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The idea of £1-minimization is the basis of the widely adopted compressive sensing method for function approxima-
tion. In this paper, we extend its application to high-dimensional stochastic collocation methods. To facilitate practical
implementation, we employ orthogonal polynomials, particularly Legendre polynomials, as basis functions, and focus
on the cases where the dimensionality is high such that one can not afford to construct high-degree polynomial ap-
proximations. We provide theoretical analysis on the validity of the approach. The analysis also suggests that using
the Chebyshev measure to precondition the ¢1-minimization, which has been shown to be numerically advantageous in
one dimension in the literature, may in fact become less efficient in high dimensions. Numerical tests are provided to
examine the performance of the methods and validate the theoretical findings.
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1. INTRODUCTION

Stochastic computation has received intensive attention in recent years, due to the pressing need to conduct uncertainty
guantification (UQ) in practical computing. Various numerical methods have been developed, among which the most
widely used ones are based on (generalized) polynomial chaos (gPC), c.f. [1, 2]. For practical computing, the gPC
stochastic collocation algorithm is highly popular because it allows one to repetitively use existing deterministic
simulation codes and to render the construction of gPC approximation a post-processing step. The development of
stochastic collocation algorithms became very active, after the introduction of high-order algorithms using sparse
grids [3], and produced many different techniques, cf. [4—14] to name a few. Roughly speaking, the construction of
the gPC approximations takes two major approaches. One is based on interpolation, where the simulation samples are
interpreted by the approximation precisely. The other one is the regression type, which approximately matches the
simulation samples.

The challenge is in high-dimensional spaces, where the number of collocation nodes grows fast. Since each node
represents a full-scale deterministic simulation, the total number of nodes one can afford is often limited, especially
for large-scale problems. This represents a significant difficulty in constructing a gPC-type approximation using the
existing approach—it is often not possible to construct a good polynomial approximation using a very limited number
of simulations in a large dimensional random space.

A more recent development in signal analysisaspressive sensinglso known asompressed samplinGom-
pressive sensing (CS) deals with the situation when there is insufficient information about the target function. This
occurs when the number of samples is less than the cardinality of the polynomial space for the approximation. CS then
seeks to construct a polynomial approximation by minimizing the norm of the polynomial, typicaljyritem or/,-
norm. The success of the CS methods lies in the assumption that in practice many target functions (sigpalseare
in the sense that what appear to be rough signals in the time/space domain may contain only a small number of notable
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terms in their frequency domain. Following the seminal work of [15-18], the theory of CS has generated an enormous
amount of interest in many disciplines and resulted in many newer theoretical results and practical implementations.
Numerous literature on various aspects of CS exists and will not be discussed here.

In a recent work [19], the idea of CS has been extended to stochastic collocation and resulted in a highly flexible
method. With CS, one can employ arbitrary nodal sets with an arbitrary number of nodes. This can be very helpful in
practical computations. In [19], some key properties, such as the probability under which the sparse random response
function can be recovered, are studied. Numerical tests demonstrate that sparsity does occur in practical stochastic
problems and the method can be effective for problems in large dimensions.

This paper extends the work of [19]. The particular focus of this paper is on the recoverability of stochastic
solutions in high-dimensional random spaces. This is relevant because in UQ simulations the dimensionality is often
determined by the number of random parameters and can be very large. It is not uncommon to encounter practical
stochastic problems with dimensions on the order of hundreds, in addition to the traditional space and time dimensions.

In this paper, we will adopt orthogonal polynomials such as Legendre polynomials as the basis functions, as
opposed to trigonometric functions used in the traditional CS. Many of the current results are motivated by [20, 21],
recent studies om;-minimization using Legendre polynomials in one dimensidn={ 1). Here we will provide
theoretical analysis on the convergence of such an approach in high dimedisisris In this case, the cardinality
of the polynomial spacel)/, grows very fast (often exponentially fast) when its degrBg ié increased. We will
focus on the case where the polynomial degree is less than the dimensionalit}, ke.d. The condition under
which the/;-minimization approach can recover the unknown stochastic function is presented, and a set of numerical
tests are provided to examine the performance of the method. An interesting variation of the approach, Chebyshev
preconditioning, is also studied. This approach has been shown to be more efficient in one dimensiba-with
[20, 21]. Here we demonstrate that in high dimensions when P, the Chebyshev preconditionéd-minimization
may become less effective than the diréeminimization.

We remark that the multi-dimensional polynomial approximation, particularly polynomial interpolation, has been
intensively studied for a long time. It remains an active and challenging field. The dsevohimization represents
a drastically different approach. And for this reason we will not review the traditional approximation theories and
methods. Also, even though we present the results in the context of high-dimensional stochastic computation, they
can be equally viewed from the more traditional approximation theory perspective.

Finally we note that one of the advantages of fheminimization is that it allows one to conduct polynomial
approximations on unstructured nodes. (Any inherent structure of the nodes would usually incur fast growth of the
number of the nodes in high dimensions, e.g., the sparse grids.) The traditional approximation method on unstructured
nodes is polynomial regression. However, two of the recent developments are worth mentioning. One is the low-rank
approximation in high dimensions [22] and the other is the least orthogonal interpolation [23].

The paper is organized as follows. After presenting the setup of the problem in Section 2, we present the main
results in Section 3, where recoverability of both the dirgeminimization and Chebyshev preconditionéd
minimization are discussed. Numerical tests are provided in Section 4 to verify the theoretical findings, before the
conclusions in Section 5.

2. STOCHASTIC COLLOCATION: THE SETUP

Here we adopt the standard setting for stochastic collocation methodg. £etZ,, ..., Z;) € R, d > 1, be a set

of (independent) random variables modeling the random inputs for a partial differential equation (PDE),
ut(x,t, Z) = L(u), D x (0,T] x I,
B(u) =0, 0D x [0,T] x Iz, Q)
U = Ug, DX{tZO}Xlz,

wherel; C R%,d > 1, isthe range ofZ, D € R*, k = 1,2, or 3, is the physical domain, arill > 0. Here£ stands

for a (nonlinear) differential operator atia boundary condition operator. We equipwith a distribution function
v(z) = Prol(Z < z), wherez € R? is real. For each component &f letv;(z;) = Prob(Z; < z;), z; € R, be its
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marginal distribution function. Obviously, when mutual independence among the components is assumed, we have
v(z) = Hlew(zi). We remark that independence is a common assumption used in stochastic computing and is
adopted here as well.

In the stochastic collocation method, one first chooses a set of tdes {z(j)}j-\’:1 C Iz, whereN > 1isthe
number of nodes. And then for eagh= 1, ..., N, one solves adeterministic problen(l) at the node"),

ug(z,t, 20)) = L(u), D x (0,7,

B(u) =0, D x [0,T], (2)

U = Ug, DX{IfZO},
and obtainsu¥) £ wu(z,t,2)). Hereafter we will suppress the notions :ofand ¢ whenever possible, with the
understanding that our statements are made for all fixaald.

Finally, once the pairingéz"), u()), j = 1,..., N, are obtained, the task is to construct a functidit ), usually
residing in a proper polynomial space in termffsuch thatv(Z) ~ u(Z) in a proper sense.

In the construction of the approximating functietiZ), the pairing information can be enforced exactly by requir-
ing w(z)) = uU) forall j = 1,..., N. This usually leads to a (polynomial) interpolation problem. Alternatively,
one can adopt a regression type approach which does not require precise matching of the function values at each node.

In this paper, we will adopt the interpolation type approach and focus exclusively on polynomial interpola-
tion. Also we assume thaty; is bounded, and with a proper scaling we confine ourselves to a hypercube, i.e.,
Ze[-1,1]4,d>1.

2.1 Multi-dimensional Polynomial Spaces

We will use the standard polynomial space to construct our interpolation. To this end, let us first define a one-

dimensional polynomial space. For each= 1,...,d, let W"*: be the space of polynomials of degree upkio
That is,

Wik & {p: [-1,1] - R:pe spar{(zi)m}f,jzo}. 3

For multi-dimensional cases> 1, we adopt multi-index = (k1, ..., kq) with norm|k| = k; + --- + k4. The

standard polynomial space is the space ofiadimensional polynomials of degree up to an integer nunhewe
denote such a space ttetal degree polynomial spad&’s, i.e.,

Wi = & W 4)
[k|<P
The cardinality of the space is
. P+d (P+d)!
d __ —

Another construction often employed in theoretical analysis is to let the polynomial degree in each variable go up
to P. This results in théull tensor polynomial spage

Zh = Q) Wik (6)
k; <P
The cardinality of this space is
dim Z¢ = (P +1)%. 7

Note that wheni >> 1 the cardinality of both polynomial spaces grows very fast when the deff)dés increased,
resulting in the so-called “curse of dimensionality.” The growth&gr is much faster than that 6¥'2. Therefore in
practice the full tensor polynomial spagé is rarely used forl > 5.
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2.2 Multi-dimensional Orthogonal Polynomials

We employ orthogonal polynomials as basis functions. For ¢aehl, ... d, let {/,,(z;)} be a set of orthogonal
polynomials in variable; that satisfy the following orthogonality condition

1
/ lm(zi)ln(zi) dvz(zz) = 6’"”“ m,n,= Oa la 27 ceey (8)
—1

wherem andn are the degrees of the polynomials andis the probability measure. Note here the polynomials
have been normalized. Here we focus on the continuous case éhgre) = w;(z;) dz;, wherew(z;) is the weight
function satisfying the usual conditions to admit the existence of the orthogonal polynomials. The connection between
the polynomial weights and the probability measure is well established, cf. [2].
In the multi-dimensional case, the orthogonal polynomials are constructed as tensor products of the one-dimensional
polynomials in each variable.
Li(2) = [ (20, ©)

keA
whereA is an index set, determined by the polynomial space (4) or (6). The orthogonality relation becomes

/ L (2)Ln(2) dv(z) = dmn, Vm,n € A,
[-1.1]7

where the measurév(z) = dvi(z1)---dva(zq) is the product of the one-dimensional measures, &pf =
Omang - Omyny 1S thed-dimensional Kronecker delta function satisfyifig,, = 1 if m = n, andd,,, = 0 oth-
erwise.
Upon choosing a proper ordering scheme for the multi-index, we can order the multi-dimensional polynomials via
a single index. The orthogonality becomes

/ Lon(2)En(2) dV(2) = Sy 1 <mum < M, (10)
L

where each single-index corresponds uniquely to a multi-indéxu, ..., mg4), and M is the cardinality of the
underlying polynomial space (5) or (7). (A more detailed discussion on the ordering can be found in [24].)
In this paper we will focus on Legendre polynomials, whose weight function is a coastant= (1/2)%dz.

3. STOCHASTIC COLLOCATION VIA ¢;-MINIMIZATION

We now focus on the interpolation approach. We remark that multi-dimensional polynomial interpolation on arbitrary
nodes is a fundamentally difficult problem. Here we adopt/thminimization approach to circumvent the difficulty.
Upon choosing a degre@ for the polynomial approximation, the target functief?) can be approximated by

M
w(Z) =Y emLn(2). (11)
m=1
The interpolation condition of(2(V) = u(?,i = 1,..., N, results in the following problem
Ac=f, (12)
wherec = (c1,...,cp)” € RM is the coefficient vectof = (v, ... w¥)T is the vector for the function

samples, and = (a,.,) is the Vandermonde-type interpolation matrix whose entries are

(Gn,m) = Lm(z(")), n=1,....N, m=1,..., M. (13)
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The problem is determined wheévi = M, overdetermined whelV > M, and underdetermined wheév < M.

It is the underdetermined case that is considered here. This is often encountered in practice, especially in high
dimensions. Wher > 1, the cardinality of the polynomial spacéd/) becomes extremely large, see (5) or (7),
even when the order of the polynomials is moderate. On the other hand, in many practical applications the evaluation
of the target function: is expensive—it requires large-scale numerical simulation of the system (2). Consequently
one often has only a limited number of samples. In such caseg M and the problem (12) becomes severely
underdetermined.

One way to circumvent the difficulty is to employ the idea of compressive sensing. Defide-tioem of the

coefficient vector as
M

lelle = leml. (14)

m=1

The coefficient vector can be solved by the followifygminimization problem
min ||c||x subjectto Ac="f. (15)

This is a common approach in the context of CS, where a large amount of literature exists. Other forms of mini-
mization exist. For example, instead of thenorm, one can adopt thig-norm, defined afc||y := #{m : ¢, # 0}.
Also, the interpolation conditioAc = f can be relaxed tAc — f|| < e, for some tolerance valug resulting in a
regression type “de-noising” approach.

In what follows we will focus on the traditiondl, -minimization form (15). The distinct features of our problem
are (i) high dimensionality > 1 and (ii) the use of orthogonal polynomials, particularly the Legendre polynomials.
Despite the large amount of the literature, such a problem has not been well studied.
3.1 Auxiliary Results

Here we summarize some existing results that are useful in deriving the main results in this paper. For a vector
v = (v1,...,op)T € RM, we equip it with/,-norm

M 1/p
HVHP = <Z |Uﬂ’L|p> ’ 1 S p < o,
m=1

with ||v||s = max,,—1..a |vim|. The vector is called-sparse ifi|v||o := #{m : v, # 0} < s.

Definition 3.1. The error of the best-term approximation of a vectar € R in £,-norm is defined as

osp(v) = inf |y —vl,. (16)
lyllo<s

Clearly,o; ,(v) = 0if v is s-sparse.

Definition 3.2 ([15, 16]). LetA be anN x M matrix. Define the restricted isometry constéRtC) 6, < 1 to be the
smallest positive number, such that the inequality

(1= 8)llcl3 < [[Ac]3 < (1+8,)][cl3 a7

holds for allc € R of sparsity at most. Then the matriX is said to satisfy the-restricted isometry propertRIP)
with restricted isometry constaéi.

Theorem 1(Sparse recovery for RIP-matrices [16, 21, 28]ptA ¢ RV>*M pe a matrix with RIG, such that

5, < 0.307. (18)
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For a givenc € RM, let c be the solution of thé, -minimization
min |ly|l;  subjectto Ay = Ac. (19)
Then the reconstruction error satisfies

05,1(C)

NG

for some constanf’ > 0 that depends only of;. In particular, if ¢ is s-sparse then reconstruction is exact, i.e.,
c=_=c.

[e—¢cla<C (20)

Following [20], we call the orthonormal polynomial syste,,,(z)} defined by (10) éounded orthonormal
systenif it is uniformly bounded,
sup || Lim|loo = supsup |L,(2)| < K, (21)

m m z

for someK > 1.

Theorem 2(RIP for bounded orthonormal systems [20, 21JtA € RY*M pe the interpolation matrix with entries
{anm = Lm(z(">)}1§n§N,1§m§M from (13), where{L,,} is a bounded orthonormal system satisfy{@g) and
orthogonality(10), and the points(™ n = 1,..., N, are i.i.d. random samples drawn from the measuiia (10).
Assume that

N > C52K?slog®(s) log(M), (22)

then with probability at least — M ~Y1°5°(*)  the RICS, of (1/v/N)A satisfiess, < 5. Here theC, y > 0 are
universal constants.

3.2 Main Result; Recoverability for d > P

We are now ready to discuss the high-dimensional dgsel. In particular, we consider the total degree polynomial
spacelVd (4) and the case where its cardinality becomes so large that one can not afford a high-degree polynomial
P. In such a case, we havie> P. The following result applies to Legendre polynomial construction,d-e(z) =
(1/2)*dz in (10).

Theorem 3(Recoverability of direct; -minimization ford > P). Letz(!) ..., (™) be independent random samples
drawn from the uniform distribution op-1, 1]¢, and

N > 3P slog?(s) log(M), (23)

whereM is the cardinality of the polynomial spad®2 (5) with d > P, ands is the sparsity level of a given vector
¢ € RM, Letw € W§ be the polynomial approximation in the form (if1) using Legendre polynomials, i.e.,

M
w(z) = Z cmLm (2),

m=1

where the coefficient vecteris solved by thé;-minimization problen{15)with the data vectof = Ac for the given
C.

Then with probability at least — MY log®(s) wherey is a universal constant, the vecteris recoverable to
within a factor of its best-term approximation in the sense that

GS,I(E> )

s (24)

le—¢lz <
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Proof. Them-th degree one-dimensional Legendre polynorjal satisfies ([26])
[y oo < (2 +1)2. (25)

Then thed-dimensional Legendre polynomials satisfy
d
I Zmlloo < [ @ms +1)"2. (26)
k=1

Since the polynomials are v, |m| < P, then whenl > P, the right-hand-side is maximized whéhof themy’s
are one and the rest are zero. We then obtain the bound on the Legendre polynomials

[ Lnlloo < 37/, 27)

Using Theorem 2 for the bounded orthonormal sys{éig, } with constantx” = 37/2 and with uniform distribution
from the orthogonality of Legendre polynomials, we obtain the asymptotic estimate (23) to ensure the RIC is less than
any fixed value. The conclusion then follows by using Theorem 1. O

This result gives a bound on the number of samples required to accurately recover the unknown stochastic function
w if it is in polynomial form.

A similar estimate can be applied to the full tensor polynomial sggtewhose cardinality i/ = (P + 1)
Using the one-dimensional bound (25), we obtain

[Lin[oo < (2P + 1)d/2, max m; < P.
1<i<d

Then the required number of sampl¥sobtained by Theorem 2 is
N > M& 2slog®(s) log(M). (28)

This bound is not useful, because the required number of samplssnow larger thanV/. And the interpolation
problem becomes over-determined. This indicates that in multi-dimensional spacésthe full tensor polynomial
spaceZ$ is not proper for the diredt; -minimization.

3.3 Main Result: Chebyshev Preconditioning

The interpolation conditio’Ac = f can be preconditioned. Though mathematically equivalent, the preconditioned
version can be advantageous in practice and result in more accurate solutions. It has been reported in [20, 21] that
Chebyshev preconditioning works well ih= 1 for the Legendre polynomial approximation. Here we analyze the
property of the Chebyshev preconditioning in multi-dimensional cése ).

Consider the following one-dimensional function

n() =[5 0= 2 (), e 1) 29)
wherel,, (z;) is the orthonormal Legendre polynomial in variablei = 1,. .., d. The syster{g,, } is then orthonor-
mal with respect to the Chebyshev probability meastog¢z;) = 7' (1 — 22)~/2 dz; on[-1, 1], i.e.,

/11 Gm (2i)Gn(z;) dw(z;) = dpmn.- (30)

For dimensiond > 1, let .
Qu(2) = [ an. (20); (31)

=1
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where the multi-indek can be chosen, according to the total-degree polynomial dpzcet), by

d
k| = ki <P (32)
=1
Alternatively, one can use
max k; = P, (33)

to correspond to the full tensor polynomial sp&t (6).

Lemma 4. The systemiQy } is uniformly bounded ofi-1, 1]¢ and satisfieg Q|| .. < 2%/2. Moreover, it is orthonor-
mal with respect to the product Chebyshev probability measure

d
du(z) = [[= ' = (z)*) 2 dz,  ze[-1,1]% (34)

=1
Note the result holds for both choices for the index &£) and (33).

Proof. At degreek;, the following function can be bounded ([26])
(1 - 212)1/4“1%‘ < 27"71/27 vzz S [717 1}7

wherel, is the one-dimensional Legendre polynomials of ordeiThen the functions (29) satisfy

o Gl = /50 =000 < [Fx2r2= VR

The system{Qx} from (31) is then uniformly bounded and satisfigg«|| ., < 2%/2. The orthogonality of follows
directly from (30). O

We now formulate the preconditioned version of the Legergnminimization problem. Recall the origind -
minimization problem (15) and define & x N diagonal matrixW = (w,_), whose entrieso,, ,, = (7/2)%/?
e, (- (2{™)2)1/45,.... The preconditioned; -minimization problem takes the following form

min ||c||; subjectto WAc = W{. (35)

Note that using the definition (31), tié&/ x M) matrix WA has entries precisel,, (2("),1 <n < N,1 <m <
M, whereN is the number of sample points afd is the cardinality of the basis functiok§)}. The following result
then holds.

Theorem 5 (Recoverability of preconditioned,-minimization) Let z(V), ... (") pe independent random sam-
ples drawn from the Chebyshev meadqi34). Consider the Chebyshev preconditiodgeninimization problen{35),
where the data vectdt = Ac for a given vectok € R with sparsity levek. Letc be the solution of the precondi-
tioned minimizatior{35). Then there exists

N > 2%51log®(s)log(M), (36)

where M is the cardinality of the polynomial spad&% or Z¢, such that with probability at least — M~ 108 (),
wherey is a universal constant, the vectéican be recovered in the sense that

GS,I(E> )

s (37)

le—¢lz <
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Proof. The proof is a trivial exercise of using the boul@y || . < 2%/2 derived above. O

This result establishes the recoverability of the Chebyshev preconditigrmthimization. The estimate of the
required number of pointd in (36) applies to both spacéE2 and Z¢, and for arbitrary values aof and P. Com-
pared to the result of dire¢t-minimization (23) ford > P, whereN scales with3”, the number of points for the
preconditioned’; -minimization scales witl2? and can be larger, for sufficiently large dimensiahsith moderate
polynomial orderP. Therefore, in very high dimensional spaces the Chebyshev preconditipmeidimization may
be less efficient than the direét-minimization because it requires more sample points. This is in contrast to the
established result fat = 1, where the preconditioned-minimization is more effective [20, 21].

4. NUMERICAL TESTS

In this section we provide numerical tests to verify the theoretical findings. While there exist a large number of
studies on the performance 6fminimization, we here focus exclusively on the Legendre polynomial case. For the
implementation of the minimization, we employ the available tools such as Spectral Projected Gradient algorithm
(SPGL1) from [27] that was implemented in the MATLAB package SPGL1 [28].

We conduct two groups of tests, each with a given target function in polynomial form serving as the exact solution.
The first group is at relatively low dimension éf= 3, which allows us to reach higher polynomial degrees and also
to conduct tests in the full tensor product spatk, as well as the total degree spdd&l. Another group of tests
are conducted in a higher dimensiondt= 10, where the conditiord > P in Theorem 3 is satisfied. The goal of
these tests is to examine the recoverability results from the theorems of the paper. We remark that the dimensionality
of d = 10 bears no special meaning, as the results from other dimensions such d$, 20, demonstrate similar
behavior. We choose to demonstrate the result$ ef 10 largely because it allows us to employ sufficiently high
order polynomial spaces to examine the asymptotic theoretical estimates. For more practical simulations at larger
dimensions, see [19]. Another remark is that in the tests we did not employ PDE. In practical stochastic collocation
computing, the PDE solver is usually a “black-box” to provide function evaluations at the sample points. Here we
employ analytically known functions to provide the sample values, and this is merely for benchmarking purpose.

In what follows we will use the termdirect-uniforni for the direct/;-minimization from Theorem 3 andpte-
Chebyshetfor the preconditioned;-minimization from Theorem 5, where the former utilizes samples from uniform
distribution with the direct;-minimization (15) and the latter Chebyshev distribution with the preconditidned
minimization (35). We also introduce two other variants of the implementation. Ordirect-Chebyshéwvhere
we draw samples from the Chebyshev distribution and apply the difectinimization (15). The other ispgre-
uniform’ where we draw samples from the uniform distribution and then apply the preconditigrrathimization
(35). Though no theoretical results are available for these two variants, they produce comparable results numerically.
We include them here for the sake of completeness.

4.1 Low-dimensional Testsin d=3

In this set of tests we examine both the total-degree polynomial dpgcét) and the full tensor polynomial space
74 (6). The target (exact) function is in polynomial form. We first choose a sparsitydered then fixs coefficients
of the polynomial while keeping the rest of the coefficients zero. The values ofrtha-zero coefficients are drawn
from a Gaussian distribution with zero mean and unit variance. The procedure produces target coefficame
seek to recover using tie-minimization algorithms.

We first examine the frequency of successful recoveries. This is accomplished by conducting 500 trials of the
algorithms and counting the successful ones. A recovery is considered successful when the resulting coefficient vector
c satisfieg|c — €|/ < 1073. As both Theorem 3 and 5 indicate, theminimization will reach a success probability
of 1 — M—Y1og’(®) only when a sufficient number of sample points are used. This is clearly demonstrated in Fig. 1,
where the success rate is plotted against increasing numbers of sample points, with a fixed sparsity feved of
All four implementationsdirect-uniform pre-Chebyshewdirect-Chebyshewandpre-uniform are examined in both
polynomial spacesVd andZ%. The results clearly show that if the number of points does not reach a critical value,
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FIG. 1: Probability of successful recovers. number of sample pointgl = 3 ands = 10). Line patterns: dotted-
circle, direct-uniform dotted-triangledirect-Chebyshesolid-circle, pre-uniform solid-triangle pre-Chebysheya)
Total degree polynomial spad&)]” with P = 10 (M = 286). (b) Full tensor polynomial spacg with P = 5
(M = 216).

there will be no recovery at all. A large portion of successful recovery can be achieved only if the number of samples
is sufficiently big. And this holds true for all four variants of the implementations and in both polynomial spaces.

We also observe that the best success rate is achieved et@hebyshev.e., the preconditioned -minimization
of Theorem 5. And the least effective approach appears to bdibe-uniform i.e., the direct;-minimization of
Theorem 3. This is consistent with the earlier studies of [20, 21], where the Chebyshev preconditiorieidhization
is shown to be advantageousdn= 1. Our current results indicate that its advantage holds true in low dimensions.
The other two variantspre-uniformand direct-Chebyshewproduce better results than the diréetminimization.

This suggests that the introduction of the Chebyshev measure, either via the sampling distribution or the precondition-
ing matrix, can help the performance. And clearly the Chebyshev preconditigrmachimization pre-Chebyshgv
produces the best results. In fact, in order to achieve near-one success probability, the required number of samples
for the pre-Chebyshewvthe preconditioned;-minimization, is nearly half of that of thdirect-uniform—the direct
£1-minimization.

Next we examine the errors in the reconstructed polynomial interpolation. The results are plotted in Fig. 2. We
observe the same trend for all four implementations—the errors decay as the number of samples is increased. While
this is consistent with the theoretical prediction, we again observe that the preconditieméaimization, thepre-
Chebyshewvproduces superior results than the dirgeminimization, thedirect-uniform The two variants, there-
uniform and direct-Chebyshewffer some improvements over tlagrect-uniform These results are consistent with
those in Fig. 1. From these we conclude that in low dimensions the precondifipmeidimization should be favored
in practice, similar to the established results in one dimensiea () [20, 21].

We now consider the effect of the sparsitgf the target function on the performance of the algorithms. In Fig. 3,
the probability of successful recovery is plotted against increasing level of sparsityen the number of sample
points is fixed atv = 100. It is obvious that with the fixed number of points, the algorithms can recover the target
function only up to a limited sparsity level, beyond which no recovery can be achieved. While this is certainly as
expected, we observe that once again the preconditibrrednimization offers the most effective results. A similar
trend is also observed in Fig. 4, where the reconstruction errors are plotted against increasing level ofssparsity
While all implementations become less accurate and eventually lose accuracy at larger valties feconditioned
version offers the most accurate results. The two variantgréreniformand thedirect-Chebysheare again slightly
better than the direct, -minimization.
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FIG. 2: Reconstruction errovs.number of sample pointsl = 3 ands = 10). Line patterns: dotted-circlelirect-
uniform dotted-triangledirect-Chebyshewsolid-circle, pre-uniform solid-triangle pre-Chebysheya) Total degree
polynomial spacéV}” with P = 10 (M = 286). (b) Full tensor polynomial spacg?” with P = 5 (M = 216).
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FIG. 3: Probability of successful recovews. sparsitys (d = 3 and N = 100). Line patterns: dotted-circlelirect-
uniform dotted-triangledirect-Chebyshewsolid-circle,pre-uniform solid-triangle pre-Chebysheya) Total degree
polynomial spacéV?” with P = 10 (M = 286). (b) Full tensor polynomial spacg?” with P = 5 (M = 216).

4.2 High-dimensional Testsin d =10

We now provide a set of tests similar to those in the previous section but in a higher dimension. In particular, we
present the results ih= 10. Though high dimensionad, = 10 is certainly not exceedingly large. It is chosen mostly
for demonstration purpose, for it allows us to use reasonably high deBjder(the basis polynomials. In this case
(d = 10), the full tensor spac&¢ is not considered because its cardinality is too high to generate the interpolation
matrix with reasonable size. Therefore we focus on the total degree polynomiali&jjags.

Ford = 10, the cardinality (/) of the space is shown in Table 1, for degrees up to five. Despite the rapid growth
of the cardinality, another practical concern is the “gap” between degrees. That is, in order to construct a polynomial
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FIG. 4: Reconstruction errars.sparsitys (d = 3 andN = 100). Line patterns: dotted-circléjrect-uniform dotted-
triangle,direct-Chebyshewsolid-circle,pre-uniform solid-triangle pre-Chebyshe\a) Total degree polynomial space
WP with P = 10 (M = 286). (b) Full tensor polynomial spacg?’ with P = 5 (M = 216).

TABLE 1: The cardinality( ) of total-degree poly-
nomial spacéV ¢ (4) atd = 10
DegreeP 1] 2 3 4 5
CardinalityM | 11 | 66 | 286 | 1001 | 3003

interpolation of certain degree, the number of points must be at least equal to the corresponding cardinality. For
example, if one is able to produéé = 100 samples in a particular application, then the best approximation via the
traditional approaches is of second degree, which requifes 66 samples. The “extra” number of sampléé ¢ M

in this case) will usually produce at most marginal, if any, improvement over the second-degree approximation. The
next notable improvement in the approximation, the third-degree approximation, would require at/leas?86
samples, a significant investment over the avail@ble- 100 samples if the samples are expensive to produce. On the
other hand, thé,-minimization is not restricted to this constraint. Since it works with arbitrary number of samples,
any additional samples could, in principle, produce progressively better approximation.

We first fix the sparsity leve$ and then randomly generate a coefficient ve&tovhich in turn determines the
target function. The four variations of tlfg-minimization are applied to recover the target function. The degree of
the polynomial space is fixed & = 4, whose cardinality is\/ = 1001. Note the tests now belong to the high-
dimensional case af > P discussed in Section 3.2. In Fig. 5 we plot the errors in the reconstruction versus the
number of sample points, with a fixed sparsity levekef 10. All four variants of the implementation demonstrate
same trend—errors decay with increasing number of samples. A notable error reduction occurs aivaround,
which corresponds to the required number of samples to produce successful recovery with large probability. These
are consistent with the theoretical findings. It also can be seen that the two dotted curves, both computed by the direct
£1-minimization algorithm (15), produce notably more accurate results than the two solid curves, which are computed
by the preconditioned, -minimization algorithm (35). This idrastically differenfrom the previous low-dimensional
tests, where the preconditioned algorithm (35) is more accurate.

More tests are conducted and the results at20 are shown in Fig. 6. A similar trend can be seen here, with the
notable error reduction occurring at larger number of samples. This is reasonable because the sparsity level is higher
in this case. Once again, the dirégtminimization algorithm (15) produces notably more accurate results than the
preconditioned algorithm (35). We also remark that the choice of sampling distribution, uniform or Chebyshev, does
not produce sufficient differences in the results.
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FIG. 5: Reconstruction errors.number of sample point& = 10 ands = 10). Line patterns: dotted-circleljrect-
uniform dotted-triangledirect-Chebyshesolid-circle,pre-uniform solid-triangle pre-Chebyshev

10 107 10
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FIG. 6: Reconstruction errors.number of sample pointgl = 10 ands = 20). Line patterns: dotted-circleljrect-
uniform dotted-triangledirect-Chebyshesolid-circle,pre-uniform solid-triangle pre-Chebyshev

We therefore conclude that in the high-dimensional cases Bf P the direct/;-minimization (15) should be
preferred over the preconditioned algorithm (35). This is also consistent with the theoretical findings. Note that for
the preconditioned, -minimization, the required number of samples scalez’dsom (36). And the estimate holds
true for all dimensionality. On the other hand, for the dirgetninimization, the required number of samples scales
as 3" from (23) whend > P. In the test conducted heré, = 10 and P = 4. It is clear that3” < 2¢ and
consequently the direct algorithm requires fewer samples for successful recovery. This explains its better accuracy
than the preconditioned algorithm with the same number of samples.
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5. SUMMARY

In this paper we study thé -minimization method for stochastic collocation in high-dimensional random space. In
particular we focus on a polynomial interpolation type approach using Legendre polynomials, which is a topic of
few studies. We derive the recoverability of theminimization of both direct minimization and Chebyshev pre-
conditioned minimization. The results are largely extensions of the general theorfgsminimization and some
existing ones on the Legendre approach in one dimension. Our results establish the validity of the approach in high-
dimensional space. Moreover, we demonstrate that in low dimensions, the Chebyshev precorfgimimédization

is more efficient than the direét-minimization, consistent with the existing studies in one dimension. On the other
hand, in high dimensions, the opposite result holds true—the direct algorithm becomes more efficient than the Cheby-
shev preconditioned algorithm. Extensive numerical tests verify these theoretical findings. Note that the current work
focuses exclusively on the polynomial recoverability of the method. Our ongoing work is to extend the results to
approximation of general stochastic functions in high-dimensional random spaces.
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