction integration for calculating the expansion coefficients.
Section 2 formally defines the REP addressed in this study. Section 3 provides a brief exposition of PDD and PCE,
including establishing the relationship between the two expansions. Section 4 discusses PDD and PCE approxima-
tions resulting from series truncations, where an alternative form of the PCE approximation has been derived, leading
to approximate probabilistic solutions from both methods in terms of the PDD expansion coefficients. Section 4 also
presents an error analysis due to PDD and PCE approximations. Section 5 describes the dimension-reduction inte-
gration for estimating the PDD expansion coefficients, including the computational efforts required. Five numerical
examples illustrate the accuracy, convergence, and computational efficiency of the PDD and PCE methods in Sec-
tion 6. Finally, conclusions are drawn in Section 7.

2. EIGENVALUE PROBLEMS IN STOCHASTIC DYNAMICS

Let (Ω,F , P ) be a complete probability space, whereΩ is a sample space,F is aσ-field onΩ, andP : F → [0, 1] is
a probability measure. LetRN andCN beN -dimensional real and complex vectors spaces, respectively, andRN×N

a set of allN × N , real-valued matrices. WithBN representing a Borelσ-field onRN andE the expectation oper-
ator on(Ω,F , P ), consider anRN -valued, independent, input random vector{X = {X1, . . . , XN}T : (Ω,F) →
(RN ,BN )}, which has mean vectorµX := E[X] ∈ RN , covariance matrixΣX := E[(X − µX)(X − µX)T ] ∈
RN×N , and joint probability density functionfX(x) = Πi=N

i=1 fi(xi), wherefi(xi) is the marginal probability density
function ofXi defined on the probability triple(Ωi,Fi, Pi). In most dynamic systems, the vectorX represents uncer-
tainties in material parameters (e.g., mass, damping, stiffness), geometry (e.g., size, shape, topology), and constraints
(e.g., initial and boundary conditions).

Consider a family ofL×L, real-valued, random coefficient matricesAj(X) ∈ RL×L, j = 1, . . . , J , whereJ is
a positive integer and a general nonlinear functionf . The probabilistic characteristics ofAj(X) can be derived from
the known probability law ofX. A nontrivial solution of

f [λ(X); A1(X), . . . , AJ(X)] φ(X) = 0, (1)

if it exists, defines the random eigenvalueλ(X) ∈ R or C and the random eigenvectorφ(X) ∈ RL or CL of a
general nonlinear eigenvalue problem. Depending on the type of application, a wide variety of functionsf and, hence,
eigenvalue problems exist. Table 1 shows a few examples of REPs frequently encountered in dynamic systems. In
general, the eigensolutions depend on the random inputX via solution of the matrix characteristic equation

det {f [λ(X); A1(X), . . . , AJ(X)]} = 0 (2)

and subsequent solution of Eq. (1). A major objective in solving a random eigenvalue problem is to find the proba-
bilistic characteristics of eigenpairs{λ(i)(X),φ(i)(X)}, i = 1, . . . , L, when the probability law ofX is arbitrarily
prescribed. Both the PDD and PCE methods can be employed to solve any REP in Table 1, however, yielding differ-
ent accuracy or efficiency with significant implications in stochastic computing. Therefore, a rigorous comparison of
these two expansion methods—the principal focus of this work—should provide deeper insights into their respective
capabilities as well as limitations.

3. STOCHASTIC EIGENVALUE EXPANSIONS

Let λ(X), a real-valued, mean-square integrable, measurable transformation on(Ω,F), define a relevant eigenvalue
of a stochastic dynamic system. In general, the multivariate functionλ : RN → R is implicit, is not analytically
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TABLE 1: Random eigenvalue problems in stochastic dynamical systems

Eigenvalue problem(a) Problem type and application(s)

[−λ(X)M(X) + K(X)] φ(X) = 0
Linear: undamped or proportionally
damped systems

[
λ2(X)M(X) + λ(X)C(X) + K(X)

]
φ(X) = 0

Quadratic:non-proportionally damped
systems, singularity problems

[
λ(X)M1(X) + M0(X) + MT

1 (X)/λ(X)
]
φ(X) = 0

Palindromic: acoustic emissions in
high-speed trains[∑

k

λk(X)Ak(X)

]
φ(X) = 0

Polynomial: control and dynamics
problems

[
λ(X)M(X)−K(X) +

∑

k

λq(X)Ck(X)
ak − λ(X)

]
φ(X) = 0

Rational: plate vibration(q = 1), fluid-
structure vibration(q = 2), vibration of
viscoelastic materials

(a)M(X), C(X), and K(X) are mass, damping, stiffness matrices, respectively;M0(X), M1(X),
Ak(X), andCk(X) are various coefficient matrices.

available, and can only be viewed as a high-dimensional input-output mapping, where the evaluation of the output
function λ for a given inputX requires expensive finite element analysis (FEA). Therefore, methods employed in
stochastic analysis must be capable of generating accurate probabilistic characteristics ofλ(X) with an acceptably
small number of output function evaluations.

3.1 Orthonormal Polynomials

LetL2(Ωi,Fi, Pi) be a Hilbert space that is equipped with a set of complete orthonormal bases{ψij(xi); j = 0, 1, . . .},
which is consistent with the probability measure ofXi. For example, classical orthonormal polynomials, includ-
ing Hermite, Legendre, and Jacobi polynomials, can be used whenXi follows Gaussian, uniform, andβ probabil-
ity distributions, respectively [8]. For an arbitrary measure, approximate methods based on the Stieltjes procedure
can be employed to obtain the associated orthonormal polynomials [8, 9]. IfE is the expectation operator with re-
spect to the probability measure ofX, then two important properties of orthonormal polynomials are as follows
[9, 10].
Property 1. The orthonormal polynomial basis functions have a unit mean forj = 0 and zero means for allj ≥ 1,
i.e.,

E[ψij(Xi)] :=
∫

R
ψij(xi)fi(xi)dxi =

{
1 if j = 0,

0 if j ≥ 1.
(3)

Property 2. Any two orthonormal polynomial basis functionsψij1(Xi) andψij2(Xi), wherej1, j2 = 0, 1, 2, . . ., are
uncorrelated and each has unit variance, i.e.,

E[ψij1(Xi)ψij2(Xi)] :=
∫

R
ψij1(xi)ψij2(xi)fi(xi)dxi =

{
1 if j1 = j2,

0 if j1 6= j2.
(4)

If λ is a sufficiently smooth function ofX, then there exist two important stochastic expansions of random eigenvalues
involving orthonormal polynomials, as follows.

3.2 Polynomial dimensional decomposition

The PDD of a random eigenvalueλ(X) represents a finite, hierarchical expansion [7, 9]
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λPDD(X) := λ0 +
N∑

i=1

∞∑

j=1

Cijψij(Xi) +
N−1∑

i1=1

N∑

i2=i1+1

∞∑

j2=1

∞∑

j1=1

Ci1i2j1j2ψi1j1(Xi1)ψi2j2(Xi2)

+
N−2∑

i1=1

N−1∑

i2=i1+1

N∑

i3=i2+1

∞∑

j3=1

∞∑

j2=1

∞∑

j1=1

Ci1i2i3j1j2j3ψi1j1(Xi1)ψi2j2(Xi2)ψi3j3(Xi3)

+ . . . +
1∑

i1=1

. . .

N∑

iN=iN−1+1

∞∑

jN=1

. . .

∞∑

j1=1

Ci1...iN j1...jN

N∏
q=1

ψiqjq (Xiq )

= λ0 +
N∑

s=1

[
N−s+1∑

i1=1

. . .

N∑

is=is−1+1︸ ︷︷ ︸
s sums

∞∑

j1=1

. . .

∞∑

js=1︸ ︷︷ ︸
s sums

Ci1...isj1...js

s∏
q=1

ψiqjq
(Xiq

)

]

(5)

in terms of random orthonormal polynomialsψij(Xi), i = 1, . . . , N ; j = 1, . . . ,∞ of input variablesX1, . . . , XN

with increasing dimensions, where

λ0 :=
∫

RN

λ(x)fX(x)dx (6)

and

Ci1...isj1...js :=
∫

RN

λ(x)
s∏

q=1

ψiqjq (xiq )fX(x)dx, (7)

for s = 1, ..., N, 1≤ i1 < ... < is ≤N , j1, ..., js = 1, ...,∞ are the associated expansion coefficients, which require
calculating various high-dimensional integrals whenN is large. In Eq. (5), the term

∑∞
js=1...

∑∞
j1=1Ci1...isj1...js

∏s
q=1

ψiqjq (Xiq ) represents thes-variate component function, quantifying the cooperative effect ofs input variablesXi1 , ...,
XiS

onλ.

3.3 Polynomial Chaos Expansion

The PCE of a random eigenvalueλ(X), a function of a finite number of random variablesX1, . . . , XN , has a repre-
sentation [11–13]

λPCE(X) := a0Γ0 +
N∑

i=1

aiΓ1(Xi) +
N∑

i1=1

N∑

i2=i1

ai1i2Γ2(Xi1 , Xi2) +
N∑

i1=1

N∑

i2=i1

N∑

i3=i2

ai1i2i3Γ3(Xi1 , Xi2 , Xi3)

+ . . . +
N∑

i1=1

. . .

N∑

ip=ip−1

ai1...ipΓp(Xi1 , . . . , Xip) + . . .

(8)

in terms of random polynomial chaoses,Γp(Xi1 , . . . , Xip), p = 0, . . . ,∞, 1 ≤ i1 ≤ . . . ≤ ip ≤ N , of input variables
Xi1 , . . . , Xip with increasing orders, where

a0 :=
∫

RN

λ(x)Γ0fX(x)dx (9)

and

ai1...ip :=
∫

RN

λ(x)Γp(Xi1 , . . . , Xip)fX(x)dx, (10)

for p = 1, . . . ,∞, 1 ≤ i1 ≤ . . . ≤ ip ≤ N , are the corresponding expansion coefficients that also require evaluating
high-dimensional integrals.
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Once the expansion coefficients in Eq. (5) or (8) are determined, as explained in a forthcoming section, PDD and
PCE furnish surrogates of the exact mapλ : RN → R, describing an input-output relationship from a complicated
numerical eigenvalue analysis. Therefore, any probabilistic characteristic ofλ(X), including its statistical moments
and rare event probabilities, can be estimated from its PDD or PCE.

Remark 1.Using Properties 1 and 2 of orthonormal polynomials, it is elementary to show that the second-moment
properties of any mean-square integrable functionλ(X), its PDDλPDD(X), and its PCEλPCE(X) are identical. In
other words,λ(X), λPDD(X), andλPCE(X) are equivalent in the mean-square sense.

3.4 Relationship between PDD and PCE

Because the polynomial chaoses in Eq. (8) are built from univariate orthonormal polynomials, PDD and PCE are
related. Indeed, there exists a striking theorem, as follows.

Theorem 1.If λPDD(X) andλPCE(X) are two infinite series defined in Eqs. (5) and (8), respectively, then one
series can be rearranged to derive the other series, for instance,λPCE(X) = λPDD(X).

Proof. The polynomial chaosesΓp(Xi1 , . . . , Xip), p = 0, . . . ,∞, 1 ≤ i1 ≤ . . . ≤ ip ≤ N in Eq. (8) can be more
explicitly written as

Γ0 = 1

Γ1(Xi) = ψi1(Xi)

Γ2(Xi1 , Xi2) = ψi12(Xi1)δi1i2 −ψi11(Xi1)ψi21(Xi2)(δi1i2 − 1)

Γ3(Xi1 , Xi2 , Xi3) = ψi13(Xi1)δi1i2δi1i3δi2i3

− ψi11(Xi1)ψi22(Xi2)δi2i3(δi1i2 − 1)

− ψi22(Xi2)ψi31(Xi3)δi1i2(δi2i3 − 1)

− ψi11(Xi1)ψi21(Xi2)ψi31(Xi3)(δi1i2δi1i3δi2i3 − 1)(δi1i2 − 1)(δi2i3 − 1)
. . . = . . . ,

(11)

which represents various combinations of tensor products of sets of univariate orthonormal polynomials withδikil
,

k, l = 1, . . . , p, denoting various Kronecker deltas, i.e.,δikil
= 1 whenik = il and zero otherwise. Inserting Eq. (11)

into Eqs. (9) and (10) with Eqs. (6) and (7) in mind, the PCE coefficients,

a0 = λ0

ai = Ci1

ai1i2 = Ci12δi1i2 − Ci1i211(δi1i2 − 1)

ai1i2i3 = Ci13δi1i2δi1i3δi2i3 − Ci1i212δi2i3(δi1i2 − 1)

− Ci2i321δi1i2(δi2i3 − 1)

− Ci1i2i3111(δi1i2δi1i3δi2i3 − 1)(δi1i2 − 1)(δi2i3 − 1)
. . . = . . . ,

(12)

provide explicit connections to the PDD coefficients. Using the polynomial chaoses and PCE coefficients from
Eqs. (11) and (12), respectively, and after some simplifications, the zero- to higher-order PCE terms become
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a0Γ0 = λ0
N∑

i=1

aiΓ1(Xi) =
N∑

i=1

Ci1ψi1(Xi)

N∑

i1=1

N∑

i2=i1

ai1i2Γ2(Xi1 , Xi2) =
N∑

i=1

Ci2ψi2(Xi) +
N∑

i1,i2=1;i1<i2

Ci1i211ψi11(Xi1)ψi21(Xi2)

N∑

i1=1

N∑

i2=i1

N∑

i3=i2

ai1i2i3Γ3(Xi1 , Xi2 , Xi3) =
N∑

i=1

Ci3ψi3(Xi) +
N∑

i1,i2=1;i1<i2

Ci1i212ψi11(Xi1)ψi22(Xi2)

+
N∑

i1,i2=1;i1<i2

Ci2i321ψi12(Xi1)ψi21(Xi2)

+
N∑

i1,i2,i3=1;i1<i2<i3

Ci1i2i3111ψi11(Xi1)ψi21(Xi2)ψi31(Xi3)

. . . = . . . ,

(13)

revealing constituents comprising constant, univariate functions, bivariate functions, etc. Collecting all univariate
terms, all bivariate terms, etc., from each appropriate line of Eq. (13) leads to

λPCE(X) = lim
p→∞

[
λ0 +

N∑

i=1

p∑

j=1

Cijψij(Xi) +
N−1∑

i1=1

N∑

i2=i1+1

p−1∑

j2=1

p−1∑

j1=1︸ ︷︷ ︸
j1+j2≤p

Ci1i2j1j2ψi1j1(Xi1)ψi2j2(Xi2)

+
N−2∑

i1=1

N−1∑

i2=i1+1

N∑

i3=i2+1

p−2∑

j3=1

p−2∑

j2=1

p−2∑

j1=1︸ ︷︷ ︸
j1+j2+j3≤p

Ci1i2i3j1j2j3ψi1j1(Xi1)ψi2j2(Xi2)ψi3j3(Xi3)

+ . . . +
1∑

i1=1

. . .

N∑

iN=iN−1+1

p−N+1∑

jN=1

. . .

p−N+1∑

j1=1︸ ︷︷ ︸
j1+...+jN≤p

Ci1...iN j1...jN

N∏
q=1

ψiqjq (Xiq )

]

= λ0 +
N∑

i=1

∞∑

j=1

Cijψij(Xi) +
N−1∑

i1=1

N∑

i2=i1+1

∞∑

j2=1

∞∑

j1=1

Ci1i2j1j2ψi1j1(Xi1)ψi2j2(Xi2)

+
N−2∑

i1=1

N−1∑

i2=i1+1

N∑

i3=i2+1

∞∑

j3=1

∞∑

j2=1

∞∑

j1=1

Ci1i2i3j1j2j3ψi1j1(Xi1)ψi2j2(Xi2)ψi3j3(Xi3)

+ . . . +
1∑

i1=1

. . .

N∑

iN=iN−1+1

∞∑

jN=1

. . .

∞∑

j1=1

Ci1...iN j1...jN

N∏
q=1

ψiqjq (Xiq )

= λ0 +
N∑

s=1

[
N−s+1∑

i1=1

. . .

N∑

is=is−1+1︸ ︷︷ ︸
s sums

∞∑

j1=1

. . .

∞∑

js=1︸ ︷︷ ︸
s sums

Ci1...isj1...js

s∏
q=1

ψiqjq (Xiq )

]
=: λPDD(X),

(14)
which proves the theorem for any mean-square integrable functionλ : RN → R, 1 ≤ N < ∞, and probability
distribution ofX.
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4. SERIES TRUNCATIONS AND APPROXIMATE SOLUTIONS

4.1 PDD Approximation

Although Eq. (5) provides an exact PDD representation, it contains an infinite number of coefficients, emanating from
infinite numbers of orthonormal polynomials. In practice, the number of coefficients must be finite, say, by retaining at
mostmth-order polynomials in each variable. Furthermore, in many applications, the functionλ can be approximated
by a sum of at mostS-variate component functions, where1 ≤ S ≤ N is another truncation parameter, resulting in
theS-variate,mth-order PDD approximation

λ̃S,m(X) = λ0 +
S∑

s=1

[
N−s+1∑

i1=1

. . .

N∑

is=is−1+1︸ ︷︷ ︸
s sums

m∑

j1=1

. . .

m∑

js=1︸ ︷︷ ︸
s sums

Ci1...isj1...js

s∏
q=1

ψiqjq
(Xiq

)

]
, (15)

containing

QS,m =
S∑

k=0

(
N

S − k

)
mS−k (16)

number of PDD coefficients and corresponding orthonormal polynomials. The PDD approximation in Eq. (15) in-
cludes cooperative effects of at mostS input variablesXi1 , . . . , XiS

, 1 ≤ i1 ≤ . . . ≤ iS ≤ N , onλ. For instance, by
selectingS = 1 and2, the functions,̃λ1,m(X) andλ̃2,m(X), respectively, provide univariate and bivariatemth-order
approximations, contain contributions from all input variables, and should not be viewed as first- and second-order
approximations, nor do they limit the nonlinearity ofλ(X). Depending on how the component functions are con-
structed, arbitrarily high-order univariate and bivariate terms ofλ(X) could be lurking insidẽλ1,m(X) andλ̃2,m(X).
The fundamental conjecture underlying this decomposition is that the component functions arising in the function
decomposition will exhibit insignificantS-variate effects cooperatively whenS → N , leading to useful lower-variate
approximations ofλ(X). WhenS → N andm → ∞, λ̃S,m(X) converges toλ(X) in the mean-square sense, i.e.,
Eq. (15) generates a hierarchical and convergent sequence of approximations ofλ(X).

Applying the expectation operator on Eq. (15) and noting property 1, the meanE
[
λ̃S,m(X)

]
= λ0 of the S-

variate,mth-order approximation of the eigenvalue matches the exact mean of the eigenvalue in Eq. (6), regardless of

S or m. Applying the expectation operator again, this time on
[
λ̃S,m(X)− λ0

]2

, results in the approximate variance

E
[
λ̃S,m(X)−λ0

]2

=
S∑

s=1

S∑
t=1

(
N−s+1∑

i1=1

...

N∑

is=is−1+1

m∑

j1=1

...

m∑

js=1︸ ︷︷ ︸
2s sums

N−t+1∑

k1=1

...

N∑

kt=kt−1+1

m∑

l1=1

...

m∑

lt=1︸ ︷︷ ︸
2t sums

Ci1...isj1...js

× Ck1...ktl1...ltE

[
s∏

q=1

ψiqjq (Xiq )
t∏

q=1

ψkqlq (Xkq )

]) (17)

of the eigenvalue, which depends onS andm. The number of summations inside the parenthesis of the right side of
Eq. (17) is2(s+t), wheres andt are the indices of the two outer summations. By virtue of property 2 and independent
coordinates ofX,

E

[
s∏

q=1

ψiqjq (Xiq )
t∏

q=1

ψkqlq (Xkq )

]
=

s∏
q=1

E
[
ψ2

iqjq
(Xiq )

]
= 1 (18)

for s = t, iq = kq, jq = lq and zero otherwise, leading to
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E
[
λ̃S,m(X)− λ0

]2

=
S∑

s=1

(
N−s+1∑

i1=1

. . .

N∑

is=is−1+1︸ ︷︷ ︸
s sums

m∑

j1=1

. . .

m∑

js=1︸ ︷︷ ︸
s sums

C2
i1...isj1...js

)
(19)

as the sum of squares of the expansion coefficients from theS-variate,mth-order PDD approximation ofλ(X).
Clearly, the approximate variance in Eq. (19) approaches the exact variance

E [λ(X)− λ0]
2 = E [λPDD(X)− λ0]

2 =
N∑

s=1

(
N−(s+1)∑

i1=1

. . .

N∑

is=is−1+1︸ ︷︷ ︸
s sums

∞∑

j1=1

. . .

∞∑

js=1︸ ︷︷ ︸
s sums

C2
i1...isj1...js

)

(20)

of the eigenvalue whenS → N andm → ∞. The mean-square convergence ofλ̃S,m is guaranteed asλ and its
component functions are all members of the associated Hilbert spaces.

Remark 2. The expansion orderm, which is a positive integer, should be interpreted as the largest exponent of a
single variable from the monomials (terms) of the PDD approximation. On the basis of the traditional definition, the
total order of the multivariate polynomial in the right side of Eq. (15) isSm, although all monomials with total degree
equal to or less thanSm are not present.

4.2 PCE Approximation

Thepth-order PCE approximation

λ̄p(X) := a0Γ0 +
N∑

i=1

aiΓ1(Xi) +
N∑

i1=1

N∑

i2=i1

ai1i2Γ2(Xi1 , Xi2) +
N∑

i1=1

N∑

i2=i1

N∑

i3=i2

ai1i2i3Γ3(Xi1 , Xi2 , Xi3)

+ . . . +
N∑

i1=1

. . .

N∑

ip=ip−1

ai1...ipΓp(Xi1 , . . . , Xip),

(21)

obtained directly by truncating the right side of Eq. (8), requires(N + p)!/(N !p!) number of the PCE coefficients.
However, since PDD and PCE are related, the terms of Eq. (21) can be rearranged following similar derivations in
proving Theorem 1, resulting in

λ̄p(X) = λ0 +
N∑

i=1

p∑

j=1

Cijψij(Xi) +
N−1∑

i1=1

N∑

i2=i1+1

p−1∑

j2=1

p−1∑

j1=1︸ ︷︷ ︸
j1+j2≤p

Ci1i2j1j2ψi1j1(Xi1)ψi2j2(Xi2)

+
N−2∑

i1=1

N−1∑

i2=i1+1

N∑

i3=i2+1

p−2∑

j3=1

p−2∑

j2=1

p−2∑

j1=1︸ ︷︷ ︸
j1+j2+j3≤p

Ci1i2i3j1j2j3ψi1j1(Xi1)ψi2j2(Xi2)ψi3j3(Xi3)

+ . . . +
N−s+1∑

i1=1

. . .

N∑

is=is−1+1

p−N+1∑

jN=1

. . .

p−N+1∑

j1=1︸ ︷︷ ︸
j1+...+jN≤p

Ci1...iN j1...jN

N∏
q=1

ψiqjq (Xiq )

(22)

with the generic(s + 1)th term,s = 1, . . . , p, shown or its abbreviated form

λ̄p(X) = λ0 +
N∑

s=1

[
N−s+1∑

i1=1

. . .

N∑

is=is−1+1︸ ︷︷ ︸
s sums

p−s+1∑

j1=1

. . .

p−s+1∑

js=1︸ ︷︷ ︸
s sums;j1+...+js≤p

Ci1...isj1...js

s∏
q=1

ψiqjq (Xiq )

]
, (23)
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involving solely

Qp =
N∑

k=0

(
N

N − k

)(
p

N − k

)
(24)

number of PDD coefficients and corresponding orthonormal polynomials, where
(

p
N−k

)
should be interpreted as zero

whenp < N −k. It is elementary to show thatQp matches(N + p)!/(N !p!), the original number of PCE coefficients
from Eq. (21). The advantage of Eq. (23) over Eq. (21) is that the PDD coefficients, once determined, can be reused
for the PCE approximation, thereby sidestepping calculations of the PCE coefficients.

Applying the expectation operator on Eq. (23) and noting Property 1, the meanE
[
λ̄p(X)

]
= λ0 of thepth-order

PCE approximation of the eigenvalue also matches the exact mean of the eigenvalue for any expansion order. Applying
the expectation operator on

[
λ̄p(X)− λ0

]2
and following similar arguments as before, the variance of thepth-order

PCE approximation of the eigenvalue is

E
[
λ̄p(X)− λ0

]2 =
N∑

s=1

(
N−s+1∑

i1=1

. . .

N∑

is=is−1+1︸ ︷︷ ︸
s sums

p−s+1∑

j1=1

. . .

p−s+1∑

js=1︸ ︷︷ ︸
s sums;j1+...+js≤p

C2
i1...isj1...js

)
, (25)

another sum of squares of the PDD expansion coefficients such thatj1 + . . . + js ≤ p, which also converges to
E [λ(X)− λ0]

2 asp →∞.
Remark 3. Two important observations can be made when comparing the PDD and PCE approximations ex-

pressed by Eqs. (15) and (21), respectively. First, the terms in the PCE approximation are organized with respect to
the order of polynomials. In contrast, the PDD approximation is structured with respect to the degree of cooperativity
between a finite number of random variables. Therefore, significant differences may exist regarding the accuracy,
efficiency, and convergence properties of their truncated sum or series. Second, if an eigenvalue response is highly
nonlinear but contains rapidly diminishing cooperative effects of multiple random variables, the PDD approximation
is expected to be more effective than the PCE approximation. This is because the lower-variate (univariate, bivariate,
etc.) terms of the PDD approximation can be just as nonlinear by selecting appropriate values ofm in Eq. (15). In
contrast, many more terms and expansion coefficients are required to be included in the PCE approximation to capture
such high nonlinearity.

Remark 4.Depending on the problem size (N ) and truncation parameters (S, m, p), there exist a few special cases
where the PDD and PCE approximations coincide: (i) whenN = 1, the univariate,mth-order PDD andmth-order
PCE approximations are the same, i.e.,λ̃1,m(X) = λ̄m(X) for any1 ≤ m < ∞; (ii) for any arbitrary value ofN , the
univariate, first-order PDD and first-order PCE approximations are the same, i.e.,λ̃1,1(X) = λ̄1(X).

Remark 5. The PDD and PCE approximations, regardless of the truncation parameters, predict the exact mean
of an eigenvalue. However, the calculated variances of an eigenvalue from Eqs. (19) and (25) forS < N , m < ∞,
andp < ∞ are neither the same nor exact, in general. Therefore, an error analysis, at least pertaining to the second-
moment properties of eigensolutions, is required for comparing the PDD and PCE approximations.

4.3 Error Analysis

Define two errors,

eS,m := E
[
λ(X)− λ̃S,m(X)

]2

= E
[
λPDD(X)− λ̃S,m(X)

]2

=
∫
RN

[
λPDD(x)− λ̃S,m(x)

]2

fX(x)dx
(26)

and
ep := E

[
λ(X)− λ̄p(X)

]2 = E
[
λPDD(X)− λ̄p(X)

]2
=

∫
RN

[
λPDD(x)− λ̄p(x)

]2
fX(x)dx,

(27)
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owing toS-variate,mth-order PDD approximatioñλS,m(X) andpth-order PCE approximation̄λp(X), respectively,
of λ(X). ReplacingλPDD, λ̃S,m, andλ̄p in Eqs. (26) and (27) with the right sides of Eqs. (5), (15), and (23), respec-
tively, and invoking properties 1 and 2 yields the PDD error

eS,m =
S∑

s=1

(
N−s+1∑

i1=1

. . .

N∑

is=is−1+1︸ ︷︷ ︸
s sums

∞∑

j1=m+1

. . .

∞∑

js=m+1︸ ︷︷ ︸
s sums

C2
i1...isj1...js

)

+
N∑

s=S+1

(
N−s+1∑

i1=1

. . .

N∑

is=is−1+1︸ ︷︷ ︸
s sums

∞∑

j1=1

. . .

∞∑

js=1︸ ︷︷ ︸
s sums

C2
i1...isj1...js

) (28)

and the PCE error

ep =
N∑

s=1

(
N−s+1∑

i1=1

. . .

N∑

is=is−1+1︸ ︷︷ ︸
s sums

∞∑

j1=1

. . .

∞∑

js=1︸ ︷︷ ︸
s sums;j1+...+js>p

C2
i1...isj1...js

)
, (29)

both consisting of the eliminated PDD coefficients as a result of truncations. In Eq. (28), the first term of the PDD error
is due to the truncations of polynomial expansion orders involving main and cooperative effects of at mostS variables,
whereas the second term of the PDD error is contributed by ignoring the cooperative effects of larger thanS variables.
In contrast, the PCE error in Eq. (29) derives from the truncations of polynomial expansion orders involving all main
and cooperative effects. By selecting1 ≤ S ≤ N , 1 ≤ m < ∞, and1 ≤ p < ∞, the errors can be determined for
any PDD and PCE approximations, provided that all coefficients required by Eqs. (28) and (29) can be calculated.

For a general REP, comparing the PDD and PCE errors theoretically based on Eqs. (28) and (29) is not sim-
ple, because it depends on which expansion coefficients decay and how they decay with respect to the truncation
parametersS, m, andp. However, for a class of problems where the cooperative effects ofS input variables on an
eigenvalue get progressively weaker asS → N , then the PDD and PCE errors for identical expansion orders can be
weighed against each other. For this special case,m = p, assume thatCi1...isj1...js = 0, wheres = S + 1, . . . , N ,
1 ≤ i1 < . . . < is ≤ N , j1, . . . , js = 1, . . . ,∞, for both the PDD and PCE approximations. Then, the second term
on the right side of Eq. (28) vanishes, resulting in the PDD error

eS,m =
S∑

s=1

(
N−s+1∑

i1=1

. . .

N∑

is=is−1+1︸ ︷︷ ︸
s sums

∞∑

j1=m+1

. . .

∞∑

js=m+1︸ ︷︷ ︸
s sums

C2
i1...isj1...js

)

=
S∑

s=1

(
N−s+1∑

i1=1

. . .

N∑

is=is−1+1︸ ︷︷ ︸
s sums

∞∑

j1=1

. . .

∞∑

js=1︸ ︷︷ ︸
s sums

C2
i1...isj1...js

)

−
S∑

s=1

(
N−s+1∑

i1=1

. . .

N∑

is=is−1+1︸ ︷︷ ︸
s sums

m∑

j1=1

. . .

m∑

js=1︸ ︷︷ ︸
s sums

C2
i1...isj1...js

)
,

(30)

while the PCE error can be split into
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em =
S∑

s=1

(
N−s+1∑

i1=1

. . .

N∑

is=is−1+1︸ ︷︷ ︸
s sums

∞∑

j1=1

. . .

∞∑

js=1︸ ︷︷ ︸
s sums

C2
i1...isj1...js

)

−
S∑

s=1

(
N−s+1∑

i1=1

. . .

N∑

is=is−1+1︸ ︷︷ ︸
s sums

m−s+1∑

j1=1

. . .

m−s+1∑

js=1︸ ︷︷ ︸
s sums;j1+...+js≤m

C2
i1...isj1...js

)

≥
S∑

s=1

(
N−s+1∑

i1=1

. . .

N∑

is=is−1+1︸ ︷︷ ︸
s sums

∞∑

j1=1

. . .

∞∑

js=1︸ ︷︷ ︸
s sums

C2
i1...isj1...js

)

−
S∑

s=1

(
N−s+1∑

i1=1

. . .

N∑

is=is−1+1︸ ︷︷ ︸
s sums

m∑

j1=1

. . .

m∑

js=1︸ ︷︷ ︸
s sums

C2
i1...isj1...js

)
= eS,m,

(31)

demonstrating larger error from the PCE approximation than from the PDD approximation. In the limit, whenS = N ,
similar derivations showem ≥ eN,m, regardless of the values of the expansions coefficients. In other words, theN -
variate,mth-order PDD approximation cannot be worse than themth-order PCE approximation. WhenS < N and
Ci1...isj1...js , s = S + 1, . . . , N , 1 ≤ i1 < . . . < is ≤ N , j1, . . . , js = 1, . . . ,∞, are not negligible and arbitrary,
numerical convergence analysis is required for comparing these two errors.

Remark 6. The stochastic and error analyses aimed at higher-order moments or probability distribution ofλ can
be envisioned, but no closed-form solutions or simple expressions are possible. However, ifλ is sufficiently smooth
with respect toX—a condition fulfilled by many realistic eigenvalue problems—then Monte Carlo simulation of both
the PDD and PCE approximations can be efficiently conducted for also estimating the tail probabilistic characteristics
of eigensolutions.

5. CALCULATION OF EXPANSION COEFFICIENTS

The determination of the expansion coefficients required by the PDD or PCE approximation involves variousN -
dimensional integrals overRN and is computationally prohibitive to evaluate whenN is arbitrarily large. Instead, a
dimension-reduction integration, presented as follows, was applied to estimate the coefficients efficiently [14].

5.1 Dimension-Reduction Integration

Letc = {c1, . . . , cN}T be a reference point of inputX andλ(c1, . . . , ci1−1, Xi1 , ci1+1, . . . , ciR−k−1, XiR−k
, ciR−k+1,

. . . , cN ) represent an(R − k)th dimensional component function ofλ(X), where1 ≤ R < N is an integer,
k = 0, . . . , R, and1 ≤ i1 < . . . < iR−k ≤ N . For example, whenR = 1, the zero-dimensional component function,
which is a constant, isλ(c) and the one-dimensional component functions areλ(X1, c2, . . . , cN ), λ(c1, X2, . . . , cN ),
. . ., λ(c1, c2, . . . , XN ). Using Xu and Rahman’s multivariate function theorem [15], it can be shown that theR-variate
approximation ofλ(X), defined by

λ̂R(X) :=
R∑

k=0

(−1)k

(
N −R + k − 1

k

)

×
N−R+k+1∑

i1=1

...

N∑

iR−k=iR−k−1+1︸ ︷︷ ︸
(R−k) sums

y(c1, ..., ci1−1, Xi1 , ci1+1, ..., ciR−k−1, XiR−k
, ciR−k+1, ..., cN ), (32)
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consists of all terms of the Taylor series ofλ(X) that have less than or equal toR variables. The expanded form of
Eq. (32), when compared with the Taylor expansion ofλ(X), indicates that the residual error inλ̂R(X) includes terms
of dimensionsR +1 and higher. All higher-orderR- and lower-variate terms ofλ(X) are included in Eq. (32), which
should therefore generally provide a higher-order approximation of a multivariate function than equations derived
from first- or second-order Taylor expansions. Therefore, forR < N , anN -dimensional integral can be efficiently
estimated by at mostR-dimensional integrations, if the contributions from terms of dimensionsR + 1 and higher are
negligible.

Substitutingλ(x) in Eqs. (6) and (7) bŷλR(x), the coefficients can be estimated from

λ0
∼=

R∑

k=0

(−1)k

(
N −R + k − 1

k

) N−R+k+1∑

i1=1

. . .

N∑

iR−k=iR−k−1+1︸ ︷︷ ︸
(R−k) sums

× ∫
RR−k λ(c1, . . . , ci1−1, xi1 , ci1+1, . . . , ciR−k−1, xiR−k

, ciR−k+1, . . . , cN )
R−k∏
q=1

fkq
(xkq

)dxkq

(33)

and

Ci1...isj1...js
∼=

R∑

k=0

(−1)k

(
N −R + k − 1

k

) N−R+k+1∑

i1=1

. . .

N∑

iR−k=iR−k−1+1︸ ︷︷ ︸
(R−k) sums

× ∫
RR−k λ(c1, . . . , ci1−1, xi1 , ci1+1, . . . , ciR−k−1, xiR−k

, ciR−k+1, . . . , cN )

×
s∏

p=1

ψipjp(xip)
R−k∏
q=1

fkq (xkq )dxkq ,

(34)

which require evaluating at mostR-dimensional integrals. Equations (33) and (34), which facilitate calculation of
coefficients approaching their exact values asR → N , are more efficient than performing oneN -dimensional integra-
tion, as in Eqs. (6) and (7), particularly whenR ¿ N . Hence, the computational effort in calculating the coefficients
is significantly lowered using the dimension-reduction integration. WhenR = 1, 2, or 3, Eqs. (33) and (34) involve
one-, at most two-, and at most three-dimensional integrations, respectively. Nonetheless, numerical integration is still
required for a general functionλ. The integration points and associated weights depend on the probability distribution
of Xi. They are readily available as Gauss-Hermite, Gauss-Legendre, and Gauss-Jacobi quadrature rules when a ran-
dom variable follows Gaussian, uniform, andβ distributions, respectively [8]. In performing the dimension-reduction
integration, the value ofR should be selected in such a way that it is either equal to or greater than the value ofs.
Then the expansion coefficientCi1...isj1...js will have a nontrivial solution [14].

5.2 Computational Efforts

TheS-variate,mth-order PDD approximation requires evaluations ofQS,m =
∑k=S

k=0

(
N

S−k

)
mS−k number of PDD

coefficients:λ0 andCi1...isj1...js , s = 1, ..., S, 1 ≤ i1 < ... < is ≤ N , j1, ..., js = 1, ..., m. If these coefficients are
estimated by dimension-reduction integration withR = S < N and therefore involve, at most,S-dimensional tensor
product of ann-point univariate quadrature rule depending onm in Eqs. (33) and (34), then the following determin-
istic responses (eigenvalue or function evaluations) are required:λ(c), λ(c1, ..., ci1−1, x

(k1)
i1

, ci1+1, ..., cis−1, x
(ks)
is

,
cis+1, ...,cN) for k1, ...,ks =1,...,n(m), where the superscripts on variables indicate corresponding integration points.
Therefore, the total cost for theS-variate,mth-order PDD approximation entails a maximum of

∑k=S
k=0

(
N

S−k

)
nS−k(m)

eigenvalue evaluations. If the integration points include a common point in each coordinate—a special case of symmet-
ric input probability density functions and odd values ofn (see examples 2–5)—the number of eigenvalue evaluations
reduces to

∑k=S
k=0

(
N

S−k

)
[n(m) − 1]S−k. In other words, the computational complexity of the PDD approximation is

Sth-order polynomial with respect to the number of random variables or integration points.
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In contrast, thepth-order PCE approximation requires evaluations ofQp =
∑N

k=0

(
N

N−k

)(
p

N−k

)
number of PDD

coefficientsλ0 andCi1...isj1...js
, s = 1, . . . , N , 1 ≤ i1 < . . . < is ≤ N , j1 + . . . + js ≤ p, which can again

be estimated by dimension-reduction integration by selectingR = p < N , and therefore involving, at most,p-
dimensional tensor product of ann-point univariate quadrature rule, wheren depends onp. As a result, the total
cost for thepth-order PCE approximation consists of a maximum of

∑k=p
k=0

(
N

p−k

)
np−k(p) eigenvalue evaluations in

general, or
∑k=p

k=0

(
N

p−k

)
[n(p)−1]p−k eigenvalue evaluations for a particular case discussed earlier. In either case, the

computational complexity of the PCE approximation ispth-order polynomial with respect to the number of random
variables or integration points.

Figures 1a and 1b present plots of the ratio of numbers of eigenvalue evaluations by the PCE and PDD approxi-
mations,

∑k=p
k=0

(
N

p−k

)
np−k(p)/

∑k=S
k=0

(
N

S−k

)
nS−k(m), as a function of the dimensionN for two cases of identical

expansion ordersm = p = 3 andm = p = 5, respectively, wheren = m + 1 = p + 1. The plots in each figure
were developed separately forS = 1 (univariate),S = 2 (bivariate), andS = 3 (trivariate) PDD approximations.
From the results of Figs. 1a and 1b, regardless of the plot, the ratios are mostly larger than one, indicating greater
computational need by the PCE approximation than by the PDD approximation. WhenS ¿ N andm = p À 1, the
PCE approximation is expected to be significantly more expensive than the PDD approximation.

Remark 7. WhenS = N in PDD or p ≥ N in PCE, Eqs. (32)–(34) are irrelevant, eliminating the possibility
of any dimension reduction. However, these special cases, evoking merely academic interest, are rarely observed for
practical applications with moderate to large numbers of random variables. Nonetheless, the expansion coefficients
for these cases can be calculated using the fullN -dimensional tensor product of the univariate quadrature formu-
lae, consequently demandingnN eigenvalue evaluations, wheren depends onm or p, for both the PDD and PCE
approximations.

6. NUMERICAL EXAMPLES

Five numerical examples involving two well-known mathematical functions and three eigenvalue problems are pre-
sented to illustrate the performance of the PDD and PCE approximations for calculating the statistical moments of
output functions or eigenvalues, including tail probability distributions of natural frequencies. In examples 1 and 2,
the classical Legendre polynomials and associated Gauss-Legendre quadrature formulas were employed to evaluate
the expansion coefficients. However, in examples 3–5, all original random variables were transformed into standard
Gaussian random variables, employing Hermite orthonormal polynomials as bases and the Gauss-Hermite quadra-

10 100
10

-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

N

R
a
ti

o

 

 

10 100
10

0

10
2

10
4

10
6

10
8

10
10

N

R
a
ti

o

 

 

Univariate

Bivariate

Trivariate

Univariate

Bivariate

Trivariate

(b)

m = p = 5

(a)

m = p = 3

FIG. 1: Ratio of eigenvalue evaluations by the PCE and PDD approximations for two identical polynomial expansion
orders: (a)m = p = 3 and (b)m = p = 5. A ratio greater than one indicates higher computational cost of the PCE
approximation than the PDD approximation.
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ture rule for calculating the expansion coefficients. The expansion coefficients in example 1 were calculated by full
N -dimensional integrations. However, in examples 2–5, the coefficients were estimated by dimension-reduction inte-
gration whenS = p < N , so that anS-variate,mth-order PDD orpth-order PCE approximation requires at mostS-
or p-dimensional numerical integration. For the third and fourth examples, the eigenvalues were calculated by a hybrid
double-shifted LR-QR algorithm [16]. A Lanczos algorithm embedded in the commercial code ABAQUS (Version
6.9) [17] was employed for the fifth example. In examples 3 and 4, the sample sizes for crude Monte Carlo simulation
and the embedded Monte Carlo simulation of the PDD and PCE methods are both106. The respective sample sizes
are50, 000 and106 in example 5. The expansion ordersm andp vary depending on the example, but in all cases the
number of integration pointsn = m + 1 or n = p + 1.

6.1 Example 1: Polynomial Function

Consider the polynomial function

λ(X) =
1

2N

N∏

i=1

(3X2
i + 1) (35)

studied by Sudret [18], whereXi, i = 1, . . . , N are independent and identical random variables, each following
standard uniform distribution over [0,1]. From elementary calculations, the exact meanE [λ(X)] = 1 and the exact
varianceσ2 = (6/5)N − 1.

The second-moment analysis in this example was conducted for two problem sizes (dimensions): (i)N = 3 and
(ii) N = 5. ForN = 3, Eq. (35) represents a sixth-order, trivariate, polynomial function, which is a product of three
quadratic polynomials in each variable. Therefore, a trivariate, second-order PDD approximation (S = 3, m = 2)
with second-order Legendre polynomials (interval =[−1,+1]) in Eq. (15) should exactly reproduceλ. SinceX1,
X2, andX3 are independent, the highest order of integrands for calculating the expansion coefficients is 4. A three-
point Gauss-Legendre quadrature should then provide the exact values of all coefficients. Therefore, if the expansion
coefficients are calculated usingm ≥ 2 in Eq. (15), and Eqs. (6) and (7) are numerically integrated withn ≥ m + 1,
then the only source of error in a truncated PDD is the selection ofS.

For N = 3, Table 2 presents the relative errors, defined as the ratio of the absolute difference between the exact
and approximate variances ofλ(X) to the exact variance ofλ(X), from the univariate (S = 1), bivariate (S = 2), and
trivariate (S = 3) PDD approximations. They were calculated form varying from one to six, involving eight to 343

TABLE 2: Relative errors in calculating the variance of the polynomial function forN = 3 by the PDD
and PCE approximations (example 1)

PDD(a)

m or p S = 1 S = 2 S = 3 PCE(a) No. of function
evaluations(b)

1 2.273× 10−1 8.246× 10−2 7.341× 10−2 2.273× 10−1 8
2 1.758× 10−1 1.099× 10−2 0 3.095× 10−2 27
3 1.758× 10−1 1.099× 10−2 −(c) 2.578× 10−3 64
4 1.758× 10−1 1.099× 10−2 −(c) 1.234× 10−4 125
5 1.758× 10−1 1.099× 10−2 −(c) 2.683× 10−6 216
6 1.758× 10−1 1.099× 10−2 −(c) 0 343

(a)The variances from trivariate PDD form = 2 and PCE forp = 6 coincide with the exact solution:
σ2 = (6/5)N − 1, whereN = 3.

(b)The number of function evaluations by all three PDD and PCE methods employing a fullN -
dimensional numerical integration andn-point univariate Gauss-Legendre rule isnN , whereN = 3,
n = m + 1, and1 ≤ m ≤ 6.

(c)Not required.
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function evaluations, respectively, when estimating the expansion coefficients by fullN -dimensional integrations. The
errors from all three PDD approximations drop asm increases, but they level off quickly at their respective limits for
the univariate and bivariate PDD approximations. Whenm = 2, the error due to the trivariate PDD approximation is
zero as the PDD approximation coincides withλ(X) in Eq. (35), as expected. For comparison, the same problem was
solved using the PCE approximation withp varying from 1 to 6 and correspondingly requiring eight to 343 function
evaluations. The relative errors by the PCE approximation enumerated in Table 2 also converge to zero, but at an
expansion orderp = 6, which is three times larger than the order of univariate polynomials required by the PDD
method. At exactness, the PDD method is more efficient than the PCE method by a factor of343/27 ∼= 13.

The function in Eq. (35) was also studied for a slightly larger dimension:N = 5. The associated errors of the
pentavariate (S = 5) PDD approximation and PCE approximation with several polynomial expansion orders are
displayed in Table 3. Again, both the PDD and PCE methods produce zero errors, however, at the cost of second- and
10th-order expansions, respectively. As a result, the factor of efficiency of the PDD method jumps to161051/243 ∼=
663, even for such a small increase in the dimension. The higher efficiency of the PDD approximation for both problem
sizes is attributed to its dimensional hierarchy, favorably exploiting the structure ofλ.

6.2 Example 2: Non-Polynomial Function

The second example involves second-moment analysis of the Ishigami and Homma function [19]

λ(X) = sin X1 + a sin2 X2 + bX4
3 sin X1, (36)

whereXi, i = 1, 2, 3, are three independent and identically distributed uniform random variables on[−π, +π],
anda andb are real-valued deterministic parameters. This function also permits the exact solution of the variance:
σ2 = a2/8+bπ4/5+b2π8/18+1/2. Note thatλ is a nonpolynomial function; therefore, neither the PDD nor the PCE
approximation will provide the exact solution, but their respective errors can be reduced to an arbitrarily low value

TABLE 3: Relative errors in calculating the variance of the polynomial
function forN = 5 by the PDD and PCE approximations (example 1)

m or p
Pentavariate PDD

(S = 5)(a)
PCE(a) No. of function

evaluations(b)

1 8.528× 10−1 3.700× 10−1 32
2 0 9.189× 10−2 243
3 −(c) 1.610× 10−2 1024
4 −(c) 2.042× 10−3 3125
5 −(c) 1.882× 10−4 7776
6 −(c) 1.240× 10−5 16,807
7 −(c) 5.590× 10−7 32,768
8 −(c) 1.558× 10−8 59,049
9 −(c) 2.050× 10−10 100,000
10 −(c) 0 161,051

(a)The variances from trivariate PDD form = 2 and PCE forp = 10
coincide with the exact solution:σ2 = (6/5)N − 1, whereN = 5.

(b)The number of function evaluations by the PDD and PCE methods em-
ploying a full N -dimensional numerical integration andn-point uni-
variate Gauss-Legendre rule isnN , whereN = 5, n = m + 1, and
1 ≤ m ≤ 10.

(c)Not required.
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by increasing the polynomial expansion orders successively. In this example, the following deterministic parameters
were selected:a = 7, b = 0.1.

Since the right hand side of Eq. (36) includes the cooperative effects of at most two variables, the bivariate
PDD approximation is adequate for convergence analysis. In this example, the PDD expansion coefficients of the
bivariate approximation were estimated using Legendre polynomials (interval =[−1,+1]) of a specified orderm and
dimension-reduction integration (Gauss-Legendre quadrature rule) withR = S = 2, andn = m + 1. Several even
orders,m = 2, 4, 6, 8, 10, 12, 14, 16, 18, were chosen in such a way thatn remained an odd integer. In so doing, the
corresponding number of function evaluations by the PDD method for a givenm is 3m2 + 3m + 1. For the PCE
approximation, the PDD expansion coefficients for a specified order2 ≤ p ≤ 18 andn = p + 1 were calculated by
dimension-reduction integration whenp < 3 involving

∑k=p
k=0

(
3

p−k

)
(n − 1)p−k function evaluations for evenp and

full three-dimensional integration whenp ≥ 3 involving n3 function evaluations.
Figure 2 shows how the relative errors in the variances ofλ(X) from the bivariate PDD and PCE approxima-

tions vary with respect to the number (L) of function evaluations. The data points of these plots were generated by
calculating the approximate variances for the selected values ofm or p and counting the corresponding number of
functions evaluations. Ignoring the first three data points in Fig. 2, the errors of the PDD and PCE solutions decay
proportionally toL−17.5 andL−12.1, respectively. Clearly, their convergence rates—the absolute values of the slopes
of the trend lines in the log-log plots—are much higher than unity. The sampling-based methods, crude Monte Carlo,
and quasi-Monte Carlo, which have theoretical convergence rates in the range of 0.5–1 are no match for the PDD
and PCE methods, which are endowed with significantly higher convergence rates, mostly due to the smoothness of
λ. Furthermore, the PDD approximation converges markedly faster than the PCE approximation. Although a similar
observation was made in example 1, the validity of this trend depends on the function examined.

6.3 Example 3: Two-Degree-of-Freedom, Undamped, Spring-Mass System

Consider a two-degree-of-freedom, undamped, spring-mass system, shown in Fig. 3, with random or deterministic
mass and random stiffness matrices

M =
[

M1(X) 0
0 M2(X)

]
and K(X) =

[
K1(X) + K3(X) −K3(X)

−K3(X) K2(X) + K3(X)

]
, (37)
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FIG. 2: Relative errors in calculating the variance of the Ishigami and Homma [19] function by the PDD and PCE
approximations (example 2). The parenthetical values denote slopes of the trend lines
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m1 m2 

K1 K2 k3 

FIG. 3: Two-degree-of-freedom, undamped, spring-mass system

respectively, whereK1(X) = 1000X1 N/m,K2(X) = 1100X2 N/m,K3(X) = 100X3 N/m,M1(X) = X4 kg, and
M2(X) = 1.5X5 kg. The inputX = {X1, X2, X3, X4, X5}T ∈ R5 is an independent lognormal random vector with
the mean vectorµX = 1 ∈ R5 and covariance matrixΣX = diag(v2

1 , v2
2 , v2

3 , v2
4 , v2

5) ∈ R5×5, wherevi represents
the coefficient of variation ofXi. Two cases of the problem size based on the coefficients of variations were examined:
(i) N = 2 with v1 = v2 = 0.25, v3 = v4 = v5 = 0; and (ii) N = 5 with v1 = v2 = 0.25, v3 = v4 = v5 = 0.125.
The first case comprises uncertain stiffness properties of the first two springs only, whereas the second case includes
uncertainties in all mass and stiffness properties. In both cases, there exist two real-valued random eigenvalues,λ1(X)
andλ2(X), which are sorted into an ascending order.

Since the eigenvalues are in general non-polynomial functions of input, a convergence study with respect to the
truncation parameters of PDD and PCE is required to calculate the probabilistic characteristics of eigensolutions ac-
curately. Figures 4a and 4b depict how the normalized errors of the second-moment properties,eS,m/E [λ(X)− λ0]
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FIG. 4: Errors in calculating the variances of eigenvalues of the two-degree-of-freedom oscillator by the PDD and
PCE approximations (example 3): (a) first eigenvalue (N = 2), (b) second eigenvalue (N = 2), (c) first eigenvalue
(N = 5), and (d) second eigenvalue (N = 5)
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andep/E [λ(X)− λ0]
2, of the the first and second eigenvalues, respectively, decay with respect tom or p for N = 2.

The normalized errors were calculated using Eqs. (20), (28), and (29) and employing the value of 80, a sufficiently
large integer, for replacing the infinite limits of the summations. For any identical expansion orders (m = p), the
bivariate PDD approximation (S = N = 2) yields smaller errors than the PCE approximation, consistent with the
theoretical finding described in Section 4.3. As soon asm or p becomes>3, the difference in the errors by the PDD
and PCE approximations grows by more than an order of magnitude.

For a case of larger dimension (N = 5), calculating the normalized errors in the same way as described above
requires an enormous number of PDD coefficients. In addition, the determination of these coefficients is computa-
tionally taxing, if not prohibitive, considering infinite limits in Eqs. (20), (28), and (29). To circumvent this problem,
another relative error, defined as the ratio of the absolute difference between the numerically integrated and approx-
imate variances ofλ(X) to the numerically integrated variance ofλ(X), employing the pentavariate (S = 5) PDD
[Eq. (19)] or PCE [Eq. (25)] approximation, was evaluated. The variance estimated by numerical integration involved
a full five-dimensional tensor product of a 25-point univariate quadrature rule, where the number of integration points
was ascertained adaptively. The plots of the relative error versusm or p in Fig. 4c and 4d for first and second eigen-
values, respectively, display a trend similar to that observed whenN = 2, verifying once again that the errors from
the PDD approximation are always smaller than those from the PCE approximation. In other words, the PDD method
is expected to predict more accurate second-moment properties of random eigensolutions than the PCE method for, at
least, the simple dynamic systems examined in this work.

6.4 Example 4: Free-Standing Beam

The fourth example involves free vibration of a tall, free-standing beam shown in Fig. 5a [20]. Figure 5b represents
a lumped-parameter model of the beam, which comprises seven rigid, massless links hinged together. The mass of
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FIG. 5: Free-standing beam: (a) continuous representation and (b) seven-degree-of-freedom discrete model
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the beam is represented by seven random point masses located at the center of each link. No damping was assumed,
except at the bottom joint, where the random, rotational, viscous damping coefficient due to the foundation pad
is C. The random rotational stiffness at the bottom of the beam, controlled by the lower half of the bottom link
and the flexibility of the foundation pad, isK. The independent random variablesM , C, andK are lognormally
distributed with respective means of3000 kg, 2 × 107 N-m-s/rad, and2 × 109 N-m/rad and have a20% coefficient
of variation. The flexural rigidity of the beam is represented by six rotational springs between links with stiffnesses
k(x) = k(xi), i = 1, . . . , 6, wherexi = il, i = 1, . . . , 6, and l = 6 m. The spatially varying spring stiffness
k(x) = cα exp[α(x)] is an independent, homogeneous, lognormal random field with meanµk = 2 × 109 N-m/rad
and coefficient of variationvk = 0.2, wherecα = µk/

√
1 + v2

k andα(x) is a zero-mean, homogeneous, Gaussian
random field with varianceσ2

α = ln(1+v2
k) and covariance functionΓα(u) := E[α(x)α(x+u)] = σ2

α exp(− |u| /l).
A discretization ofα(x) yields the zero-mean Gaussian random vectorα = {α1, . . . , α6}T := {α(l), . . . , α(6l)}T ∈
R6 with covariance matrixΣα := [E(αuαv)], u, v = 1, . . . , 6, whereE(αuαv) = E[α(ul)α(vl)] = Γα[(u − v)l],
providing complete statistical characterization of spring stiffnesseski = cα exp(αi). Therefore, the input random
vectorX = {M, C,K, α1, . . . , α6}T ∈ R9 includes nine random variables in this example. Further details of the
dynamic system, including mass, damping, and stiffness matrices, are available in the authors’ prior work [20].

Due to nonproportional damping, the discrete beam model yields 14 complex eigenvaluesλi(X) = λR,i(X) ±√−1λI,i(X), i = 1, . . . , 7 in conjugate pairs, where the real partsλR,i(X) and imaginary partsλI,i(X) are both
stochastic. Using the PDD method, Fig. 6 presents the marginal probability distributionsFI,i(λI,i) and the com-
plementary probabilities1 − FI,i(λI,i), i = 1, . . . , 7 of all seven imaginary parts, which also represent the natural
frequencies of the beam. The distributionsFI,i(λI,i) and1 − FI,i(λI,i) at low probabilities describe tail character-
istics of λi at the left and right ends, respectively. Each subfigure of Fig. 6 contains four plots: one obtained from
crude Monte Carlo simulation and the remaining three generated from the univariate (S = 1), bivariate (S = 2), and
trivariate (S = 3) PDD approximations, employingm = 3, n = 4. In contrast, Fig. 7 displays the same probability
distributions of all seven imaginary parts of the eigenvalues calculated using the PCE method. Each subfigure of Fig. 7
also contains four plots: one obtained from crude Monte Carlo simulation and the remaining three derived from the
first-order (p = 1), second-order (p = 2), and third-order (p = 3) PCE approximations, employingn = p + 1.
From Fig. 6 or 7, the tail probability distributions at both ends converge rapidly with respect toS or p, regard-
less of the oscillatory mode. Therefore, both the PDD and PCE methods can be applied to solve this REP accura-
tely.

To determine the computational efficiency of the PDD and PCE methods, Figs. 8a and 8b portray enlarged views
of the tail probability distributions of the first and seventh natural frequencies, respectively, of the beam calculated
by all three variants of the PDD or PCE methods, including crude Monte Carlo simulation. Compared with crude
Monte Carlo simulation, the bivariate, third-order PDD approximation, trivariate, third-order PDD approximation,
and third-order PCE approximation provide excellent estimates of the tail distributions. The results further indicate
that the bivariate, third-order PDD and third-order PCE approximations, both in consilience with the Monte Carlo
solution, demand 613 and 5989 eigenvalue evaluations. Therefore, the PDD approximation is about5989/613 ∼= 10
times more economical than the PCE approximation.

6.5 Example 5: Piezoelectric Transducer

The final example entails eigenspectrum analysis of a piezoelectric transducer commonly used for converting electri-
cal pulses to mechanical vibrations, and vice versa. Figure 9a shows a 25 mm diam cylinder made of a piezoelectric
ceramic PZT4 (lead zirconate titanate) with brass end caps. The thicknesses of the transducer and end caps are 1.5
and 3 mm, respectively. The cylinder, 25 mm long, was electroded on both the inner and outer surfaces. The random
variables include: (i) ten nonzero constants defining elasticity, piezoelectric stress coefficients, and dielectric proper-
ties of PZT4; (ii) elastic modulus and Poisson’s ratio of brass; and (iii) mass densities of brass and PZT4 [7]. The
statistical properties of all 14 random variables are listed in Table 4. The random variables are independent and follow
lognormal distributions. Because of axisymmetry, a 20-noded finite-element model of a slice of the transducer, shown
in Fig. 9b, was created. The model was considered to be open circuited. All natural frequencies calculated correspond
to antiresonant frequencies.
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FIG. 6: Tail probability distributions of the imaginary parts of eigenvalues of the free-standing beam by the PDD and
crude Monte Carlo methods (example 4)
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FIG. 7: Tail probability distributions of the imaginary parts of eigenvalues of the free-standing beam by the PCE and
crude Monte Carlo methods (example 4)
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FIG. 9: Piezoelectric transducer: (a) geometry and (b) finite-element discrete model

Figure 10 presents the marginal probability distributions of the first six natural frequencies,Ωi, i = 1, . . . , 6, of
the transducer by the bivariate (S = 2), third-order (m = 3) PDD and third-order (p = 3) PCE methods, respectively.
These probabilistic characteristics, obtained by settingn = m+1 = p+1 = 4, are judged to be converged responses,
as their changes due to further increases inm andp are negligibly small. Therefore, the PDD and PCE methods
require 1513 and 24,809 ABAQUS-aided FEA, respectively—a significant mismatch in computational efforts—in
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TABLE 4: Statistical properties of the random input for the piezoelectric
cylinder

Random variable Property(a) Mean
Coefficient of

variation
X1, GPa D1111 115.4 0.15
X2, GPa D1122, D1133 74.28 0.15
X3, GPa D2222, D3333 139 0.15
X4, GPa D2233 77.84 0.15
X5, GPa D1212, D2323, D1313 25.64 0.15
X6, Coulomb/m2 e111 15.08 0.1
X7, Coulomb/m2 e122, e133 –5.207 0.1
X8, Coulomb/m2 e212, e313 12.71 0.1
X9, nF/m D11 5.872 0.1
X10, nF/m D22, D33 6.752 0.1
X11, GPa Eb 104 0.15
X12 νb 0.37 0.05
X13, g/m3 ρb 8500 0.15
X14, g/m3 ρc 7500 0.15

(a)Dijkl are elastic moduli of ceramic;eijk are piezoelectric stress coeffi-
cients of ceramic;Dij are dielectric constants of ceramic;Eb, νb, ρb are
elastic modulus, Poisson’s ratio, and mass density of brass;ρc is mass
density of ceramic.

generating all six probability distributions. Due to expensive FEA, crude Monte Carlo simulation was conducted
only up to 50,000 realizations, producing only rough estimates of the distributions. Given the low sample size, the
distributions from crude Monte Carlo simulation, also plotted in Fig. 10, are not expected to provide very accurate
tail characteristics. Nonetheless, the overall shapes of all six probability distributions generated by both expansion
methods match these Monte Carlo results quite well. However, a comparison of their computational efforts once again
finds the PDD method wringing computational savings more than the PCE method by an order of magnitude in solving
this practical eigenvalue problem.

7. CONCLUSIONS

Two stochastic expansion methods originating from PDD and PCE were investigated for solving REPs commonly
encountered in stochastic dynamic systems. Both methods comprise a broad range of orthonormal polynomial bases
consistent with the probability measure of the random input and an innovative dimension-reduction integration for
calculating the expansion coefficients. A new theorem, proven herein, demonstrates that the infinite series from PCE
can be reshuffled to derive the infinite series from PDD and vice versa. However, compared with PCE, which contains
terms arranged with respect to the order of polynomials, PDD is structured with respect to the degree of cooperativity
between a finite number of random variables. Therefore, significant differences exist regarding the accuracy, efficiency,
and convergence properties of their truncated series.

An alternative form of the PCE approximation expressed in terms of the PDD expansion coefficients was devel-
oped. As a result, the probabilistic eigensolutions from both the PDD and PCE methods can be obtained from the
same PDD coefficients, leading to closed-form expressions of the second-moment properties of eigenvalues and re-
spective errors. For a class of REPs, where the cooperative effects of input variables on an eigenvalue get progressively
weaker or vanish altogether, the error perpetrated by the PCE approximation is larger than that committed by the PDD
approximation, when the expansions orders are equal. Given the same expansion orders, the PDD approximation in-
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FIG. 10: Marginal probability distributions of the first six natural frequencies of the piezoelectric transducer by the
PDD, PCE, and crude Monte Carlo methods (example 5)

cluding main and cooperative effects of all input variables cannot be worse than the PCE approximation, although the
inclusion of all cooperative effects undermines the salient features of PDD.

The PDD and PCE methods were employed to calculate the second-moment properties and tail probability dis-
tributions in five numerical problems, where the output functions are either mathematical functions involving smooth
polynomials or nonpolynomials or real- or complex-valued eigensolutions from dynamic systems, some requiring
FEA. The second-moment errors from the mathematical functions indicate rapid convergence of the PDD and PCE
solutions, easily outperforming the sampling-based methods. Moreover, for the functions examined, the convergence
rates of the PDD method are noticeably higher than those of the PCE approximation. The same trend was observed
when calculating the variance of a two-degree-of-freedom linear oscillator regardless of the number of random vari-
ables. A comparison of the numbers of eigenvalue evaluations (numbers of FEA), required for estimating with the
same accuracy the frequency distributions of a free-standing beam and a piezoelectric transducer, finds the PDD ap-
proximation to be more economical than the PCE approximation by an order of magnitude or more. The computational
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efficiency of the PDD method is attributed to its dimensional hierarchy, favorably exploiting the hidden dimensional
structures of stochastic responses, including random eigensolutions, examined in this work.
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