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The idea of `1-minimization is the basis of the widely adopted compressive sensing method for function approxima-
tion. In this paper, we extend its application to high-dimensional stochastic collocation methods. To facilitate practical
implementation, we employ orthogonal polynomials, particularly Legendre polynomials, as basis functions, and focus
on the cases where the dimensionality is high such that one can not afford to construct high-degree polynomial ap-
proximations. We provide theoretical analysis on the validity of the approach. The analysis also suggests that using
the Chebyshev measure to precondition the `1-minimization, which has been shown to be numerically advantageous in
one dimension in the literature, may in fact become less efficient in high dimensions. Numerical tests are provided to
examine the performance of the methods and validate the theoretical findings.
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1. INTRODUCTION

Stochastic computation has received intensive attention in recent years, due to the pressing need to conduct uncertainty
quantification (UQ) in practical computing. Various numerical methods have been developed, among which the most
widely used ones are based on (generalized) polynomial chaos (gPC), c.f. [1, 2]. For practical computing, the gPC
stochastic collocation algorithm is highly popular because it allows one to repetitively use existing deterministic
simulation codes and to render the construction of gPC approximation a post-processing step. The development of
stochastic collocation algorithms became very active, after the introduction of high-order algorithms using sparse
grids [3], and produced many different techniques, cf. [4–14] to name a few. Roughly speaking, the construction of
the gPC approximations takes two major approaches. One is based on interpolation, where the simulation samples are
interpreted by the approximation precisely. The other one is the regression type, which approximately matches the
simulation samples.

The challenge is in high-dimensional spaces, where the number of collocation nodes grows fast. Since each node
represents a full-scale deterministic simulation, the total number of nodes one can afford is often limited, especially
for large-scale problems. This represents a significant difficulty in constructing a gPC-type approximation using the
existing approach—it is often not possible to construct a good polynomial approximation using a very limited number
of simulations in a large dimensional random space.

A more recent development in signal analysis iscompressive sensing, also known ascompressed sampling. Com-
pressive sensing (CS) deals with the situation when there is insufficient information about the target function. This
occurs when the number of samples is less than the cardinality of the polynomial space for the approximation. CS then
seeks to construct a polynomial approximation by minimizing the norm of the polynomial, typically its`1-norm or`0-
norm. The success of the CS methods lies in the assumption that in practice many target functions (signals) aresparse,
in the sense that what appear to be rough signals in the time/space domain may contain only a small number of notable
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terms in their frequency domain. Following the seminal work of [15–18], the theory of CS has generated an enormous
amount of interest in many disciplines and resulted in many newer theoretical results and practical implementations.
Numerous literature on various aspects of CS exists and will not be discussed here.

In a recent work [19], the idea of CS has been extended to stochastic collocation and resulted in a highly flexible
method. With CS, one can employ arbitrary nodal sets with an arbitrary number of nodes. This can be very helpful in
practical computations. In [19], some key properties, such as the probability under which the sparse random response
function can be recovered, are studied. Numerical tests demonstrate that sparsity does occur in practical stochastic
problems and the method can be effective for problems in large dimensions.

This paper extends the work of [19]. The particular focus of this paper is on the recoverability of stochastic
solutions in high-dimensional random spaces. This is relevant because in UQ simulations the dimensionality is often
determined by the number of random parameters and can be very large. It is not uncommon to encounter practical
stochastic problems with dimensions on the order of hundreds, in addition to the traditional space and time dimensions.

In this paper, we will adopt orthogonal polynomials such as Legendre polynomials as the basis functions, as
opposed to trigonometric functions used in the traditional CS. Many of the current results are motivated by [20, 21],
recent studies oǹ1-minimization using Legendre polynomials in one dimension (d = 1). Here we will provide
theoretical analysis on the convergence of such an approach in high dimensionsd À 1. In this case, the cardinality
of the polynomial space,M , grows very fast (often exponentially fast) when its degree (P ) is increased. We will
focus on the case where the polynomial degree is less than the dimensionality, i.e.,P < d. The condition under
which the`1-minimization approach can recover the unknown stochastic function is presented, and a set of numerical
tests are provided to examine the performance of the method. An interesting variation of the approach, Chebyshev
preconditioning, is also studied. This approach has been shown to be more efficient in one dimension withd = 1
[20, 21]. Here we demonstrate that in high dimensions whend > P , the Chebyshev preconditioned`1-minimization
may become less effective than the direct`1-minimization.

We remark that the multi-dimensional polynomial approximation, particularly polynomial interpolation, has been
intensively studied for a long time. It remains an active and challenging field. The use of`1-minimization represents
a drastically different approach. And for this reason we will not review the traditional approximation theories and
methods. Also, even though we present the results in the context of high-dimensional stochastic computation, they
can be equally viewed from the more traditional approximation theory perspective.

Finally we note that one of the advantages of the`1-minimization is that it allows one to conduct polynomial
approximations on unstructured nodes. (Any inherent structure of the nodes would usually incur fast growth of the
number of the nodes in high dimensions, e.g., the sparse grids.) The traditional approximation method on unstructured
nodes is polynomial regression. However, two of the recent developments are worth mentioning. One is the low-rank
approximation in high dimensions [22] and the other is the least orthogonal interpolation [23].

The paper is organized as follows. After presenting the setup of the problem in Section 2, we present the main
results in Section 3, where recoverability of both the direct`1-minimization and Chebyshev preconditioned`1-
minimization are discussed. Numerical tests are provided in Section 4 to verify the theoretical findings, before the
conclusions in Section 5.

2. STOCHASTIC COLLOCATION: THE SETUP

Here we adopt the standard setting for stochastic collocation methods. LetZ = (Z1, . . . , Zd) ∈ Rd, d ≥ 1, be a set
of (independent) random variables modeling the random inputs for a partial differential equation (PDE),





ut(x, t, Z) = L(u), D × (0, T ]× IZ ,

B(u) = 0, ∂D × [0, T ]× IZ ,

u = u0, D × {t = 0} × IZ ,

(1)

whereIZ ⊆ Rd, d ≥ 1, is the range ofZ, D ∈ Rk, k = 1, 2, or 3, is the physical domain, andT > 0. HereL stands
for a (nonlinear) differential operator andB a boundary condition operator. We equipZ with a distribution function
ν(z) = Prob(Z ≤ z), wherez ∈ Rd is real. For each component ofZ, let νi(zi) = Prob(Zi ≤ zi), zi ∈ R, be its
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marginal distribution function. Obviously, when mutual independence among the components is assumed, we have
ν(z) =

∏d
i=1 νi(zi). We remark that independence is a common assumption used in stochastic computing and is

adopted here as well.
In the stochastic collocation method, one first chooses a set of nodesΘN = {z(j)}N

j=1 ⊂ IZ , whereN ≥ 1 is the
number of nodes. And then for eachj = 1, . . . , N , one solves adeterministic problem(1) at the nodez(j),





ut(x, t, z(j)) = L(u), D × (0, T ],

B(u) = 0, ∂D × [0, T ],
u = u0, D × {t = 0},

(2)

and obtainsu(j) , u(x, t, z(j)). Hereafter we will suppress the notions ofx and t whenever possible, with the
understanding that our statements are made for all fixedx andt.

Finally, once the pairings
(
z(j), u(j)

)
, j = 1, . . . , N , are obtained, the task is to construct a functionw(Z), usually

residing in a proper polynomial space in term ofZ, such thatw(Z) ≈ u(Z) in a proper sense.
In the construction of the approximating functionw(Z), the pairing information can be enforced exactly by requir-

ing w(z(j)) = u(j) for all j = 1, . . . , N . This usually leads to a (polynomial) interpolation problem. Alternatively,
one can adopt a regression type approach which does not require precise matching of the function values at each node.

In this paper, we will adopt the interpolation type approach and focus exclusively on polynomial interpola-
tion. Also we assume thatIZ is bounded, and with a proper scaling we confine ourselves to a hypercube, i.e.,
Z ∈ [−1, 1]d, d ≥ 1.

2.1 Multi-dimensional Polynomial Spaces

We will use the standard polynomial space to construct our interpolation. To this end, let us first define a one-
dimensional polynomial space. For eachi = 1, . . . , d, let W i,ki be the space of polynomials of degree up toki.
That is,

W i,ki ,
{

p : [−1, 1] → R : p ∈ span{(zi)m}ki
m=0

}
. (3)

For multi-dimensional casesd > 1, we adopt multi-indexk = (k1, . . . , kd) with norm |k| = k1 + · · · + kd. The
standard polynomial space is the space of alld-dimensional polynomials of degree up to an integer numberP . We
denote such a space thetotal degree polynomial spaceW d

P , i.e.,

W d
P =

⊗

|k|≤P

W i,ki . (4)

The cardinality of the space is

dim W d
P =

(
P + d

d

)
=

(P + d)!
P !d!

. (5)

Another construction often employed in theoretical analysis is to let the polynomial degree in each variable go up
to P . This results in thefull tensor polynomial space,

Zd
P =

⊗

ki≤P

W i,ki . (6)

The cardinality of this space is
dim Zd

P = (P + 1)d. (7)

Note that whend À 1 the cardinality of both polynomial spaces grows very fast when the degree (P ) is increased,
resulting in the so-called “curse of dimensionality.” The growth forZd

P is much faster than that ofW d
P . Therefore in

practice the full tensor polynomial spaceZd
P is rarely used ford > 5.

Volume 2, Number 3, 2012



282 Yan, Guo, & Xiu

2.2 Multi-dimensional Orthogonal Polynomials

We employ orthogonal polynomials as basis functions. For eachi = 1, . . . , d, let {lm(zi)} be a set of orthogonal
polynomials in variablezi that satisfy the following orthogonality condition

∫ 1

−1

lm(zi)ln(zi) dνi(zi) = δmn, m, n, = 0, 1, 2, . . . , (8)

wherem andn are the degrees of the polynomials andνi is the probability measure. Note here the polynomials
have been normalized. Here we focus on the continuous case wheredνi(zi) = wi(zi) dzi, wherew(xi) is the weight
function satisfying the usual conditions to admit the existence of the orthogonal polynomials. The connection between
the polynomial weights and the probability measure is well established, cf. [2].

In the multi-dimensional case, the orthogonal polynomials are constructed as tensor products of the one-dimensional
polynomials in each variable.

Lk(z) =
∏

k∈Λ

lki(zi), (9)

whereΛ is an index set, determined by the polynomial space (4) or (6). The orthogonality relation becomes
∫

[−1,1]d
Lm(z)Ln(z) dν(z) = δmn, ∀m,n ∈ Λ,

where the measuredν(z) = dν1(z1) · · · dνd(zd) is the product of the one-dimensional measures, andδmn =
δm1n1 · · · δmdnd

is thed-dimensional Kronecker delta function satisfyingδmn = 1 if m = n, andδmn = 0 oth-
erwise.

Upon choosing a proper ordering scheme for the multi-index, we can order the multi-dimensional polynomials via
a single index. The orthogonality becomes

∫

[−1,1]d
Lm(z)Ln(z) dν(z) = δmn, 1 ≤ m,n ≤ M, (10)

where each single-indexm corresponds uniquely to a multi-index(m1, . . . ,md), andM is the cardinality of the
underlying polynomial space (5) or (7). (A more detailed discussion on the ordering can be found in [24].)

In this paper we will focus on Legendre polynomials, whose weight function is a constantdν(z) = (1/2)ddz.

3. STOCHASTIC COLLOCATION VIA `1-MINIMIZATION

We now focus on the interpolation approach. We remark that multi-dimensional polynomial interpolation on arbitrary
nodes is a fundamentally difficult problem. Here we adopt the`1-minimization approach to circumvent the difficulty.
Upon choosing a degreeP for the polynomial approximation, the target functionu(Z) can be approximated by

w(Z) =
M∑

m=1

cmLm(Z). (11)

The interpolation condition ofw(z(i)) = u(i), i = 1, . . . , N , results in the following problem

Ac = f , (12)

wherec = (c1, . . . , cM )T ∈ RM is the coefficient vector,f = (u(1), . . . , u(N))T is the vector for the function
samples, andA = (an,m) is the Vandermonde-type interpolation matrix whose entries are

(an,m) = Lm(z(n)), n = 1, . . . , N, m = 1, . . . , M. (13)
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The problem is determined whenN = M , overdetermined whenN > M , and underdetermined whenN < M .
It is the underdetermined case that is considered here. This is often encountered in practice, especially in high

dimensions. Whend À 1, the cardinality of the polynomial spaces(M) becomes extremely large, see (5) or (7),
even when the order of the polynomials is moderate. On the other hand, in many practical applications the evaluation
of the target functionu is expensive—it requires large-scale numerical simulation of the system (2). Consequently
one often has only a limited number of samples. In such cases,N ¿ M and the problem (12) becomes severely
underdetermined.

One way to circumvent the difficulty is to employ the idea of compressive sensing. Define the`1-norm of the
coefficient vector as

‖c‖1 =
M∑

m=1

|cm|. (14)

The coefficient vector can be solved by the following`1-minimization problem

min ‖c‖1 subject to Ac = f . (15)

This is a common approach in the context of CS, where a large amount of literature exists. Other forms of mini-
mization exist. For example, instead of the`1-norm, one can adopt thè0-norm, defined as‖c‖0 := #{m : cm 6= 0}.
Also, the interpolation conditionAc = f can be relaxed to‖Ac− f‖ ≤ ε, for some tolerance valueε, resulting in a
regression type “de-noising” approach.

In what follows we will focus on the traditional`1-minimization form (15). The distinct features of our problem
are (i) high dimensionalityd À 1 and (ii) the use of orthogonal polynomials, particularly the Legendre polynomials.
Despite the large amount of the literature, such a problem has not been well studied.

3.1 Auxiliary Results

Here we summarize some existing results that are useful in deriving the main results in this paper. For a vector
v = (v1, . . . , vM )T ∈ RM , we equip it with`p-norm

‖v‖p =

(
M∑

m=1

|vm|p
)1/p

, 1 ≤ p < ∞,

with ‖v‖∞ = maxm=1,...,M |vm|. The vector is calleds-sparse if‖v‖0 := #{m : vm 6= 0} ≤ s.

Definition 3.1. The error of the bests-term approximation of a vectorv ∈ RM in `p-norm is defined as

σs,p(v) = inf
‖y‖0≤s

‖y − v‖p. (16)

Clearly,σs,p(v) = 0 if v is s-sparse.

Definition 3.2 ([15, 16]). Let A be anN ×M matrix. Define the restricted isometry constant(RIC) δs < 1 to be the
smallest positive number, such that the inequality

(1− δs)‖c‖22 ≤ ‖Ac‖22 ≤ (1 + δs)‖c‖22 (17)

holds for allc ∈ RM of sparsity at mosts. Then the matrixA is said to satisfy thes-restricted isometry property(RIP)
with restricted isometry constantδs.

Theorem 1(Sparse recovery for RIP-matrices [16, 21, 25]). LetA ∈ RN×M be a matrix with RICδs such that

δs < 0.307. (18)
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For a givenc̃ ∈ RM , let c be the solution of thè1-minimization

min ‖y‖1 subject to Ay = Ac̃. (19)

Then the reconstruction error satisfies

‖c− c̃‖2 ≤ C
σs,1(c̃)√

s
(20)

for some constantC > 0 that depends only onδs. In particular, if c̃ is s-sparse then reconstruction is exact, i.e.,
c = c̃.

Following [20], we call the orthonormal polynomial system{Lm(z)} defined by (10) abounded orthonormal
systemif it is uniformly bounded,

sup
m
‖Lm‖∞ = sup

m
sup

z
|Lm(z)| ≤ K, (21)

for someK ≥ 1.

Theorem 2(RIP for bounded orthonormal systems [20, 21]). LetA ∈ RN×M be the interpolation matrix with entries
{an,m = Lm(z(n))}1≤n≤N,1≤m≤M from (13), where{Lm} is a bounded orthonormal system satisfying(21) and
orthogonality(10), and the pointsz(n), n = 1, . . . , N , are i.i.d. random samples drawn from the measureν in (10).
Assume that

N ≥ Cδ−2K2s log3(s) log(M), (22)

then with probability at least1 − M−γ log3(s), the RICδs of (1/
√

N)A satisfiesδs ≤ δ. Here theC, γ > 0 are
universal constants.

3.2 Main Result: Recoverability for d ≥ P

We are now ready to discuss the high-dimensional cased À 1. In particular, we consider the total degree polynomial
spaceW d

P (4) and the case where its cardinality becomes so large that one can not afford a high-degree polynomial
P . In such a case, we haved ≥ P . The following result applies to Legendre polynomial construction, i.e.,dν(z) =
(1/2)d dz in (10).

Theorem 3(Recoverability of direct̀1-minimization ford ≥ P ). Letz(1), . . . , z(N) be independent random samples
drawn from the uniform distribution on[−1, 1]d, and

N & 3P s log3(s) log(M), (23)

whereM is the cardinality of the polynomial spaceW d
P (5) with d ≥ P , ands is the sparsity level of a given vector

c̃ ∈ RM . Letw ∈ W d
P be the polynomial approximation in the form of(11)using Legendre polynomials, i.e.,

w(z) =
M∑

m=1

cmLm(z),

where the coefficient vectorc is solved by thè1-minimization problem(15)with the data vectorf = Ac̃ for the given
c̃.

Then with probability at least1 − M−γ log3(s), whereγ is a universal constant, the vectorc̃ is recoverable to
within a factor of its bests-term approximation in the sense that

‖c− c̃‖2 . σs,1(c̃)√
s

. (24)
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Proof. Themk-th degree one-dimensional Legendre polynomiallmk
satisfies ([26])

‖lmk
‖∞ ≤ (2mk + 1)1/2. (25)

Then thed-dimensional Legendre polynomials satisfy

‖Lm‖∞ ≤
d∏

k=1

(2mk + 1)1/2. (26)

Since the polynomials are inW d
P , |m| ≤ P , then whend ≥ P , the right-hand-side is maximized whenP of themk ’s

are one and the rest are zero. We then obtain the bound on the Legendre polynomials

‖Lm‖∞ ≤ 3P/2. (27)

Using Theorem 2 for the bounded orthonormal system{Lm} with constantK = 3P/2 and with uniform distribution
from the orthogonality of Legendre polynomials, we obtain the asymptotic estimate (23) to ensure the RIC is less than
any fixed value. The conclusion then follows by using Theorem 1.

This result gives a bound on the number of samples required to accurately recover the unknown stochastic function
u if it is in polynomial form.

A similar estimate can be applied to the full tensor polynomial spaceZd
P , whose cardinality isM = (P + 1)d.

Using the one-dimensional bound (25), we obtain

‖Lm‖∞ ≤ (2P + 1)d/2, max
1≤i≤d

mi ≤ P.

Then the required number of samplesN obtained by Theorem 2 is

N & Mδ−2s log3(s) log(M). (28)

This bound is not useful, because the required number of samplesN is now larger thanM . And the interpolation
problem becomes over-determined. This indicates that in multi-dimensional spacesd > 1, the full tensor polynomial
spaceZd

P is not proper for the direct̀1-minimization.

3.3 Main Result: Chebyshev Preconditioning

The interpolation conditionAc = f can be preconditioned. Though mathematically equivalent, the preconditioned
version can be advantageous in practice and result in more accurate solutions. It has been reported in [20, 21] that
Chebyshev preconditioning works well ind = 1 for the Legendre polynomial approximation. Here we analyze the
property of the Chebyshev preconditioning in multi-dimensional case (d > 1).

Consider the following one-dimensional function

qm(zi) =
√

π

2
(1− z2

i )1/4lm(zi), zi ∈ [−1, 1], (29)

wherelm(zi) is the orthonormal Legendre polynomial in variablezi, i = 1, . . . , d. The system{qm} is then orthonor-
mal with respect to the Chebyshev probability measuredω(zi) = π−1(1− z2

i )−1/2 dzi on [−1, 1], i.e.,

∫ 1

−1

qm(zi)qn(zi) dω(zi) = δmn. (30)

For dimensiond > 1, let

Qk(z) =
d∏

i=1

qki(zi), (31)
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where the multi-indexk can be chosen, according to the total-degree polynomial spaceW d
P (4), by

|k| =
d∑

i=1

ki ≤ P. (32)

Alternatively, one can use
max

i
ki = P, (33)

to correspond to the full tensor polynomial spaceZd
P (6).

Lemma 4. The system{Qk} is uniformly bounded on[−1, 1]d and satisfies‖Qk‖∞ ≤ 2d/2. Moreover, it is orthonor-
mal with respect to the product Chebyshev probability measure

dµ(z) =
d∏

i=1

π−1(1− (zi)2)−1/2 dzi, z ∈ [−1, 1]d. (34)

Note the result holds for both choices for the index set,(32)and (33).

Proof. At degreeki, the following function can be bounded ([26])

(1− z2
i )1/4|lki | < 2π−1/2, ∀zi ∈ [−1, 1],

wherelki is the one-dimensional Legendre polynomials of orderki. Then the functions (29) satisfy

‖qki(zi)‖∞ =
∥∥∥∥
√

π

2
(1− z2

i )1/4lki(zi)
∥∥∥∥
∞
≤

√
π

2
× 2π−1/2 =

√
2.

The system{Qk} from (31) is then uniformly bounded and satisfies‖Qk‖∞ ≤ 2d/2. The orthogonality ofQ follows
directly from (30).

We now formulate the preconditioned version of the Legendre`1-minimization problem. Recall the original`1-
minimization problem (15) and define anN × N diagonal matrixW = (wn,m), whose entrieswn,m = (π/2)d/2

∏d
i=1(1− (z(n)

i )2)1/4δmn. The preconditioned̀1-minimization problem takes the following form

min ‖c‖1 subject to WAc = Wf . (35)

Note that using the definition (31), the(N ×M) matrixWA has entries preciselyQm(z(n)), 1 ≤ n ≤ N, 1 ≤ m ≤
M , whereN is the number of sample points andM is the cardinality of the basis functions{Q}. The following result
then holds.

Theorem 5 (Recoverability of preconditioned̀1-minimization). Let z(1), . . . , z(N) be independent random sam-
ples drawn from the Chebyshev measure(34). Consider the Chebyshev preconditioned`1-minimization problem(35),
where the data vectorf = Ac̃ for a given vector̃c ∈ RM with sparsity levels. Letc be the solution of the precondi-
tioned minimization(35). Then there exists

N & 2ds log3(s) log(M), (36)

whereM is the cardinality of the polynomial spaceW d
P or Zd

P , such that with probability at least1 −M−γ log3(s),
whereγ is a universal constant, the vectorc̃ can be recovered in the sense that

‖c− c̃‖2 . σs,1(c̃)√
s

. (37)
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Proof. The proof is a trivial exercise of using the bound‖Qk‖∞ ≤ 2d/2 derived above.

This result establishes the recoverability of the Chebyshev preconditioned`1-minimization. The estimate of the
required number of pointsN in (36) applies to both spacesW d

P andZd
P , and for arbitrary values ofd andP . Com-

pared to the result of direct`1-minimization (23) ford ≥ P , whereN scales with3P , the number of points for the
preconditioned̀ 1-minimization scales with2d and can be larger, for sufficiently large dimensionsd with moderate
polynomial orderP . Therefore, in very high dimensional spaces the Chebyshev preconditioned`1-minimization may
be less efficient than the direct`1-minimization because it requires more sample points. This is in contrast to the
established result ford = 1, where the preconditioned̀1-minimization is more effective [20, 21].

4. NUMERICAL TESTS

In this section we provide numerical tests to verify the theoretical findings. While there exist a large number of
studies on the performance of`1-minimization, we here focus exclusively on the Legendre polynomial case. For the
implementation of the minimization, we employ the available tools such as Spectral Projected Gradient algorithm
(SPGL1) from [27] that was implemented in the MATLAB package SPGL1 [28].

We conduct two groups of tests, each with a given target function in polynomial form serving as the exact solution.
The first group is at relatively low dimension ofd = 3, which allows us to reach higher polynomial degrees and also
to conduct tests in the full tensor product spaceZd

P , as well as the total degree spaceW d
P . Another group of tests

are conducted in a higher dimension ofd = 10, where the conditiond ≥ P in Theorem 3 is satisfied. The goal of
these tests is to examine the recoverability results from the theorems of the paper. We remark that the dimensionality
of d = 10 bears no special meaning, as the results from other dimensions such asd = 15, 20, demonstrate similar
behavior. We choose to demonstrate the results ofd = 10 largely because it allows us to employ sufficiently high
order polynomial spaces to examine the asymptotic theoretical estimates. For more practical simulations at larger
dimensions, see [19]. Another remark is that in the tests we did not employ PDE. In practical stochastic collocation
computing, the PDE solver is usually a “black-box” to provide function evaluations at the sample points. Here we
employ analytically known functions to provide the sample values, and this is merely for benchmarking purpose.

In what follows we will use the term “direct-uniform” for the direct`1-minimization from Theorem 3 and “pre-
Chebyshev” for the preconditioned̀1-minimization from Theorem 5, where the former utilizes samples from uniform
distribution with the direct̀ 1-minimization (15) and the latter Chebyshev distribution with the preconditioned`1-
minimization (35). We also introduce two other variants of the implementation. One is “direct-Chebyshev” where
we draw samples from the Chebyshev distribution and apply the direct`1-minimization (15). The other is “pre-
uniform” where we draw samples from the uniform distribution and then apply the preconditioned`1-minimization
(35). Though no theoretical results are available for these two variants, they produce comparable results numerically.
We include them here for the sake of completeness.

4.1 Low-dimensional Tests in d = 3

In this set of tests we examine both the total-degree polynomial spaceW d
P (4) and the full tensor polynomial space

Zd
P (6). The target (exact) function is in polynomial form. We first choose a sparsity levels and then fixs coefficients

of the polynomial while keeping the rest of the coefficients zero. The values of thes non-zero coefficients are drawn
from a Gaussian distribution with zero mean and unit variance. The procedure produces target coefficientsc̃ that we
seek to recover using thè1-minimization algorithms.

We first examine the frequency of successful recoveries. This is accomplished by conducting 500 trials of the
algorithms and counting the successful ones. A recovery is considered successful when the resulting coefficient vector
c satisfies‖c− c̃‖∞ ≤ 10−3. As both Theorem 3 and 5 indicate, the`1-minimization will reach a success probability
of 1 −M−γ log3(s) only when a sufficient number of sample points are used. This is clearly demonstrated in Fig. 1,
where the success rate is plotted against increasing numbers of sample points, with a fixed sparsity level ofs = 10.
All four implementations,direct-uniform, pre-Chebyshev, direct-Chebyshev, andpre-uniform, are examined in both
polynomial spacesW d

P andZd
P . The results clearly show that if the number of points does not reach a critical value,
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FIG. 1: Probability of successful recoveryvs.number of sample points(d = 3 ands = 10). Line patterns: dotted-
circle,direct-uniform; dotted-triangle,direct-Chebyshev; solid-circle,pre-uniform; solid-triangle,pre-Chebyshev. (a)
Total degree polynomial spaceWP

d with P = 10 (M = 286). (b) Full tensor polynomial spaceZP
d with P = 5

(M = 216).

there will be no recovery at all. A large portion of successful recovery can be achieved only if the number of samples
is sufficiently big. And this holds true for all four variants of the implementations and in both polynomial spaces.

We also observe that the best success rate is achieved by thepre-Chebyshev, i.e., the preconditioned̀1-minimization
of Theorem 5. And the least effective approach appears to be thedirect-uniform, i.e., the direct̀ 1-minimization of
Theorem 3. This is consistent with the earlier studies of [20, 21], where the Chebyshev preconditioned`1-minimization
is shown to be advantageous ind = 1. Our current results indicate that its advantage holds true in low dimensions.
The other two variants,pre-uniformand direct-Chebyshev, produce better results than the direct`1-minimization.
This suggests that the introduction of the Chebyshev measure, either via the sampling distribution or the precondition-
ing matrix, can help the performance. And clearly the Chebyshev preconditioned`1-minimization (pre-Chebyshev)
produces the best results. In fact, in order to achieve near-one success probability, the required number of samples
for the pre-Chebyshev, the preconditioned̀1-minimization, is nearly half of that of thedirect-uniform—the direct
`1-minimization.

Next we examine the errors in the reconstructed polynomial interpolation. The results are plotted in Fig. 2. We
observe the same trend for all four implementations—the errors decay as the number of samples is increased. While
this is consistent with the theoretical prediction, we again observe that the preconditioned`1-minimization, thepre-
Chebyshev, produces superior results than the direct`1-minimization, thedirect-uniform. The two variants, thepre-
uniform anddirect-Chebyshev, offer some improvements over thedirect-uniform. These results are consistent with
those in Fig. 1. From these we conclude that in low dimensions the preconditioned`1-minimization should be favored
in practice, similar to the established results in one dimension (d = 1) [20, 21].

We now consider the effect of the sparsitys of the target function on the performance of the algorithms. In Fig. 3,
the probability of successful recovery is plotted against increasing level of sparsitys, when the number of sample
points is fixed atN = 100. It is obvious that with the fixed number of points, the algorithms can recover the target
function only up to a limited sparsity level, beyond which no recovery can be achieved. While this is certainly as
expected, we observe that once again the preconditioned`1-minimization offers the most effective results. A similar
trend is also observed in Fig. 4, where the reconstruction errors are plotted against increasing level of sparsitys.
While all implementations become less accurate and eventually lose accuracy at larger values ofs, the preconditioned
version offers the most accurate results. The two variants, thepre-uniformand thedirect-Chebyshev, are again slightly
better than the direct̀1-minimization.
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FIG. 2: Reconstruction errorvs.number of sample points(d = 3 ands = 10). Line patterns: dotted-circle,direct-
uniform; dotted-triangle,direct-Chebyshev; solid-circle,pre-uniform; solid-triangle,pre-Chebyshev. (a) Total degree
polynomial spaceWP

d with P = 10 (M = 286). (b) Full tensor polynomial spaceZP
d with P = 5 (M = 216).
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FIG. 3: Probability of successful recoveryvs.sparsitys (d = 3 andN = 100). Line patterns: dotted-circle,direct-
uniform; dotted-triangle,direct-Chebyshev; solid-circle,pre-uniform; solid-triangle,pre-Chebyshev. (a) Total degree
polynomial spaceWP

d with P = 10 (M = 286). (b) Full tensor polynomial spaceZP
d with P = 5 (M = 216).

4.2 High-dimensional Tests in d = 10

We now provide a set of tests similar to those in the previous section but in a higher dimension. In particular, we
present the results ind = 10. Though high dimensional,d = 10 is certainly not exceedingly large. It is chosen mostly
for demonstration purpose, for it allows us to use reasonably high degree (P ) for the basis polynomials. In this case
(d = 10), the full tensor spaceZd

P is not considered because its cardinality is too high to generate the interpolation
matrix with reasonable size. Therefore we focus on the total degree polynomial spaceW d

P (4).
Ford = 10, the cardinality (M ) of the space is shown in Table 1, for degrees up to five. Despite the rapid growth

of the cardinality, another practical concern is the “gap” between degrees. That is, in order to construct a polynomial
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FIG. 4: Reconstruction errorvs.sparsitys (d = 3 andN = 100). Line patterns: dotted-circle,direct-uniform; dotted-
triangle,direct-Chebyshev; solid-circle,pre-uniform; solid-triangle,pre-Chebyshev. (a) Total degree polynomial space
WP

d with P = 10 (M = 286). (b) Full tensor polynomial spaceZP
d with P = 5 (M = 216).

TABLE 1: The cardinality(M) of total-degree poly-
nomial spaceW d

P (4) atd = 10
DegreeP 1 2 3 4 5

CardinalityM 11 66 286 1001 3003

interpolation of certain degree, the number of points must be at least equal to the corresponding cardinality. For
example, if one is able to produceN = 100 samples in a particular application, then the best approximation via the
traditional approaches is of second degree, which requiresM ≥ 66 samples. The “extra” number of samples (N > M
in this case) will usually produce at most marginal, if any, improvement over the second-degree approximation. The
next notable improvement in the approximation, the third-degree approximation, would require at leastM = 286
samples, a significant investment over the availableN = 100 samples if the samples are expensive to produce. On the
other hand, thè1-minimization is not restricted to this constraint. Since it works with arbitrary number of samples,
any additional samples could, in principle, produce progressively better approximation.

We first fix the sparsity levels and then randomly generate a coefficient vectorc̃ which in turn determines the
target function. The four variations of the`1-minimization are applied to recover the target function. The degree of
the polynomial space is fixed atP = 4, whose cardinality isM = 1001. Note the tests now belong to the high-
dimensional case ofd > P discussed in Section 3.2. In Fig. 5 we plot the errors in the reconstruction versus the
number of sample points, with a fixed sparsity level ofs = 10. All four variants of the implementation demonstrate
same trend—errors decay with increasing number of samples. A notable error reduction occurs at aroundN ∼ 100,
which corresponds to the required number of samples to produce successful recovery with large probability. These
are consistent with the theoretical findings. It also can be seen that the two dotted curves, both computed by the direct
`1-minimization algorithm (15), produce notably more accurate results than the two solid curves, which are computed
by the preconditioned̀1-minimization algorithm (35). This isdrastically differentfrom the previous low-dimensional
tests, where the preconditioned algorithm (35) is more accurate.

More tests are conducted and the results ats = 20 are shown in Fig. 6. A similar trend can be seen here, with the
notable error reduction occurring at larger number of samples. This is reasonable because the sparsity level is higher
in this case. Once again, the direct`1-minimization algorithm (15) produces notably more accurate results than the
preconditioned algorithm (35). We also remark that the choice of sampling distribution, uniform or Chebyshev, does
not produce sufficient differences in the results.
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FIG. 5: Reconstruction errorvs.number of sample points(d = 10 ands = 10). Line patterns: dotted-circle,direct-
uniform; dotted-triangle,direct-Chebyshev; solid-circle,pre-uniform; solid-triangle,pre-Chebyshev.
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FIG. 6: Reconstruction errorvs.number of sample points(d = 10 ands = 20). Line patterns: dotted-circle,direct-
uniform; dotted-triangle,direct-Chebyshev; solid-circle,pre-uniform; solid-triangle,pre-Chebyshev.

We therefore conclude that in the high-dimensional cases ofd ≥ P the direct`1-minimization (15) should be
preferred over the preconditioned algorithm (35). This is also consistent with the theoretical findings. Note that for
the preconditioned̀1-minimization, the required number of samples scales as2d from (36). And the estimate holds
true for all dimensionality. On the other hand, for the direct`1-minimization, the required number of samples scales
as 3P from (23) whend ≥ P . In the test conducted here,d = 10 and P = 4. It is clear that3P < 2d and
consequently the direct algorithm requires fewer samples for successful recovery. This explains its better accuracy
than the preconditioned algorithm with the same number of samples.
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5. SUMMARY

In this paper we study thè1-minimization method for stochastic collocation in high-dimensional random space. In
particular we focus on a polynomial interpolation type approach using Legendre polynomials, which is a topic of
few studies. We derive the recoverability of the`1-minimization of both direct minimization and Chebyshev pre-
conditioned minimization. The results are largely extensions of the general theories on`1-minimization and some
existing ones on the Legendre approach in one dimension. Our results establish the validity of the approach in high-
dimensional space. Moreover, we demonstrate that in low dimensions, the Chebyshev preconditioned`1-minimization
is more efficient than the direct`1-minimization, consistent with the existing studies in one dimension. On the other
hand, in high dimensions, the opposite result holds true—the direct algorithm becomes more efficient than the Cheby-
shev preconditioned algorithm. Extensive numerical tests verify these theoretical findings. Note that the current work
focuses exclusively on the polynomial recoverability of the method. Our ongoing work is to extend the results to
approximation of general stochastic functions in high-dimensional random spaces.
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