Issue 1

Numerical Investigation of Icing Effects on Vortex Shedding in a Cascade of Stator Blades
S.M. Pouryoussefi & Y. Zhang
Page 1

Vacuum Condensation in an Inclined Flat Tube: Heat Transfer and Pressure Drop
H. Gu, H. Wang, Q. Chen, & J. Yao
Page 15

Numerical Investigation of Nonuniform Spray Effect on the Cooling Performance of a Large-Scale Cooling Tower
Y. Zhao, X. Chen, G. Long, & F. Sun
Page 31

Effects of Strain on Interfacial Thermal Boundary Resistance at Si/Ge Interface: Study of Nonequilibrium Molecular Dynamics
X. Zhang & Q. Wang
Page 45

Two-Dimensional Heat Transfer through Simple Composite Planar Solids: Effectiveness of the One-Dimensional Thermal Circuit Analysis
Y. Xin & D.S. Corti
Page 53

Interfacial Convective Heat Transfer for Randomly Generated Porous Media
E. Ucar, M. Mobedi, & A. Ahmadi
Page 77

Issue 2

Mixed Convection Flow of Al₂O₃–Water Nanofluid in a Two-Sided Lid-Driven Cavity with Wavy Walls
H. Karabay
Page 91

Numerical Investigation of Heat Transfer to Supercritical Water in a 2 × 2 Rod Bundle with Two Channels
I. Tahir, W. Siddique, I. Haq, K. Qureshi, & A.U.H. Khan
Page 103

Heat and Mass Transfer Boundary-Layer Flow over a Vertical Cone through Porous Media Filled with a Cu–Water and Ag–Water Nanofluid
P. Sudarsana Reddy, P. Sreedevi, A.J. Chamkha, & A.F. Al-Mudhaf
Page 119

Characteristics of Water Evaporation on a Nanopatterned Surface Fabricated by UV Nanoimprint Lithography
N. Unno, M. Asano, Y. Matsuda, S.-i. Satake, & J. Taniguchi
Page 145

Numerical Investigation of Natural Convection in an Enclosure with a Conducting Solid Body
B. Pekmen
Page 157

Pulsating Hybrid Nanofluids Double Slot Jets Impingement onto an Isothermal Wall
F. Selimefendigil
Page 173

Issue 3

Heat Transfer in Viscoplastic Boundary-Layer Flow from a Vertical Permeable Cone with Momentum and Thermal Wall Slip: Numerical Study
A. Subba Rao, V.R. Prasad, V. Naga Radhika, & O. Anwar Bég
Page 189
A Correlation between Two- and Three-Dimensional Numerical Investigation of Heat Transfer over a Backward-Facing Step Influenced by EHD Flow
K. Mostajiri, N. Amanifard, & H.M. Deylami

Design of Ventilation Systems and Fire Scenarios in Mines and Establishing the Safety Zone with Analysis of Escape Routes
S. Keçel

Experimental Investigation of Axial Heat Transfer and Entrance Effect in Randomly Packed Beds by a Naphthalene Sublimation Technique
J. Wang, Y. Liu, J. Yang, Y. Chen, & Q. Wang

Analysis of Transient Temperature Field Characteristics inside a Large-Scale Thermal Cycling Test Cavity for Spacecraft
G. Yang, L. Zhang, J. Wu, Y. Huang, & A. Cai

Variational Equation of Non-Fourier Heat Conduction
Z. Xiaomin, P. Song, Z. Long, Y. Zimin, L. Yuan, & Y. Bo

Issue 4

Heat Transfer Characteristic for a Large-Scale Double-Deck Floating Roof Oil Tank
J. Zhao, L. Wei, H. Dong, H. Ding, & X. Li

Forced Convection Greenhouse Groundnut Drying: An Experimental Study
R.K. Sahdev, M. Kumar, & A.K. Dhingra

Numerical Modeling of Heat and Mass Transfers under Solar Drying of Sewage Sludge
N. Ben Hassine, X. Chesneau, & A.H. Laatar

Performance Analysis of Double-Layer Microchannel Heat Sink with Various Microchannel Shapes
K. Kulkarni, A.A. Khan, & K.-Y. Kim

Dual-Phase-Lag Heat Conduction in an FG Hollow Sphere: Effect of Thermal Pulse Type and Location of a Heat Source
M. Bakhtiari, K. Daneshjou, & H. Parsania

Issue 5

Analytical Modeling of Needle Temperature in an Industrial Sewing Machine
N. Bilel & N. Mohamed

Multiobjective Optimization of a Slit Rib in a Rectangular Cooling Channel
H.-S. Jeong, J.-W. Seo, & K.-Y. Kim

A General Minimum Principle for Steady-State Conduction Heat Transfer Problems with Temperature-Dependent Thermal Conductivity Subjected to Linear Robin Boundary Conditions
R.M. Saldanha da Gama

Prediction of Nucleate Pool Boiling on Hydrophilic Surfaces by Considering the Dynamic Contact Angle Effect on Isolated Bubble
A. Mirza Gheitaghi, H. Saffari, S.S. Arshadi, & S.S. Tabatabaei

Experimental Study of a Water-Based Titanium Oxide Nanofluid in a Circular Pipe with Transition Flow and Conical Strip Inserts
M. Arulprikasajothi, K. Elangovan, U. Chandrasekhar, & S. Saresh

Buoyancy-Driven Cavity Flow of a Micropolar Fluid with Variably Heated Bottom Wall
N. Ali, M. Nazeer, T. Javed, & M.A. Siddiqui

Issue 6

Numerical Simulation of Cooling a 2D Square Block Considering Phase Transformation and Changes in Thermodynamic Properties
J.R. Lee & I.S. Park
Natural Convection in Transient MHD Dissipative Flow past a Suddenly Started Infinite Vertical Porous Plate: A Finite Difference Approach
N. Ahmed & M. Dutta

491

Numerical Study of a Solar Greenhouse Dryer with a Phase-Change Material as an Energy Storage Medium
O. Aumporn, B. Zegmaiti, X. Chesneau, & S. Janjai

509

Homotopy Study of Entropy Generation in Magnetized Micropolar Flow in a Vertical Parallel Plate Channel with Buoyancy Effect
S. Jangili & O. Anwar Bég

529

Investigation of Heat Flux Distribution in Large-Scale Pool Fires underneath the Fuel Surface Using a Fire Dynamic Simulator
S. He, Q. Li, H. Yang, H. Dai, & X. Chen

555

The Falkner-Skan Flow with Variable Viscosity and Nonlinear Rosseland Thermal Radiation
A. Pantokratoras & T. Fang

569

Issue 7

Determination of the Thermophysical Properties of a Zeolite Nanofluid
A.A. Sertkaya

583

Thermal Analysis of Rectangular Fins with Different Shapes of Lateral Perforations by Forced Convection
K.H. Dhanawade, V.K. Sunnapwar, & H.S. Dhanawade

597

Modeling Phase-Change Materials Heat Capacity Using Artificial Neural Networks
B. Delcroix, M. Kummert, & A. Daoud

617

Dispersed Phase Breakup in Boiling of Emulsion
A.M. Pavlenko

633

Hight-Speed LIF-OH Imaging of H2–Air Turbulent Premixed Flames Propagation in an Obstructed Chamber
A.A. Al-Harbi

643

Investigation of Performance of Different SGS Models in Three-Dimensional LES of Compressible Temporal Mixing Layer
S. Yekani Motlagh

659

Analysis of the Possibilities of Application of Numerical Methods in the Improvement of the Operating Efficiency of Low-Power Boilers
R. Urbaniak, J. Bartoszewicz, & W. Judt

675

Issue 8

Three-Dimensional Natural Convection and Entropy Generation in Tall Rectangular Enclosures Filled with Stratified Nanofluid/Air Fluids
M. Salari, A. Kasaeipoor, & E. Hasami Malekshah

685

Particle Swarm Optimization with Lévy Flights for Heat Source Estimation

703

Numerical Investigation of Natural-Convection Heat Transfer Characteristics of Al2O3–Water Nanofluid Flow through Porous Media Embedded in a Square Cavity
S.S. Vadri, K.A. Prakash, & A. Pattamatta

719

Entropy Generation in Blood Flow with Heat and Mass Transfer for the Ellis Fluid Model
M.M. Bhatti, M. Ali Abbas, & M.M. Rashidi

747
Nanoparticle Volume Fraction Optimization for Efficient Heat Transfer and Heat Flow Problems in a Nanofluid
S.S. Chaharborj & A. Moameni

On the Onset of Natural Convection in a Partially Cooled Cylinder
J. Núñez & A. Beltrán

ISSUE 9

Numerical Study of the Effect of Side-Wall Inclination Angles on Natural Convection in a 3D Trapezoidal Enclosure Filled with Two-Layer Nanofluid and Air
M. Salari, M. Hasani Malekshah, & E. Hasani Malekshah

Unsteady Conjugate Forced-Convection Heat Transfer from a Sphere for Small Values of the Conductivity Ratio
G. Juncu

Effect of Cooling Water Jet Inclination on Plate Cooling in a Run Out Table after Hot Rolling
J.H. Son & I.S. Park

Prediction of Self-Ignition Fire Propagation and Coal Loss in an Inclined Seam
Y. Wang, X. Li, & Z. Guo

Numerical Investigation of Melting of Paraffin Wax Dispersed with CuO Nanoparticles inside a Square Enclosure
M. Arici, E. Tütüncü, & A. Campo

Experimental Study of Adiabatic Cooling Effectiveness on an Effusion Cooled Test Plate with Machined Ring Geometries
J. Felix, R. Rajendran, G.N. Kumar, & Y. Giridhara Babu

ISSUE 10

Emissivity Model of Aluminum 6063 with an Oxide Film at a Wavelength of 1.5 µm in the Temperature Range of 800–910 K
W. Xing, D. Shi, Z. Zhu, & J. Sun

Experimental Study of Organic Rankine Cycle System Using Scroll Expander and Diaphragm Pump at Different Condensing Temperatures
H. Xi, H.-H. Zhang, & Y.-L. He

Semiepimirical Dimensionless Correlations of a Dynamic Frosting Process under Practical Conditions for an Air Source Heat Pump
D. Wang, Y. Sun, W. Wang, Q. Guo, & J. Liu

Confined Impinging Liquid Jet Characteristics of Vapor Chamber Embedded with Heat Sinks
P. Naphon & S. Wiriyasart

Numerical Investigation of Mixed Convection of SiO₂–Water Nanofluids within an Inclined Double Lids-Driven Cavity
J. Amani, D. Toghraie, A. Karimipour, A. Niroumand, & M.R. Faridzadeh

Experimental Investigation of Mixed Convection and Surface Radiation Heat Transfer from Protruding Discrete Heat Sources Mounted on a Vertical Channel
T.K. Hotta, P. Sri Harsha, & S.P. Venkateshan

ISSUE 11

SPECIAL ISSUE: HEAT TRANSFER ADVANCES FOR ENERGY CONSERVATION AND POLLUTION CONTROL

GUEST EDITORS: TZU-CHEN HUNG, QIU-WANG WANG, YITUNG CHEN, & ZHIXIONG GUO
Preface: Heat Transfer Advances for Energy Conservation and Pollution Control
T.-C. Hung, Q.-W. Wang, Y. Chen, & Z. Guo

Effect of the Height of the Horizontal Layer of Liquid on the Development of Critical Phenomena in Evaporation at Reduced Pressures
V.I. Zhukov & A.N. Pavlenko

Pool Boiling Experiment on a Modified Micropin-Finned Surface with Mechanical Oscillation
J. Wei, X. Kong, J. Ding, & Y. Zhang

Evaluation of the Performance of Cavities in Nucleate Boiling at Microscale Level
Y.-T. Mu, L. Chen, Q.-J. Kang, & W.-Q. Tao

Three-Dimensional Fingering Structure Associated with Gravitationally Unstable Mixing of Miscible Fluids in Porous Media
S. Sakai, Y. Nakanishi, A. Hyodo, L. Wang, & T. Suekane

Analysis of Thermal Performance of Void Cavity in a PCM Canister under Microgravity
G. Xiaohong, S. Xiang, Q. Zhiwen, & N. Baisheng

Natural Convection Heat Transfer in a Nanofluid-Filled Horizontal Layer with Sinusoidal Wall Temperature at the Bottom Boundary
G. Wang, Z.L. Fan, M. Zeng, Q.W. Wang, & H. Ozoe

Magnetohydrodynamic Convection Flow on an Unsteady Surface Stretching with Pressure-Dependent Transverse Velocity and Surface Tension Linearly Varying with Temperature
R.A. Shah, S. Rehman, M. Idrees, & T. Abbas

Analysis of Squeezing Flow of a Viscous Fluid between Corotating Discs with Soret and Dufour Effects
R.A. Shah, A. Khan, & M. Shuaib

ISSUE 12

Syngas Production in Methane Decomposition in the Plasma of Atmospheric Pressure High-Voltage Discharge
S.I. Al-Mayman, M.S. Al-Johani, K.O. Borisevich, A.A. Al-Musa, N.M. Al-Abbadi, A.V. Krauklis, & P.G. Stanovoi

Entropy Generation in a Williamson Nanofluid near a Stagnation Point over a Moving Plate with Binary Chemical Reaction and Activation Energy
A. Zaib, S. Abelman, A.J. Chamkha, & M.M. Rashidi

Numerical Investigation of Conjugate Heat Transfer from Laminar Wall Jet Flow over a Shallow Cavity
M.P. Paulraj, R. Kanna Parthasarathy, J. Taler, D. Taler, P. Ocłoń, & A. Vallati

Numerical Investigation of Thermal Performance of a Cryogenic Oscillating Heat Pipe
Q. Liang, Y. Li, & Q. Wang

MHD Flow and Heat Transfer in a Casson Fluid over a Nonlinearly Stretching Sheet with Newtonian Heating
A. Hussanan, M.Z. Salleh, H.T. Alkasasbeh, & I. Khan

Bubble Behavior and Bubble Growth Model of Highly Subcooled Flow Boiling in a Vertical Rectangular Channel
D. Yuan, X. Yan, D. Chen, Y. Zhong, Y. Huang, & J. Xu

ISSUE 13

Experimental and Numerical Analyses of a Heat Pump-Driven Chilled Ceiling Systems
D. Yilmaz & A. Ozyurt

Unsteady Convection Heat and Mass Transfer of a Fractional Oldroyd-B Fluid with Chemical Reaction and Heat Source/Sink Effect
J. Zhao, L. Zheng, X. Zhang, & F. Liu
Thermal Performance of a Pin Fin with Unequal Convective Coefficients over Its Tip and Surface
S. Mehendale

Numerical Characterization and Validation of the Thermal Response of an Empty ISO Container Exposed to Real Weather Conditions
B. Hunter, H. Pacella, & K. Blecker

Effects of Heat Flux on Natural Convection of Water-Based Nanofluids in a Trapezoidal Enclosure
X. Wang, J. Wang, & W. Dai

ISSUE 14

Experimental Determination of Emissivity Models of Steel 201 at 800–1100 K during Oxide Layer Growth
W. Zhu, D. Shi, Z. Zhu, & J. Sun

P. Akbarzadeh, A. Abbas Nejad, F. Movahed, & S. Zolfaghari

O. İsmail & Ö.G. Kocabay

Radiation-Augmented Rigid Polyurethane Foam Fire Suppression Using a Water Spray
H. Zhao, Y. Li, Q. Zhang, J. Luo, G. Xu, & Y. Zhang

Numerical Simulation of Double-Diffusive Mixed Convection in a Horizontal Annulus under Tangential Magnetic Field, with a Rotating Outer Cylinder
M. Bidabadi, V. Bordbar, A. Khoeini Poorfar, B. Sundén, & G. Ahmadi

Analysis of Heat and Mass Transfer in Unsteady Nanofluid Flow between Moving Disks with Chemical Reaction — A Numerical Study
M.F. Iqbal, S. Ahmad, K. Ali, M.Z. Akbar, & M. Ashraf

ISSUE 15

Increase in Convective Heat Transfer over a Backward-Facing Step Immersed in a Water-Based TiO2 Nanofluid
C.S. Oon, A. Amir, B.T. Chew, S.N. Kazi, A. Shaw, & A. Al-Shammar’a

S. Kumar & P. Dinesha

Modeling the Normal Spectral Emissivity of Brass H62 at 800–1100 K during Oxide Layer Growth
D. Shi, F. Zou, Z. Zhu, & J. Sun

Cylindrical Coordinate System-Based Formulation to Investigate Thermal Response of Laser-Irradiated Tissue Phantoms Using Non-Fourier Heat Conduction Models
K.K. Sravan & A. Srivastava

CuO/Water Nanofluid Flow over Microscale Backward-Facing Step and Analysis of Heat Transfer Performance
R. Ekciciler & K. Arslan

Entropy Generation Due to Fractional Couette Flow in a Rotating Channel with Exponential Heating of Walls
W.A. Azhar, D. Vieru, & C. Fetecau
Issue 16

Performance of an Automotive Car Radiator Operated with Nanofluid-Based Coolant
S. Kumar, P. Dinesha, A. Gaggad, & K. Mehrotra

Simulation and Optimization of Heat-Exchanger Parameters of Heat Pipes by Changes of Entropy
A. Redko, N. Kulikova, S. Pavlovskiyy, & A. Redko

Turbulent Decaying Swirling Flow in a Pipe
V. Aghakashi & M.H. Saidi

Oblique Stagnation-Point Flow of Non-Newtonian Fluid with Variable Viscosity
R. Mehmood, R. Tabassum, & N.S. Akbar

Numerical and Experimental Study of Flow and Heat Transfer in Outwardly Convex Corrugated Tubes with a Twisted Tape Insert
H. Han, L. Yang, X. Chen, & B. Li

The Methodology of Heat Release Characteristics Determination on the Basis of the Real Indicator Diagram
T. Ambrozik

Issue 17

Mixed Convection and Entropy Generation in a Lid-Driven Cavity Filled with a Hybrid Nanofluid and Heated by a Triangular Solid
M.A. Ismael, T. Armaghani, & A.J. Chamkha

Influence of Variable Air Distribution on Pollutant Emissions in a Model Wall Jet Can Combustor
F. Bazdidi-Tehrani, M.S. Abedinejad, & H. Yazdani-Ahmadabadi

Entransy Dissipation Analysis of Liquid Vortex Isolated by Hollow Cylinder
F. Alic

Heat and Mass Transfer and Resistance Characteristics of Evaporative Air Cooler with High Finned-Tube Bundles
Q. Zhang, X. Wang, W. Ruan, Q. Chen, & Z. Liu

Usage of a Diatomite-Containing Nanofluid as the Working Fluid in a Wickless Loop Heat Pipe: Experimental and Numerical Study
A. Sözen, E. Çiftçi, S. Keçel, M. Gürü, H.İ. Varyenli, & U. Karakaya

Experimental Investigation on the Heat Transfer Performance of Heat Pipes in Cooling HEV Lithium-Ion Batteries
F.M. Nasir, M.Z. Abdullah, & M.A. Ismail

Issue 18

Experimental Study of Oscillatory Flow Characteristics of Gas–Liquid Two-Phase Flow
H. Zhu, J. Duan, & Q. Liu

Analysis of MHD Fluid Flow and Heat Transfer through Annular Sector Ducts Filled with Darcy–Brinkman Porous Media
M. Iqbal & F. Ahmed

Experimental Investigation of the Thermal Performance of Mesh Wick Heat Pipe
N.K. Gupta, A.K. Triwari, & S.K. Ghosh

Thermal Analysis of Earth–Air Heat Exchangers under Heating Conditions at a Constant Surface Temperature
R. Karadağ, H. Bulut, Y. Demirtaş, & İ. Hilali

Fluctuating Local Dissipation Scales of Turbulent Rayleigh–Bénard Convection Using the Lattice Boltzmann Method
Y. Wei, Y. Lun, L. Zhang, & Y. Qian
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploration of Convective Heat Transfer and Flow Characteristics Synthesis by Cu–Ag/Water Hybrid-Nanofluids</td>
<td>1837</td>
</tr>
<tr>
<td>M. Hassan, M. Marin, R. Ellahi, & S.Z. Alamri</td>
<td></td>
</tr>
<tr>
<td>Numerical Modeling and Simulation of Natural-Convection Boundary-Layer Flow along a Vertical Wavy Surface in a Doubly Stratified Non-Darcian Porous Medium with Soret and Dufour Effects</td>
<td>1849</td>
</tr>
<tr>
<td>S.V.S.S.N.V.G.K. Murthy, B.V.R. Kumar, & V. Kumar</td>
<td></td>
</tr>
<tr>
<td>Thermohydraulic Performance of a Channel Employing Wavy Porous Screens</td>
<td>1867</td>
</tr>
<tr>
<td>L. Cramer, G.I. Mahmood, & J.P. Meyer</td>
<td></td>
</tr>
<tr>
<td>Index, Volume 49, 2018</td>
<td>1884</td>
</tr>
<tr>
<td>Author</td>
<td>Page(s)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Abbas Nejad, A.</td>
<td>1339</td>
</tr>
<tr>
<td>Abbas, T.</td>
<td>1077</td>
</tr>
<tr>
<td>Abdullah, M.Z.</td>
<td>1745</td>
</tr>
<tr>
<td>Abedinejad, M.S.</td>
<td>1667</td>
</tr>
<tr>
<td>Abelman, S.</td>
<td>1131</td>
</tr>
<tr>
<td>Aceves-Pérez, R.-M.</td>
<td>703</td>
</tr>
<tr>
<td>Aghakashi, V.</td>
<td>1559</td>
</tr>
<tr>
<td>Ahmad, S.</td>
<td>1403</td>
</tr>
<tr>
<td>Ahmadi, A.</td>
<td>77</td>
</tr>
<tr>
<td>Ahmadi, G.</td>
<td>1385</td>
</tr>
<tr>
<td>Ahmed, F.</td>
<td>1773</td>
</tr>
<tr>
<td>Ahmed, N.</td>
<td>491</td>
</tr>
<tr>
<td>Akbar, M.Z.</td>
<td>1403</td>
</tr>
<tr>
<td>Akbar, N.S.</td>
<td>1587</td>
</tr>
<tr>
<td>Akbarzadeh, P.</td>
<td>1339</td>
</tr>
<tr>
<td>Al-Abbadi, N.M.</td>
<td>1119</td>
</tr>
<tr>
<td>Alamri, S.Z.</td>
<td>1837</td>
</tr>
<tr>
<td>Al-Harbí, A.A.</td>
<td>643</td>
</tr>
<tr>
<td>Ali Abbas, M.</td>
<td>747</td>
</tr>
<tr>
<td>Ali, K.</td>
<td>1403</td>
</tr>
<tr>
<td>Ali, N.</td>
<td>457</td>
</tr>
<tr>
<td>Alic, F.</td>
<td>1689</td>
</tr>
<tr>
<td>Al-Johani, M.S.</td>
<td>1119</td>
</tr>
<tr>
<td>Alkasasbeh, H.T.</td>
<td>1185</td>
</tr>
<tr>
<td>Al-Mayman, S.I.</td>
<td>1119</td>
</tr>
<tr>
<td>Al-Mudhaf, A.F.</td>
<td>119</td>
</tr>
<tr>
<td>Al-Musa, A.A.</td>
<td>1119</td>
</tr>
<tr>
<td>Al-Shamma'a, A.</td>
<td>1419</td>
</tr>
<tr>
<td>Amani, J.</td>
<td>949</td>
</tr>
<tr>
<td>Amanifard, N.</td>
<td>205</td>
</tr>
<tr>
<td>Ambrozik, T.</td>
<td>1629</td>
</tr>
<tr>
<td>Amiri, A.,</td>
<td>1419</td>
</tr>
<tr>
<td>Anwar Bég, O.</td>
<td>189, 529</td>
</tr>
<tr>
<td>Arici, M.</td>
<td>847</td>
</tr>
<tr>
<td>Armaghani, T.</td>
<td>1645</td>
</tr>
<tr>
<td>Arroyo-Díaz, S.-A.</td>
<td>703</td>
</tr>
<tr>
<td>Arshadi, S.S.</td>
<td>423</td>
</tr>
<tr>
<td>Arslan, K.</td>
<td>1489</td>
</tr>
<tr>
<td>Arulprakasajothi, M.</td>
<td>439</td>
</tr>
<tr>
<td>Asano, M.</td>
<td>145</td>
</tr>
<tr>
<td>Ashraf, M.</td>
<td>1403</td>
</tr>
<tr>
<td>Aumporn, O.</td>
<td>509</td>
</tr>
<tr>
<td>Azhar, W.A.</td>
<td>1507</td>
</tr>
<tr>
<td>Baisheng, N.</td>
<td>1041</td>
</tr>
<tr>
<td>Bakhtiarí, M.</td>
<td>369</td>
</tr>
<tr>
<td>Bartoszewicz, J.</td>
<td>675</td>
</tr>
<tr>
<td>Bazdidi-Tehrani, F.</td>
<td>1667</td>
</tr>
<tr>
<td>Beltrán, A.</td>
<td>773</td>
</tr>
<tr>
<td>Ben Hassine, N.</td>
<td>327</td>
</tr>
<tr>
<td>Bhatti, M.M.</td>
<td>747</td>
</tr>
<tr>
<td>Bidabadi, M.</td>
<td>1385</td>
</tr>
<tr>
<td>Bilel, N.</td>
<td>385</td>
</tr>
<tr>
<td>Blecker, K.</td>
<td>1275</td>
</tr>
<tr>
<td>Bo, Y.</td>
<td>275</td>
</tr>
<tr>
<td>Bordbar, V.</td>
<td>1385</td>
</tr>
<tr>
<td>Borisevich, K.O.</td>
<td>1119</td>
</tr>
<tr>
<td>Bulut, H.</td>
<td>1813</td>
</tr>
<tr>
<td>Cai, A.</td>
<td>255</td>
</tr>
<tr>
<td>Campo, A.</td>
<td>847</td>
</tr>
<tr>
<td>Chaharborj, S.S.</td>
<td>761</td>
</tr>
<tr>
<td>Chamkha, A.J.</td>
<td>119, 1131, 1645</td>
</tr>
<tr>
<td>Chandrasekhar, U.</td>
<td>439</td>
</tr>
<tr>
<td>Chen, D.</td>
<td>1199</td>
</tr>
<tr>
<td>Chen, L.</td>
<td>1003</td>
</tr>
<tr>
<td>Chen, Q.</td>
<td>15, 1705</td>
</tr>
<tr>
<td>Chen, X.</td>
<td>31, 555, 1605</td>
</tr>
<tr>
<td>Chen, Y.</td>
<td>v, 235</td>
</tr>
<tr>
<td>Chesneau, X.</td>
<td>327, 509</td>
</tr>
<tr>
<td>Chew, B.T.</td>
<td>1419</td>
</tr>
<tr>
<td>Çiftçi, E.</td>
<td>1721</td>
</tr>
<tr>
<td>Cortés-Aburto, O.</td>
<td>703</td>
</tr>
<tr>
<td>Corti, D.S.</td>
<td>53</td>
</tr>
<tr>
<td>Cramer, L.</td>
<td>1867</td>
</tr>
<tr>
<td>Dai, H.</td>
<td>555</td>
</tr>
<tr>
<td>Dai, W.</td>
<td>1299</td>
</tr>
<tr>
<td>Daneshjou, K.</td>
<td>369</td>
</tr>
<tr>
<td>Daoud, A.</td>
<td>617</td>
</tr>
<tr>
<td>Delcroix, B.</td>
<td>617</td>
</tr>
<tr>
<td>Demirtaş, Y.</td>
<td>1813</td>
</tr>
<tr>
<td>Deylami, H.M.</td>
<td>205</td>
</tr>
<tr>
<td>Dhanawade, H.S.</td>
<td>597</td>
</tr>
<tr>
<td>Dhanawade, K.H.</td>
<td>597</td>
</tr>
<tr>
<td>Dhingra, A.K.</td>
<td>309</td>
</tr>
<tr>
<td>Dinesha, P.</td>
<td>1431, 1527</td>
</tr>
<tr>
<td>Ding, H.</td>
<td>287</td>
</tr>
<tr>
<td>Dong, H.</td>
<td>287</td>
</tr>
<tr>
<td>Duan, J.</td>
<td>1761</td>
</tr>
<tr>
<td>Dutta, M.</td>
<td>491</td>
</tr>
<tr>
<td>Ekciler, R.</td>
<td>1489</td>
</tr>
<tr>
<td>Elangovan, K.</td>
<td>439</td>
</tr>
<tr>
<td>Ellahi, R.</td>
<td>1837</td>
</tr>
<tr>
<td>Fan, Z.L.</td>
<td>1059</td>
</tr>
<tr>
<td>Fang, T.</td>
<td>569</td>
</tr>
<tr>
<td>Faridzadeh, M.R.</td>
<td>949</td>
</tr>
<tr>
<td>Felix, J.</td>
<td>865</td>
</tr>
<tr>
<td>Fetecau, C.</td>
<td>1507</td>
</tr>
<tr>
<td>Gaggad, A.</td>
<td>1527</td>
</tr>
<tr>
<td>Galaviz-Rodriguez, J.-V.</td>
<td>703</td>
</tr>
<tr>
<td>Ghosh, S.K.</td>
<td>1793</td>
</tr>
<tr>
<td>Giridhara Babu, Y.</td>
<td>865</td>
</tr>
<tr>
<td>Gu, H.</td>
<td>15</td>
</tr>
<tr>
<td>Guo, Q.</td>
<td>915</td>
</tr>
<tr>
<td>Guo, Z.</td>
<td>v, 827</td>
</tr>
<tr>
<td>Gupta, N.K.</td>
<td>1793</td>
</tr>
<tr>
<td>Gür, M.</td>
<td>1721</td>
</tr>
<tr>
<td>Han, H.</td>
<td>1605</td>
</tr>
<tr>
<td>Haq, I.</td>
<td>103</td>
</tr>
<tr>
<td>Hasani Malekshah, E.</td>
<td>685, 787</td>
</tr>
<tr>
<td>Hasani Malekshah, M.</td>
<td>787</td>
</tr>
<tr>
<td>Hassan, M.</td>
<td>1837</td>
</tr>
<tr>
<td>He, S.</td>
<td>555</td>
</tr>
<tr>
<td>He, Y.-L.</td>
<td>899</td>
</tr>
<tr>
<td>Hernández-Pérez, J.-A.</td>
<td>703</td>
</tr>
<tr>
<td>Hilali, İ.</td>
<td>1813</td>
</tr>
<tr>
<td>Hotta, T.K.</td>
<td>965</td>
</tr>
<tr>
<td>Huang, Y.</td>
<td>255, 1199</td>
</tr>
<tr>
<td>Hung, T.-C.</td>
<td>v</td>
</tr>
<tr>
<td>Hunter, B.</td>
<td>1275</td>
</tr>
<tr>
<td>Hussan, A.</td>
<td>1185</td>
</tr>
<tr>
<td>Hyodo, A.</td>
<td>1023</td>
</tr>
<tr>
<td>Idrees, M.</td>
<td>1077</td>
</tr>
<tr>
<td>Iqbal, M.</td>
<td>1773</td>
</tr>
<tr>
<td>Iqbal, M.F.</td>
<td>1403</td>
</tr>
<tr>
<td>Ismael, M.A.</td>
<td>1645, 1745</td>
</tr>
<tr>
<td>Ismail, O.</td>
<td>1353</td>
</tr>
<tr>
<td>Jangili S.</td>
<td>529</td>
</tr>
<tr>
<td>Janjai, S.</td>
<td>509</td>
</tr>
<tr>
<td>Javed, T.</td>
<td>457</td>
</tr>
<tr>
<td>Jeong, H.-S.</td>
<td>395</td>
</tr>
<tr>
<td>Judi, W.</td>
<td>675</td>
</tr>
<tr>
<td>Juncu, G.</td>
<td>803</td>
</tr>
<tr>
<td>Kang, Q.-J.</td>
<td>1003</td>
</tr>
<tr>
<td>Kanna Parthasarathy, R.</td>
<td>1151</td>
</tr>
<tr>
<td>Karabay, H.</td>
<td>91</td>
</tr>
<tr>
<td>Karadağ, R.</td>
<td>1813</td>
</tr>
<tr>
<td>Karakaya, U.</td>
<td>1721</td>
</tr>
<tr>
<td>Karimipour, A.</td>
<td>949</td>
</tr>
</tbody>
</table>
Kasaeipoor, A., 685
Kazi, S.N., 1419
Keçel, S., 219
Khan, A., 1103
Khan, A.A., 349
Khan, A.U.H., 103
Khan, I., 1185
Khoeini Poorfar, A., 1385
Kim, K.-Y., 349, 395
Kocabay, Ö.G., 1353
Krauklis, А.V., 1119
Kulikova, N., 1545
Kulkarni, K., 349
Kumar, B.V.R., 1849
Kumar, G.N., 865
Kumar, M., 309
Kumar, S., 1431, 1527
Kumar, V., 1849
Kummert, M., 617
Laatar, A.H., 327
Lee, J.R., 483
Li, B., 1605
Li, Q., 555
Li, X., 287, 827
Li, Y., 1171, 1367
Liang, Q., 1171
Liu, F., 1231
Liu, J., 915
Liu, Q., 1761
Liu, Y., 235
Liu, Z., 1705
Long, G., 31
Long, Z., 275
Lun, Y., 1825
Luo, J., 1367
Mahmood, G.I., 1867
Marin, M., 1837
Matsuda, Y., 145
Meendale, S., 1247
Mehmood, R., 1587
Mehrotra, K., 1527
Meyer, J.P., 1867
Mirza Gheitaghy, A., 423
Moameni, A., 761
Mobedi, M., 77
Mohamed, N., 385
Mostajiri, K., 205
Movahed, F., 1339
Mu, Y.-T., 1003
Murthy, S.V.S.S.N.V.G.K., 1849
Naga Radhika, V., 189
Nakanishi, Y., 1023
Naphon, P., 929
Nasir, F.M., 1745
Nazeer, M., 457
Niroumand, A., 949
Nüñez, J., 773
Zhang, X., 45, 1231
Zhang, Y., 1, 1367
Zhao, H., 1367
Zhao, J., 287, 1231
Zhao, Y., 31
Zhong, Y., 1199
Zheng, L., 1231
Zhiwen, Q., 1041
Zhou, H., 1761
Zhu, H., 1761
Zhu, W., 1323
Zhu, Z., 881, 1323, 1445
Zhukov, V.I., 979
Zimin, Y., 275
Zolfaghari, S., 1339
Zou, F., 1445
HEAT TRANSFER RESEARCH

SUBJECT INDEX VOLUME 49, 2018

Page Range of Issues

- **Issue 1**: 1–90; **Issue 2**: 91–188; **Issue 3**: 189–285; **Issue 4**: 287–384; **Issue 5**: 385–481;
 Issue 6: 483–582; **Issue 7**: 583–683; **Issue 8**: 685–786; **Issue 9**: 787–880; **Issue 10**: 881–977;
 Issue 11: 979–1118; **Issue 12**: 1119–1218; **Issue 13**: 1219–1321; **Issue 14**: 1323–1417;
 Issue 15: 1419–1526; **Issue 16**: 1527–1644; **Issue 17**: 1645–1760; **Issue 18**: 1761–1883

- **activation energy**, 1353
- **adiabatic cooling effectiveness**, 865
- **air source heat pump**, 915
- **air vacuum**, 1689
- **air-cooled condenser**, 15
- **aluminum 6063**, 881
- **analytical modeling**, 385
- **annulus**, 1385
- **antireflection**, 145
- **artificial neural network (ANN)**, 617
- **aspect ratio**, 965
- **atomization**, 1645
- **augmented state-space method**, 369
- **Avrami equation**, 483
- **axial porosity distribution**, 235
- **backward-facing step**, 205
- **beef meat**, 1353
- **Bejan number**, 529, 1507
- **binary chemical reaction and activation energy**, 1131
- **boiling heat transfer**, 817, 991
- **boundary layers**, 189, 569
- **Brinkman porous media**, 1773
- **Brownian motion**, 1059
- **bubble behavior**, 1199
- **bubble dynamics**, 1003
- **bubble growth model**, 1199
- **bubbles**, 423
- **buoyancy**, 189, 255
- **BVP4c**, 1103
- **Caputo–Fabrizio derivative**, 1507
- **Casson fluid**, 1185, 1587
- **Casson viscoplastic model**, 189
- **cavity groove**, 1003
- **cavity**, 949
- **CFD**, 597, 1813
- **chemical reaction**, 119, 491, 1231, 1403
- **chilled ceiling**, 1219
- **coal fires**, 827
- **color**, 1353
- **combined heat transfer**, 827
- **combustion**, 1629
- **combustor liner cooling**, 865
- **compressible flow**, 659
- **computational fluid dynamics**, 103, 1275, 1419, 1721
- **condensation**, 15
- **conducting solid body**, 157
- **cone**, 189
- **confined impinging jet**, 929
- **conical strip**, 439
- **conjugate heat transfer**, 349, 803, 1151, 1275
- **constant surface temperature**, 1813
- **convection**, 1275
- **convective heat transfer coefficient**, 3089
- **convective heat transfer**, 235, 1837
- **cooling capacity**, 817
- **cooling performance**, 31
- **cooling**, 483, 1219
- **correlation**, 1705
- **cavitation tube**, 1605
- **Crank–Nicolson finite difference scheme**, 491
- **critical condition**, 1247
- **critical heat flux**, 979
- **crosswind**, 31
- **cryogenic**, 1171
- **Cu and Ag nanoparticles**, 1837
- **CuO/water nanofluid**, 1489
- **Cu–water and Ag–water nanofluid**, 119
- **cylindrical coordinates system**, 1459
- **Darcy–Brinkman–Forchheimer model**, 719
- **design**, 675
- **diaphragm pump**, 899
- **diatomite**, 1721
- **diesel engine**, 1629
- **discrete element method**, 235
- **discrete heat source**, 965
- **dispersed phase**, 633
- **dissipation scales**, 1825
- **double lid-driven**, 949
- **double-diffusive**, 1385
- **DRBEM**, 157
- **dry spots**, 979
- **dual-phase-lag**, 369
- **dynamic contact angle**, 423
- **dynamic frosting**, 915
- **earth energy**, 1813
- **earth–air heat exchanger**, 1813
- **effective thermal conductivity**, 817
- **effusion cooling**, 865
- **electric vehicle**, 1745
- **electrohydrodynamic**, 205
- **Ellis fluid**, 747
- **emissivity model**, 881, 1323, 1445
- **energy consumption**, 1353
- **energy recovery**, 1339
- **energy storage**, 847
- **entrance effect**, 235
- **entransy dissipation**, 1689
- **entropy generation number**, 529
- **entropy generation**, 685, 1131, 1507
- **entropy**, 747, 1645
- **Eulerian-Lagrangian spray evaporation and heat transfer**, 1705
- **evaporation**, 145
- **evaporative cooling**, 1705
- **evaporative heat transfer coefficient**, 309
- **exact solution**, 747
- **exothermic heat**, 483
- **experimental measurement**, 385
- **experimental study**, 899
- **experimental validation**, 617, 1275
- **external radiant flux**, 1367
- **extinguishment**, 1367
- **Falkner–Skan flow**, 569
- **FG sphere**, 369
- **fin**, 1247
- **finning**, 1023
- **finite element method**, 119, 719
- **finite element scheme**, 457
- **finned surface**, 597
- **fire dynamic simulator**, 555
- **fire modeling**, 219
- **fire propagation**, 827
- **flame–obstacle interaction**, 643
- **floating roof oil tank**, 287
- **flow characteristics**, 1837
flow separation, 1489
fluid flow, 1151
forced convection, 77, 309, 597, 803, 1489, 1773
fractional Oldroyd-B fluid, 1231
free convection, 1849
free surface flow, 1077
friction factor ratio, 1867
friction factor, 439, 1773
friction heating, 385
frost properties, 915
fuel loss, 827
full scale, 555
FVM, 1773
gas–liquid two-phase flow, 1761
Grashof number, 1077
greenhouse dryer, 509
greenhouse drying, 309
groundnut/peanut, 309
HAM, 529, 1077, 1103
heat and mass transfer, 119, 327, 747, 1231
heat capacity, 583, 617
heat conduction, 53
heat exchanger, 1545
heat flux, 555, 1299
heat loss, 287
heat pipes, 1545, 1745, 1793
heat pump, 1219
heat release, 1629
heat sink, 349
heat source, 369
heat source/sink, 1231
heat transfer augmentation, 395
heat transfer coefficient, 633, 1431, 1527
heat transfer enhancement, 173, 597, 965, 1605
heat transfer in porous media, 77
heat transfer, 15, 103, 157, 205, 287, 457, 529, 569, 929, 1299, 1419, 1445, 1489, 1587, 1813
heat utilizer, 1545
heating time
helically coiled heat exchanger, 1431
high finned tubes, 1705
hot rolling, 817
hybrid nanofluids, 173, 1645, 1837
hydrophilicity, 423
icing, 1
inclined flat tube, 15
inclined jet, 817
infinite horizontal layer, 1059
inserted thermocouple, 385
integral scheme, 1559
interface stability, 979
interface temperature, 1151
inverse heat transfer, 703
irreversible losses, 1545
isolated vortex, 1689
Keller box, 1849
Keller-box numerical method, 189
Kirchhoff transformation, 413
laminar flamelet model, 1667
laminar flow, 1489
Laplace inversion, 369
large eddy simulation, 659
large-scale cooling tower, 31
Lattice Boltzmann method, 1003
layered fluids, 787
LBM, 1825
lead–acid battery, 685
Lévy flight, 703
lid-driven cavity, 91, 1645
liquid cooling vapor chamber, 929
liquid cooling, 349
liquid, 1689
lithium-ion, 1745
magnetic field, 1077, 1385
mass transfer, 1403
measurement, 287
mechanical dispersion, 1023
melting, 847
methane conversion, 1119
MHD flow, 1185
MHD, 119, 529, 1773
microchannel, 349
microgravity, 1041
micropin fin, 991
micropolar fluid, 457, 529
microscale backward-facing step, 1489
minimum principle, 413
mixed convection, 91, 965, 949, 1385, 1645
modeling of safety zone, 219
modeling, 509
moisture diffusivity, 1353
moving plate, 1131
moving surface, 761
multiobjective optimization, 395
multiple injection, 1629
multispectral radiation thermometry, 1323
MWCNT–water, 787
nanofluids, 91, 583, 719, 761, 949, 1059, 1299, 1419, 1527, 1721
nanoimprint, 145
nanoparticles, 847
naphthalene sublimation, 235
narrow channel, 1199
natural convection, 157, 685, 719, 787, 1023, 1059, 1299
needle temperature, 385
NEPCM, 847
Newtonian heating, 1185
non-Darcian porous medium, 1849
non-equilibrium molecular dynamics, 45
non-Fourier heat conduction, 275, 1459
nonlinear Rosseland radiation, 569
nonlinearly stretching sheet, 1185
nonuniform heating, 949
nonuniform spray, 31
nucleate boiling, 1003
numerical investigation, 205
numerical modeling, 675, 527
numerical simulation, 1, 31, 1431, 1605
numerical solution, 53, 1587
numerical stability analysis, 773
numerical study, 685, 949
Nusselt number ratio, 1867
Nusselt number, 189, 439, 1151, 1431, 1559, 1773
oblique flow, 1587
oil tank fire, 555
onset of natural convection, 773
optimization, 761
optimum performance, 1247
organic Rankine cycle, 899
oscillating heat pipe, 1171
oscillation frequency, 1761
oscillation of emissivity, 881
oscillation, 991, 1445
oscillatory flow characteristics, 1761
oxide film, 881
oxide layer, 1323, 1445
partial cooling, 773
Particle Swarm Optimization, 703
PCM, 847
PEC, 1489
perforated fins, 597
phase change, 1041
phase lags ratio, 369
phase transformation, 483
phase-change material, 509, 617
phonons, 45
photothermal therapy, 1459
piecewise constant conductivity, 413
plasma, 1119
pollutants emission, 1667
pool boiling, 423
porosity, 1867
porous disks, 1403
porous media, 719, 1023
premixed propagating flames, 643
pressure drop, 349, 1339, 1705
production of entropy, 1545
pulsating impinging jet, 173
radiative transfer equation, 1459
radiator, 1527
ramped and isothermal wall temperatures, 491
random porous media, 77
randomly packed bed, 235
Rayleigh–Bénard convection, 1825
Rayleigh–Taylor instability, 1023
reactive two-phase flow, 1667
recirculation zone, 1489
rectangular cavity, 255
relaxation time, 275
response surface approximation, 395
Reynolds-averaged Navier–Stokes equations, 395
Richardson number, 91
Robin boundary condition, 413
ROT (run out table), 817
rotating cylinder, 1385
rotating frame, 1507
scroll expander, 899
semiempirical dimensionless correlation, 915
sewage sludge, 327
sewing machine, 385
Si/Ge heterostructure, 45
side-wall inclination angle, 787
similarity transformations, 1077
skin friction, 189
slip condition, 189
slit rib, 395
solar dryer efficiency, 509
solar drying, 327
solar radiation, 1275
solid fuel boilers, 675
solution uniqueness, 413
Soret and Dufour effects, 1849
spectral analysis, 1
spectral emissivity, 1445
sphere, 803
squeeze flow, 1103
stator blades, 1
steady-state heat transfer, 413
steel, 201, 1323
storage efficiency, 509
strains, 45
subcooled flow boiling, 1199
suction, 189
supercritical water, 103
suppression, 1367
surface oxidation, 1445
surface radiation, 965
swirling flow, 1559
syngas production, 1119
tall rectangular enclosure, 685
temperature measurement, 881, 1323
temperature uniformity, 255
temperature, 287
temporal mixing layer, 659
thermal boundary layer, 1559
thermal boundary resistance, 45
thermal circuit, 53
thermal conductivity ratio, 803
thermal conductivity, 583, 1527
thermal convection, 189
thermal cycling test, 255
thermal effectiveness, 1339
thermal efficiency, 1793
thermal management, 1745
thermal performance, 1171, 1721, 1867
thermal radiation, 119, 491
thermal resistance, 349, 1689, 1793
thermal-hydraulic performance, 349
thermocapillary number, 1077
thermodynamic efficiency, 1545
thermodynamic property, 483
thin film, 1077
thin horizontal layer of liquid, 979
three-dimensional flow, 787
three-dimensional, 685
time-periodic boundary temperature, 1059
TiO₂, 1419
Titanium dioxide, 1403
titanium oxide/water nanofluid, 439
transient flames, 643
transparent, 145
trapezoidal enclosure, 787, 1299
turbulence level, 633
turbulence modeling, 1667
turbulent mixed convection, 255
turbulent premixed flames, 643
turbulent, 1825
twisted tape insert, 1605
two-dimensional cavity, 457
two-phase flow, 1247
two-phase pressure drop, 15
unsteady stretching surface, 1077
UV curable resin, 145
vapor recoil force, 979
variable viscosity, 569, 1587
variational equation, 275
ventilation system design, 219
vertical channel, 965
vertical DWHR exchanger, 1339
vertical RPU fires, 1367
viscous dissipation, 1403
viscous flow, 803
viscous fluid, 1103
void cavity, 1041
volume fraction, 761, 1527
vortex shedding, 1
wall expansion ratio, 1403
wall jet can combustor, 1667
wall jet, 1151
waste heat recovery, 899
water application rate, 1367
water boilers, 675
water filling ratio, 1761
wave period, 1867
wavy wall, 91
wickless loop heat pipe, 1721
Williamson nanofluid, 1131
zeolite, 583