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The inverse problem considered here is the estimation of the distribution of a nonobserved random variable X , linked
through a time-consuming physical model H to some noisy observed data Y . Bayesian inference is considered to account
for prior expert knowledge on X in a small sample size setting. A Metropolis-Hastings-within-Gibbs algorithm is used
to compute the posterior distribution of the parameters of the distribution of X through a data augmentation process.
Since running H is quite expensive, this inference is achieved by a kriging emulator interpolating H from a numerical
design of experiments (DOE). This approach involves several errors of different natures and, in this article, we pay effort
to measure and reduce the possible impact of those errors. In particular, we propose to use the so-called DAC criterion
to assess in the same exercise the relevance of the DOE and the prior distribution. After describing the calculation of
this criterion for the emulator at hand, its behavior is illustrated on numerical experiments.
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1. INTRODUCTION

The probabilistic treatment of uncertainties is gaining fast growing interest in numerous industrial fields. Designing
and predicting the behavior of complex mechanisms in various environments benefits from increasing computational
means, and numerical simulation has become a well established domain of engineering. In such settings, a physical
phenomenon of interest is implemented through a so-called computer code, often seen as a black-box, that involves
a set of input variables to be calibrated. Such variables can be considered uncertain, because they reflect intrinsic
randomness or because any information to calibrate them is noisy or indirect. Therefore, besides the uncertainty
propagation challenges when dealing with complex and high CPU-time demanding physical models, one of the key
issues regards the quantification of the sources of uncertainties.

A major difficulty is linked to the limited sampling information directly available on uncertain input variables. A
simple example, that motivated the present study, is the prediction of a river water level using hydraulical codes: one
of their most influent inputs is the river bed friction, which is uncertain by nature and for which no observation is
directly available. This parameter summarizes a set of local geomorphological effects, the consequence of which is
discernible only by observing the fluctuations of the output variable, namely the water level.

For such variables, it is highly beneficial (a) to integrate expert judgment into the quantification, such as likely
bounds on physical intervals or more elaborate probabilistic information, provided this judgment is reliable, and (b) to
integrate indirect information connected to the uncertain variable of interest through a physical model. The recovery
of indirect information generally involves the probabilistic inversion of a computer simulatorH implementing this
model. The situation of indirect information can be summarized by the following equation:

Yi = H(Xi, di) + Ui, i ∈ {1, . . . , n}, (1)
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whereYi ∈ R is an observable output,Xi ∈ Rq is a nonobserved input,di ∈ Rq2 is an observed input related to the
experimental conditions, andUi ∈ Rp is a measurement error. The purpose is to estimate the distributionF of the
random vectorsXi from the observations(yi, i = 1, . . . , n), knowing that the functionH cannot be inverted formally
or numerically in due time.

Many approaches are possible to approximate the solution of this inverse problem (provided it exists), as lineariz-
ing the physical modelH around a fixed pointx0 (see Celeux et al. [1]), or using a non linear approximation of the
functionH obtained through kriging and making use of a stochastic procedure with this nonlinear approximation of
H (see Barbillon et al. [2] and Li and Sudjianto [3]). The innovation proposed here is to consider a Bayesian approach
of the problem. Not only it allows to address both issues (a) and (b) simultaneously, but it can be helpful, especially,
to avoid identifiability problems not investigated by the former approaches. In this framework,F is given a prior dis-
tribution, and the inversion problem becomes conditioning the prior knowledge to the available indirect observations,
which results in the posterior distribution ofF .

Nonetheless, the technical choices implied by solving this inverse problem in a Bayesian statistical setting are
likely to produce several kinds of error, the combination of which potentially threatens the relevance of the results.
They are listed beneath:

• Estimation error:Usually the sample sizen is small with respect to the dimension of the problem, and the
variance of the estimators of the parameters definingF can be expected to be large, even if some additive
knowledge may be incorporated through a choice of an informative prior distribution;

• Emulator error:SinceH is too complex, it is needed to replace it with an emulatorĤ, pursuing the ideas of
Barbillon et al. [2], and the discrepancy betweenH andĤ could induce an important error;

• Algorithmic error: To proceed to statistical inference, it is needed to use complex stochastic algorithms. In
the Bayesian setting, those algorithms are Monte Carlo Markov Chain (MCMC) algorithms which produce
Markov chains converging to the desired posterior distributions. But, controlling the convergence of the MCMC
algorithms towards their limit distributions is essential to get reliable estimates.

• Prior uncertainty:The prior knowledge on the parameters definingF is expected to produce regularized es-
timates with smaller variances than maximum likelihood estimates. But eliciting reliable information from
experts could be difficult and wrong prior information can severely influence the inference.

Beyond the estimation problem, this article is mainly concerned with the assessment of the quality of the proposed
estimates. It implies to measure and control the above-mentioned error sources. In this context, we focus on theprior
error which received little attention and propose to measure it with a criterion, the data agreement criterion (DAC),
well-adapted for emulators defined on a compact set. Obviously those different error sources are linked and their
relations for uncertainty analysis with small samples are discussed. The article is organized as follows. In Section 2,
the MCMC algorithm for a Bayesian estimation of an emulator of the model (1) is presented and the possible error
sources are precisely described. Then, the DAC criterion to measure the prior error is presented in Section 3 as the
resulting strategy for assessing the relevance of both the emulator and the prior distribution. Numerical experiments,
where different criteria assessing the different error sources are illustrated and compared, are presented in Section 4
and a discussion section ends the paper.

2. BAYESIAN INFERENCE WITH A GAUSSIAN EMULATOR

The statistical problem is to estimate the probability distributionF of X = {X1, . . . , Xn} from the observations
y = {yi, i = 1, . . . , n}, whereyi is the realisation of the random variableYi. To get a manageable but rather
generic problem, it is assumed that the unknown inputXi follows a multivariate Gaussian distributionNq(m, C)
with unknown meanm and variance matrixC. Other assumptions are the mutual independence of theXi and the
errorUi for i = 1, . . . , n, and the independence of theYi. Besides, the observation errorUi is supposed to follow a
Gaussian distributionNp(0, R) with known diagonal variance matrixR. Finally, by considering only an independent
measurement error, it is underlyingly assumed that the model discrepancy, namely the difference between the actual
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physical process from which the observationsYi are taken and the physical modelH, is negligible. Details about the
concrete handling of model discrepancy can be found, for instance, in Kennedy and O’Hagan [4] and Brynjarsdóttyr
and O’Hagan [5].

In the Bayesian framework, the first task is to choose a prior distributionπ(θ) for the parameter vectorθ = (m, C)
to be estimated in the model (1). A conjugate prior distribution appears as a rather natural and usual choice:

m |C ∼ Nq(µ, C/a), (2)

C ∼ IWq(Λ,ν), (3)

whereIWq(Λ, ν) denotes an inverse-Wishart distribution, withν > q − 1 the degrees of freedom andΛ ∈ Mq×q

the positive definite inverse scale matrix; the hyperparametersρ = (µ, a,Λ,ν) are assumed to be specified by the
practitioner, typically from expert knowledge. See O’Hagan et al. [6] for a review of the dedicated methods.

The conjugation properties being, however, restricted to cases where theXi are not missing, the multivariate poste-
rior distributionπ(θ|y) is not explicit. Therefore it must be described by simulation means. This can be approximated
using Markov chains produced by a Gibbs sampler including a Metropolis-Hastings (MH) step (see, for instance,
Tierney [7]). Actually, the calculation of the full conditional posterior distributions ofm, the variance matrixC, and
X leads to the following Gibbs sampler (below the(r + 1)-th iteration):

Given(m[r], C [r],X[r]) for r = 0, 1, 2, . . . , generate

1. C [r+1]| · · · ∼ IW
(
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i , di)
) ]}

,

which is not belonging to a closed form family of distributions. Thus a MH step is used to simulateX[r+1] from
its full conditional distribution.

Now, considering situations where extensive sampling ofH(X, d) is time-consuming, the Gibbs sampler must be
adapted. In those situations, we propose to replaceH with amaximin-LHD (latin hypercube design) kriging emulator
Ĥ, following Barbillon [8]. This emulator is briefly described below.

• Kriging is a geostatistical method (Matheron [9]) that has been adapted by Sacks et al. [10, 11] to approximate
a physical modelH on a bounded hypercubeΩ. This method has known a growing interest in meta-modeling
since the works of Koehler and Owen [12], Santner et al. [13], and Fang et al. [14], among others. According
to this approach the functionH is regarded as the realization of a Gaussian process (GP)H ∼ GP(µ, c),
characterized by its mean and variance functions:µ(z) = E[H(z)] and c(z, z′) = Cov[H(z),H(z′)] =
σ2Kε(‖z − z′‖) for anyz = (x, d), Kε being a symmetric positive kernel such thatKε(0) = 1 (see Mitchell
et al. [15]). In a Bayesian perspective, GP modeling can be interpreted as providingH with a prior (Ras-
mussen and Williams [16]). The processH can be proved to be normally distributed knowing some evaluations
HDN

= {H(z(1)), . . . ,H(z(N))} on a design of experiments(DOE) DN = {z(1), . . . , z(N)} of N points
z(j) = (x(j), d(j)).
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The best MSPE (mean squared prediction error) predictor ofH, denoted byĤ, is the conditional mean:

Ĥ(z) = E (H(z) |HDN
) , ∀z ∈ Ω.

ThenĤ(z) is minimizing the conditional expectation of the loss function(H(z)− Ĥ(z))2, the so-called MSE
(mean squared error) (see Johnson et al. for details [17]),

MSE(z) = E
(
(H(z)− Ĥ(z))2 |HDN

)
, ∀z ∈ Ω.

• The setDN = {z(1), . . . , z(N)} is chosen onΩ ∈ Rq+q2 according to amaximin-LHD (see Joseph and Hung
[18], McKay et al. [19], and Petelet et al. [20]): each dimension of the multidimensional domainΩ is divided
into N intervals of equal length and the setDN of N points are selected such that when projected on any
dimension, each interval contains one and only one of theN projected points. Moreover,DN is chosen to be
maximin, i.e., it maximizes

δD = min
i 6=j

‖z(i) − z(j)‖

among the LHD of sizeN .

Finally, considering the newemulator errorresulting from this version of kriging, the conditional distribution of
X is described as follows. Note that simulating this conditional distributionX requires again a Metropolis-Hastings
step inside the Gibbs sampler, the details of which being provided in Fu et al. [21].

X[r+1]| · · · ∝ |R + MSE[r+1]|−1/2 · exp
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whereĤ
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i , di), by denoting theith diagonal component ofR by Rii,
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}
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 ,

and MSE[r+1] = MSE
(
X[r+1],d = (d1, . . . , dn)

)
is a block diagonal matrix defined by

MSE(X[r+1],d) =




MSE1(X[r+1],d) 0
. . .

0 MSEp(X[r+1],d)


 ,

}
n lines

}
n lines

with each variance matrix MSEj(X[r+1],d) ∈Mn×n defined by

MSEj(X[r+1],d) = E
((
Hj(X[r+1],d)− Ĥj(X[r+1],d)

)2

|HDN

)
.

HereHj denotes thejth dimension of the Gaussian processH. In this conditional posterior distribution, the error
term is composed ofR and MSE, where the former represents the uncertainty from the physical model and the latter
represents the uncertainty from the Gaussian emulator.
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2.1 Controlling the Algorithmic Error

An important problem when running MCMC algorithms is monitoring the convergence of the simulated Markov
chain in order to minimize the above mentionedalgorithmic error. Actually, MCMC algorithms can converge slowly
and stopping a simulated chain too early could lead to a poor approximation of the target distribution. Monitoring the
convergence of a MCMC algorithm is also a difficult problem. Despite many effort having been made on this question,
there is not an absolute way to answer it. We chose to use the much employed Brooks-Gelman (BG) statistics (Brooks
and Gelman [22]) computed from five replications of the Monte Carlo Markov chain (see Appendix A). The MCMC
algorithm is stopped if the BG statistics remains smaller than 1.05. This threshold is more stringent than the standard
threshold 1.2 suggested in [22].

2.2 Measuring the Emulator Error

However, a good monitoring of the MCMC algorithm could be jeopardized if the emulatorĤ is too far from the
modelH (theemulator error). This could occur because kriging makes use of a Gaussian process approximation that
is known to be smooth, while some types of physical modelH are not and will require using larger number of points
N to approximate them. Thus, a too small number of pointsN chosen for the designDN can distinctly increase
the emulator error. The two following criteria, among the most used criteria to measure the quality of a design, are
investigated here.

(i) The coefficient of predictabilityQ2 (see Vanderpoorten and Palm [23]) is

Q2 = 1− PRESS(D∗)∥∥H(D∗)−H(D∗)
∥∥2 , (4)

where

PRESS(D∗) =
∥∥H(D∗)− Ĥ(D∗)

∥∥2

is the Euclidean distance between the true function valueH and the approximated valuêH on a validation
sampleD∗ = {v(1), . . . , v(N∗)}, H(D∗) denoting the mean function value onD∗:

H(D∗) =
1

N∗

N∗∑

i=1

H(v(i)).

A cheaper version ofQ2 can be obtained by cross-validation, as follows (leave one outprocedure):

Q2 CV = 1− PRESSCV∑N
i=1

∥∥H(z(i))−HDN

∥∥2 , (5)

with

HDN =
1
N

N∑

i=1

H(z(i)),

and

PRESSCV =
N∑

i=1

e2
(i) =

N∑

i=1

∥∥H(z(i))− Ĥ−i(z(i))
∥∥2

,

where
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• e(i) is the prediction error atz(i) of a fitted model without the pointz(i);

• Ĥ−i(z(i)) is the approximation ofH atz(i) derived from all the points of the design exceptz(i).

Both versions ofQ2 are related to the ratio of variance explained by an emulator. The closerQ2, to 1, the smaller
this ratio and the better the quality of the designDN .

(ii) An alternative criterion is the Mahalanobis distance (MD) (see Bastos and O’Hagan [24]), computed on a
validation sampleD∗ with N∗ points as follows:

MD =
(
H(D∗)− Ĥ(D∗)

)′(
MSE(D∗)

)−1(
H(D∗)− Ĥ(D∗)

)
, (6)

where MSE(D∗) is the conditional variance matrix of the designD∗ knowingHD∗ = {H(v(1)), . . . , H(v(N∗))}.
An interest of this criterion is to account for the correlations between the points through the MSE(D∗) term.
Obviously, the MD value is sensitive to the choice ofD∗. D∗ could be generated as amaximin-LHD. A cheaper
cross-validated version of MD is as follows:

MDCV =
1
N

N∑

i=1

(
H(z(i))− Ĥ−i(z(i))

)′(
MSE−i(z(i))

)−1(
H(z(i))− Ĥ−i(z(i))

)
,

whereĤ−i(z(i)) denotes the predictor ofH at pointz(i) by using the designD−i = {z(1), . . . , z(i−1), z(i+1),
. . . , z(N)} and MSE−i(z(i)) denotes the related squared error.

Now, the smaller the sample sizen, the greater theestimation error. The two above-mentioned criteria are not
aiming to measure this estimation error. But sinceH is complex, it is quite difficult to assess this error in an inverse
modeling context. Bayesian inference could be expected to be helpful to reduce the estimation error whenn is small
and when reliable prior information is available. However, if the prior information is not relevant, theprior error
will be large and Bayesian inference may be harmful. For this very reason, it is important to be able to measure the
relevance of the prior information. In the present context, it is possible to use a promising criterion, the so-called DAC
criterion (Bousquet [25]) for this task, as detailed in the next section.

3. ASSESSING A PRIOR DISTRIBUTION AND A DESIGN

3.1 The DAC Criterion

The data agreement criterion (DAC) (Bousquet [25]) has been conceived as a measure of the discrepancy between a
prior distribution of model parameters and the data. Lety be a sample with pdff(y|θ). Let πJ(θ) be a benchmark
noninformative prior (see for instance, Yang and Berger [26]) andπ(θ) the prior distribution derived from the prior
information onθ. DAC is defined as

DAC(π|y) =
KL(πJ(θ|y)||π(θ))

KL(πJ(θ|y)||πJ (θ))
, (7)

where KL(p||q) denotes the Kullback-Leibler distance between the probability distributionsp andq, which is defined
as

KL(p||q) =
∫

X
p(x) log

p(x)
q(x)

dx, (8)

X being the set of all accessible values forx. The rationale underlying the definition of DAC is as follows: the posterior
distributionπJ(θ|y) derived from the noninformative prior provides essentially the same information on theta as the
datay. This posterior can thus be interpreted as a benchmark prior perfectly in accordance with data information. The
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divergence KL(πJ(θ|y)||π(θ)) (or relative negative entropy) between the true priorπ andπJ(·|y) provides a measure
of the discrepancy between the two sources of information onθ.

If DAC(π|y) ≤ 1, the informative priorπ is closer toπJ(·|y) than the noninformative priorπJ , and the data
y and the priorπ(θ) are declared to be in agreement. Otherwise if DAC(π|y) > 1, the datay and the priorπ(θ)
are declared to be discrepant. DAC has been proved to be efficient when the noninformative priorπJ(θ) is proper,
otherwise it must be adapted using techniques used for estimating Bayes factors (see Bousquet [25]).

3.2 The Impact of the Emulator

In the present context, a kriging emulator defined on a compact setΩ is used to compute an approximation of the
posterior distribution of the parameterθ = (m,C). Since the emulator is defined on a compact set, the parameters
m andC are also restricted to be in compact setsΩm andΩC . It allows to define a proper noninformative prior
πJ(m,C), which is chosen as the Jeffreys prior for the multivariate Gaussian model, then a tractable DAC. The
technical precisions aboutΩm, ΩC and the calculation of DAC are provided in Appendices B and C.

It is important to notice that the criterion is depending on the designDN . DenotingπJ(θ|y, DN ) the posterior
distribution ofθ given the datay and the current designDN ,

DAC(π|y,HDN
) =

KL
(
πJ(θ|y,HDN

)||π(θ)
)

KL (πJ(θ|y,HDN
)||πJ(θ))

.

A DAC value greater than 1 is just indicating that there is something misleading between the data, the prior and the
design. Thus, if the data and the prior are known (or assumed) to be relevant, DAC could be regarded as a criterion to
assess the design asQ2 or MD.

3.3 Computing DAC

Since(S/T ) ≤ 1 ⇐⇒ S−T ≤ 0, if S ≥ 0, T > 0, a numerically more convenient version of DAC, denoted̃DAC, is

D̃AC(π|y,HDN ) = KL
(
πJ(θ|y,HDN )||π(θ)

)− KL
(
πJ(θ|y,HDN )||πJ(θ)

)
.

The critical value for̃DAC is 0. Since the support ofπJ(θ|y,HDN ) is Ω, one has

KL
(
πJ(θ|y,HDN

)||π(θ)
)

=
∫

Ω

πJ(θ|y,HDN
) log

πJ(θ|y,HDN )
π(θ)

dθ

= EπJ (θ|y,HDN
)

[
log πJ(θ|y,HDN )

]− EπJ (θ|y,HDN
) [log π(θ)] ,

and

KL
(
πJ (θ|y,HDN

)||πJ(θ)
)

=
∫

Ω

πJ(θ|y,HDN
) log

πJ (θ|y,HDN )
πJ(θ)

dθ

= EπJ (θ|y,HDN
)

[
log πJ(θ|y,HDN )

]− EπJ (θ|y,HDN
)

[
log πJ (θ)

]
.

Therefore, the transformed̃DAC can be written as

D̃AC(π|y,HDN ) = KL
(
πJ(θ|y,HDN )||π(θ)

)− KL
(
πJ(θ|y,HDN )||πJ(θ)

)

= EπJ (θ|y,HDN
)

[
log πJ(θ)

]− EπJ (θ|y,HDN
) [log π(θ)] ,

and checking̃DAC(π|y,HDN ) ≤ 0 means that the prior distributionπ(θ) and the couple (y, HDN ) are compatible.
This criterion can be computed using the outputs of a Gibbs sampler run with a noninformative priorπJ (·):

D̃AC(π|y,HDN ) w 1
R

R∑
r=1

log πJ (θr)− 1
R

R∑
r=1

log π(θr), (9)
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whereθr ∼ πJ(·|y,HDN
), r ∈ {1, ..., R} is a simulated sequence obtained by Gibbs sampling. DenotingXn =

(1/n)
∑n

i=1 Xi, the full conditional distribution ofm verifies

πJ(m |C,Y,X, ρ,HD) ∝ IΩm exp

[
−1

2
(m−Xn)′

(
C

n

)−1

(m−Xn)

]
.

Thus, it is a normal distribution truncated onΩm: IΩm ·N
(
Xn, C/n

)
. The full conditional distribution of the variance

matrixC verifies

πJ(C |m,Y,X, ρ,HD) ∝ IΩC
|C|−[(n+q+2)/2] exp

[
−1

2
Tr

(
n (m−Xn)(m−Xn)′ · C−1

)]
. (10)

Thus it is an inverse-Wishart distribution truncated onΩC :

IΩC
· IW (

n (m−Xn)(m−Xn)′, n + 1
)
. (11)

Using the full conditional posterior distributions ofX, the Gibbs sampler approximating the posterior distribution
of (m,C) with a noninformative prior truncated to the domainΩm × ΩC could be straightforwardly described (see
Fu et al. [21]).

Remark: The simulation ofC is difficult sincen (m −Xn)(m −Xn)′ is not a definite but a semi-definite positive
matrix and numerical problems can occur. However, up to an additive constant, the calculation (10) is proper. For this
reason, we recommend to use a Metropolis-Hastings algorithm for simulatingC:

Metropolis-Hastings (MH) algorithm

1. Iteration 0: Choose an arbitrary valueC [0] = C0

2. Iterationh: UpdateC [h] as follows:

• Generateξ from the following proposal distributionf∗, which is adding a small correctionεIq to the
semi-positive definite matrix(m−Xn)(m−Xn)′, with ε a small positive value andIq an identity matrix
of dimensionq × q

f∗(ξ) = IΩC (ξ) · IW (
n (m−Xn)(m−Xn)′ + εIq, n + 1

)
.

• Let

α(C [h−1], ξ) =
g(ξ)f∗(C [h−1])
g(C [h−1])f∗(ξ)

∧ 1, (12)

with g proportional to the target distribution which means the truncated Inverse-Wishart distribution (11)

g(C) = IΩC (C) · |C|−[(n+q+2)/2] exp
[
−1

2
Tr

(
n (m−Xn)(m−Xn)′ · C−1

)]
.

• ChooseC [h] as follows

C [h] =
{

ξ with probabilityα(C [h−1], ξ),
C [h−1] otherwise.

(13)

In this way, the produced Markov chain(C [h]) converges to the target distribution (11).
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3.4 Using the D̃AC Criterion

By its very nature, the criterioñDAC is measuring the agreement between the observed data and the prior distribution.
As shown above, it could be computed without particular difficulties, despite it needs to run an additional Gibbs
sampler, when the distributionH has been replaced by a kriging emulatorĤ. ThusD̃AC is depending on the prior
distribution and the designDN . HenceD̃AC is a criterion allowing to assess both the prior and design relevance with
respect to the observed datay. But this double assessment has to be done properly using the following procedure:

1. If D̃AC ≤ 0 then the prior and the design are declared to be acceptable.

2. If D̃AC > 0, the following step is required:
under a “good prior” assumption, efforts are made to improve the design by increasingN or modifyingΩ. If
D̃AC is not decreasing under zero, it means that the prior information is questionable and there is the need to
go back to the experts or, maybe more honestly, to employ vague priors as the Jeffreys priors.

This procedure is depicted by the following diagram:

˜

˜ > 0

˜ ˜

˜ ≤ 0

4. NUMERICAL EXPERIMENTS

In order to illustrate the behavior of the the above-mentioned criteria, numerical experiments are performed from
simulated data on two statistical models. The first example is a simplified version of a hydraulic model, and the
second example is a a real physical hydraulic code which is widely used at EDF (Electricité de France).

4.1 Simplified Hydraulic Model

We consider the following simplified two-dimensional hydraulic model used, for instance, in [27]:
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H(X, d) =


X2 +

( √
5000

300
√

55−X2

× d

X1

)0.6

,
d 0.4X0.6

1 (55−X2)0.3

3000.4 × 50000.3


 ,

where,

X =
(

X1

X2

)
∼ N

((
30
50

)
,

(
52 0
0 1

))
,

d ∼ Gumbel
(
1013,−458

)
,

and an errorU ∼ N (0, 10−5 · I2).
Since we are mainly concerned in analyzing the behavior of̃DAC, six different prior distributions on the model pa-

rameters are considered, which present several degrees of accordance with the simulated dataX. They are summarized
in Table 1. Note that the prior distributions or the parametersm andC arem|C ∼ N (µ, C/a) andC ∼ IW(Λ, ν)
with Λ = t · C̃Exp.

4.1.1 Checking for Good Posterior Approximation

A first task is to validate the approximation of the true posterior distribution provided by the Gibbs algorithm call-
ing the kriging emulator. The cases when the prior is noninformative (needed later to compute DAC) or in accor-
dance with the simulated data (FHV) should therefore lead to get posterior estimation results about(m,C, X, Y )
close to the values used in the simulation task. Using the Brooks-Gelman heuristics detailed in Appendix A to test
the convergence of MCMC chains, 1000 posterior samples (sorted using a classical ACF autocorrelation test) were
produced, each one conditioned to a design of 20 points. The posterior means, standard deviations, and 95% cred-
ible intervals were calculated for the parameters and displayed in Table 2. The presence of the simulation values

TABLE 1: Description of the six prior distributions by their accordance with the simulated data: PLV = perfect
mean and low variance, PMV = perfect mean and medium variance, PHV = perfect mean and high variance, FHV
= fair mean and high variance, BMV = bad mean and medium variance, BHV = bad mean and high variance

Prior PLV PMV PHV FHV BMV BHV
µ {30, 50} {30, 50} {30, 50} {35, 49} {10, 54} {10, 54}
a 1 10 10 1 1 1 5 10 1 1
t 2 2 30 2 2 2 2 2
ν 5 5 33 5 5 5 5 5

C̃Exp

(
1.52 0
0 1

) (
52 0
0 1

) (
7.52 0
0 1.52

) (
7.52 0
0 1.52

) (
52 0
0 1

) (
7.52 0
0 1.52

)

TABLE 2: Posterior means, standard deviations, and 95% credible intervals for
(m,C) given, respectively, the FHV informative prior and noninformative prior

Parameters m1 m2 C11 C22

Informative prior (FHV)
Estimate 30.9014 49.4802 26.4058 1.0778
Std. dev. 0.9895 0.1941 6.9559 0.2925

2.5% 29.0053 49.1112 15.5504 0.6528
97.5% 32.9227 49.8723 43.2018 1.7495

Non-informative prior
Estimate 30.8865 49.5102 25.6555 1.1032
Std. dev. 0.9941 0.1965 7.5674 0.3210

2.5% 28.9870 49.1423 14.9727 0.6323
97.5% 32.9860 49.8951 44.3246 1.9190
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within the posterior coverage illustrates the relevance of the approximation ofH and the management of MCMC
chains.

Furthermore, because an uncertainty study requires to sample relevant values forX, the posterior predictive miss-
ing dataX were sampled from a multivariate normal distribution calibrated with these posterior values. Finally the
posterior predictive observationsY were computed using these reconstructedX, the observed valuesd, and the true
functionH. Figures 1–4 superimpose the isolines of the posterior predictive density ofX andY and the true observa-
tions (marked as red stars). Again, a good coverage can be noticed. Note that using the informative prior very slightly
improves the coverage with respect to the noninformative one.
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FIG. 1: Isolines of the posterior predictive density and true values (red stars) of the missing dataX, given the FHV
informative prior.
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FIG. 2: Isolines of the posterior predictive density and true values (red stars) of the missing dataX, given the nonin-
formative prior.
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FIG. 3: Isolines of the posterior predictive density ofY and true observationsy (red stars), given the FHV informative
prior.
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FIG. 4: Isolines of the posterior predictive density ofY and true observationsy (red stars), given the noninformative
prior.

4.1.2 Assessing the Relevance of the Design

The following experiments aim now at assessing the ability of criteriaQ2 and MD to measure the quality of a design.
In this purpose three different designs with 20 points, 100 points, and 500 points have been considered on two different
domains

Ω1 = [25.1001, 34.8999]× [48.0400, 51.9600]× [40, 1800],

Ω2 = [20, 40]× [45, 55]× [min
i

(di),max
i

(di)].

Ω1 can be thought of as a realistic domain andΩ2 is a larger domain. When using a validation sampleD∗, we choose
it as amaximin-LHD of 100 points withinΩ1. Figures 5 and 6 give the box plots of1 − Q2 based on 20 repetitions
computed on a validation sample and by cross-validation, respectively. The closer 1 andQ2 are, the better the design
is supposed to be. The observed differences on1−Q2 according to the designs are relevant but hardly perceptible as
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FIG. 5: 1−Q2 boxplots based on 20 repetitions, calculated on a validation sample for sixmaximin-LHDs of 20, 100,
and 500 points within small domainΩ1 (—) and large domainΩ2 (—), with the validation sample as amaximin-LHD
of 100 points withinΩ1.
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FIG. 6: 1 − Q2 boxplots based on 20 repetitions, calculated by cross-validation for sixmaximin-LHDs of 20, 100,
and 500 points within small domainΩ1 (—) and large domainΩ2 (—).

even a small design of 20 points on the large domainΩ2 produces small1 − Q2 values. The difficulty with criterion
Q2 is to choose a sensible threshold to declare that a design is acceptable.

Figures 7 and 8 display the boxplots oflog(MD) in the same conditions. As it could be expected, this crite-
rion is decreasing when the number of design points increases. But, these figures show unexpected differences: the
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FIG. 7: MD boxplots based on 20 repetitions, calculated on a validation sample for sixmaximin-LHDs of 20, 100,
and 500 points within small domainΩ1 (—) and large domainΩ2 (—), with the validation sample as amaximin-LHD
of 100 points withinΩ1.
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FIG. 8: MD boxplots based on 20 repetitions, calculated by cross-validation for sixmaximin-LHDs of 20, 100, and
500 points within small domainΩ1 (—) and large domainΩ2 (—).
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cross-validated MD does not seem very sensitive for the domainΩ1 and the cross-validated MD values for the larger
domain with a design of 500 points are amazingly scattered (see Fig. 8). Moreover, contrary to theQ2 criterion, no
reference value is available with MD and it seems difficult to use this more expensive criterion to assess a design (see
Fig. 7).

4.1.3 Assessing the Relevance of the Prior and the Design

The following numerical experiments aim at analyzing the ability of̃DAC to assess either the relevance of a design or
a prior distribution.

Figure 9 depicts the behavior of DAC in the small domain, for 100 repeated estimations of the model with the
six prior distributions andmaximinLHDs with 20, 100, and 500 points. It appears that the ”bad” priors are discarded
in the first two cases while accepted with a design of 500 points. Other priors, even for a design of 20 points, seem
acceptable. Obviously, for this poor design the Gibbs sampler converges dramatically slower (2,000 iterations for
D500 and 100,000 iterations forD20), but in many situations this is not problematic. Actually, the main computational
burden is computing the highly CPU-time demanding physical modelH. In the present context, running a Gibbs
sampler with a design ofN points requiresN calls to the functionH and it could be faster to run a Gibbs sampler on
a D20 for 100,000 iterations than a Gibbs sampler with aD500 for 2,000 iterations. Moreover, the behavior of̃DAC
for the larger domainΩ2, which is not reported here, is quite similar to that forΩ1. It shows that the choice of domain
does not affect the agreement between the prior and the data.

Figure 10, which displays the behavior of̃DAC for the PLV and FHV prior with different values for the hyperpa-
rametersa andt, shows that those hyperameters can have a sensitive impact on the result and that too concentrated
priors (related to large values ofa andt) could lead to a doubtful Bayesian inference. For example, for the PLV prior,
increasing the value ofa, which weights the prior meanµ, does not much change the value of̃DAC asµ is equal to
the actual meanm; while for the FHV prior, a largera results in a larger̃DAC value as in this “fair” case,µ and the
actual meanm are different.
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FIG. 9: D̃AC boxplots based on 100 repetitions, calculated within small domainΩ1, for threemaximin-LHDs of 20,
100, and 500 points and six priors PLV(—), PMV(—), PHV(—), FHV(—), BMV(—), and BHV(—).
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FIG. 10: D̃AC boxplots based on 100 repetitions, calculated within small domainΩ1, for threemaximin-LHDs of 20,
100, and 500 points and PLV and FHV priors with different values of the hyperparametersa andt.

Figures 11 and 12 display the marginal posterior distributions with amaximum-LHD of 100 points and 20 points.
These figures confirm thẽDAC diagnosis. There are great differences between the posteriors derived from ”bad priors”
and the other ones, including the posterior derived from the Jeffreys prior, are quite similar. It is also important to notice
than there is no sensitive differences between the posteriors derived from the 100 points and 20 points (which is not
reported here) designs, as indicated by thẽDAC criterion.

International Journal for Uncertainty Quantification



Bayesian Inference for Inverse Problems Occurring in Uncertainty Analysis 89

26 28 30 32 34 36
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m1

25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

m2

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

C11

0 1 2 3 4 5
0

0.5

1

1.5

2

C22

PLV

PMV

PHV

FHV

BMV

BHV

Jeffreys Prior

empirical value

PLV

PMV

PHV

FHV

BMV

BHV

Jeffreys Prior

empirical value

PLV

PMV

PHV

FHV

BMV

BHV

Jeffreys Prior

empirical value

PLV

PMV

PHV

FHV

BMV

BHV

Jeffreys Prior

empirical value

FIG. 11: Marginal posterior distributions of(m,C) with a maximin-LHD of 100 points in small domainΩ1, based
on six informative PLV, PMV, PHV, FHV, BMV, BHV priors and the Jefferys noninformative prior. The empirical
estimation is marked by a star.

It seems that̃DAC is indicating that a reasonable prior can be resistant to a poor design. This is not always true.
For instance, a poor design of 18 randomly generated points on the faces of a cube (three points were generated on
each face) has been considered when replacingH by the Sobol function:

H(X, d) =
2∏

k=1

gk (| sin(Xk)|) g3 (| sin(d)|) , wheregk(x) =
|4x− 2|+ ak

1 + ak
,

with ak = 1. A Gibbs sampler of 800 000 runs has been run to estimate the posterior distributionπJ(θ|y,HDN
).

As shown in the left graph of Fig. 13,̃DAC18 remains positive for the four prior choices, which indicates the need to
improve the design.

Remark. In these numerical experiments, different priors are compared using DAC in an illustrative purpose. It does
mean that DAC might be used as a selection tool to select one prior over another. Indeed, prior distributions reflect
prior knowledge and uncertainty aboutX before seeing the data. DAC is just a criterion measuring the discrepancy
between the prior distribution and the data.
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FIG. 12: Marginal posterior distributions of(m,C) with a maximin-LHD of 20 points in small domainΩ1, based
on six informative PLV, PMV, PHV, FHV, BMV, BHV priors and the Jefferys noninformative prior. The empirical
estimation is marked by a star.

4.2 Real Case Study: the MASCARET Code

The second example considered here is a real hydraulic model, the MASCARET code, which implements an approx-
imating solution to the St-Venant equation through finite difference methods. It is developed at EDF in collaboration
with the Centre d’́Etudes Techniques Maritimes et Fluviales (CETMEF), which puts together the computer code of
free surface.

In this two-dimensional model, the main sources of uncertainty are the frictions on the riverbed and the floodplain,
denoted by the vectorKs, the output of the hydraulic function is the water level, denoted byY , and the observed
input is the river flow, denoted byQ. In this case study, accounting for the observation errorU , the dataset can thus
be generated with the help of the MASCARET codeH, as follows.

Y = H(Ks, Q) + U, (14)

with Q ∼ Gumbel(1550, 780) and the missing data

Ks ∼ N (m,C) = N
((

17
40

)
,

(
4.12 0
0 7.12

))
. (15)
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FIG. 13: D̃AC boxplots based on 20 repetitions with the Sobol function, calculated for two designsD18 andD100

and six priors PLV, PMV, FHV, and BMV.

To check the behavior of̃DAC, two different prior distributions on theKs hyperparameters are considered and
summarized in Table 3.

Figure 14 displays the boxplot of̃DAC for 20 repetitions of the PMV and BLV priors, with sample sizen = 10, 50
and amaximin-LHD of 20 and 200 points. It appears that the BLV prior is rejected bỹDAC in all the four cases as this
criterion remains positive, and it seems almost acceptable for the last case, with 50 observed data and 200 points in
the design, as̃DAC is quite near zero. Moreover, the PMV prior is obviously acceptable in each case study, thanks to
the negativẽDACs. In each case this result testifies to a perfect agreement between the prior, the data, and the design.

Figure 15, displaying the corresponding marginal posterior distributions ofθ, confirms the performance of̃DAC.
The PMV prior leads to reasonable posterior values for all the parameters while the bad prior leads to posterior values
far from the good values, especially for the variance parameters.

TABLE 3: Description of the two prior distribu-
tions by their accordance with the generated data:
PMV = perfect mean and medium variance, BLV
= bad mean and low variance.

Prior PMV BLV
µ {17, 40} {5, 60}
a 1 1
t 2 2
ν 5 5

C̃Exp

(
4.12 0
0 7.12

) (
1 0
0 1

)

Volume 5, Number 1, 2015



92 Fu et al.

DAC with PMV prior

Number of points in design

D
A

C

20 200

−
2

5
−

2
0

−
1

5
−

1
0

−
5

0

n=10
n=50

DAC with BLV prior

Number of points in design

D
A

C
20 200

−
1

0
−

5
0

5
1

0

n=10
n=50

FIG. 14: D̃AC boxplots based on 20 repetitions in the MASCARET code, for twomaximin-LHDs of 20 and 200
points, with 10 and 50 observations and PMV and BLV priors.
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5. DISCUSSION

We have shown that Bayesian analysis is possible and beneficial to solve inverse problems by estimating the parame-
ters of highly complex uncertainty models. Bayesian analysis is feasible thanks to MCMC algorithms such as Gibbs
sampling and the approximation of the physical model by a kriging emulator using amaximin-LHD. Bayesian analysis
is beneficial since it allows to account properly for prior knowledge and to avoid a linearization of the physical model
H. Our analysis has shown that Bayesian inference could be beneficial because MCMC algorithms could be hoped to
be rapid even with amaximin-LHD with few points in comparison to the huge time needed to computeH. From this
point of view, it is important to translate the time to get a realization ofH as a number of iterations of the MCMC
algorithm in order to choose the number of points of the emulator’s design. Let us suppose that the computation time
of one call toH equals the computation time ofL(N) iterations of the MCMC algorithm.1 The integerL(N) is ex-
pected to be quite large and is a decreasing function of the numberN of points of the designDN which is as well the
number of ”possible” calls toH. Our analysis proved that even whenN is small, it is possible to increase the number
of iterations of the MCMC algorithm to get a good approximation of the model parameter posterior distribution in
an acceptable CPU time. For instance, with the real hydraulic model, the CPU time (in seconds) has been 999 for
N = 500, 1930 forN = 100, and 10 100 forN = 20 on a laptop PC, with two Intel P9700 cores of 2.80 GHz.

In this perspective, the four error sources listed in the Introduction can be controlled.

• By its very nature, Bayesian inference is helpful to control theestimation errorwhen the numbern of observa-
tions is small.

• Thealgorithmic errorcan be efficiently controlled with the BG statistics. To make sure that this error is not too
large, we advocate a more stringent threshold value1.05 than the standard threshold1.2.

• We propose to use the so-called̃DAC criterion which could be thought of as a relevant measure of the dis-
crepancy between the observed sample and the prior distribution in order to control both theemulator error
and theprior error. In our context, this criterion can be computed without major difficulties: the emulator is
defined on a compact set and, consequently, proper noninformative priors are available. However, this proper
prior distribution is subject to the choice of this compact set. It is implicitly assumed here that this compact set
has been chosen in a proper way. Note also that in our numerical experiments, the choice of this compact set
does not appear to influence highly the posteriorπJ(θ|y,HDN ) (see Fu et al. [21]).

Our experiments show a promising behavior of this criterion. Obviously, computing̃DAC is not free since it
involves running an additional MCMC algorithm for noninformative priors. But we think that the result is worth
the trouble. Moreover, as soon as the MCMC with a noninformative prior has been run, any informative prior
can be assessed. On the other hand wheñDAC is greater than zero, it could be difficult to separate theemulator
and theprior errors since both errors could be quite intricated. More experiments are needed to assess the
relevance and sensibility of this criterion. Nonetheless, it is a promising tool to drive Bayesian inference using
an emulator for dealing with complex inverse problems in uncertainty analysis.

Finally, the conclusion of this study can be stated as follows. When the prior knowledge on the model parameters
is relevant, Gibbs sampling or other MCMC algorithms on an appropriate emulator could be expected to lead to a
sensible estimation of these parameters with well elicited prior distributions while dramatically saving the number of
calls to the expensive functionH. And, DAC might be used as a diagnostic tool to detect if the prior distribution can
be trusted. It might be also be helpful to choose a good design for the emulator.
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APPENDIX A. BROOKS-GELMAN STATISTICS

In 1998, Brooks and Gelman proposed a method derived from the method proposed by Gelman and Rubin [28],
for monitoring the convergence of iterative simulations [22]. Supposingm parallel chains have been simulated, the
statisticR̂BG is constructed on the finalM iterations after the “burn-in” period, as follows:

1. For each individual chainj, calculate the empirical100(1 − α)% intervalδj , which is the difference between
the100(1− (α/2))% and100(α/2)% percentile of theM simulated points. Thus, form them within-sequence
interval length estimates.

2. For the entire set ofmM simulated draws from all chains, calculate the empirical100(1 − α)% interval to
construct a total-sequence interval length estimate.

3. Evaluate the statistiĉRBG defined as

R̂BG =
∆
δ̄

,

• ∆ the total-sequence interval length;

• δ̄ = 1/m
∑m

j=1 θj , with θj the length of the within-sequence interval for thejth chain.

The threshold value1.2 is advocated by the authors (R̂BG < 1.2) to declare that the simulation procedure has
converged. In our experiments, we make use of a more conservative threshold and procedure to ensure that the MCMC
algorithms have converged to their stationary distribution. A MCMC chain has been declared to have converged if the
R̂BG statistics is smaller than 1.05 for 3000 consecutive iterations.

APPENDIX B. COMPUTING DAC FOR THE KRIGING EMULATOR

The compact setΩm = Ω = Ω1 × . . . × Ωq whereΩi denotes the domain for theith coordinate ofX. To deter-
mine the compact setΩC related to the variance matrixC, it is convenient to consider its eigenvalue decomposition
C = V DV T whereD is the diagonal matrix of eigenvalues ofC with |C| = |D| andV the orthogonal matrix of
eigenvectors ofC. For each dimensioni = 1, . . . , q, X2

i ≤ βi = max((max Ωi)2, (minΩi)2). On the other hand,
recalling thatR is the variance matrix of the measurement error in (1), it is reasonable to assume that the measure-
ment error is smaller than the variance and thus|R|1/p ≤ |C|1/q = |D|1/q. Finally, the domain of varianceΩC can
be defined as follows:

ΩC =



C = V DV T ∈ S+

q st. |D| ≥ |R|q/p, 0 ≤ Dii ≤
√√√√

q∑

j=1

β2
i , i = 1 . . . , q



 , (B.1)

whereS+
q is the set of symmetric positive definite matrices of rankq.

The benchmark priorπJ(θ) is chosen here as the Jeffreys prior for a multivariate Gaussian distribution restricted
to Ωm, i.e.,

πJ(θ) =
IΩm(m)
Vol(Ωm)

· ∆C

|C| q+2
2

IΩC (C), (B.2)

with

∆C =

(∫

ΩC

1

|C| q+2
2

dC

)−1

.
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Thus

∆−1
C =

∫

ΩC

1

|C| q+2
2

dC

=
∫

ΩC

1

|D| q+2
2

d (V DV T )

=
∫

dV

[∫

ΩD

1

|D| q+2
2

dD

]
,

where

ΩD =



D ∈ DS+

q st. |D| ≥ |R|q/p, 0 ≤ Dii ≤
√√√√

q∑

j=1

β2
j , i = 1, . . . , q



 . (B.3)

Now, any orthogonal matrixV of dimensionq is characterized by the composition ofq(q − 1)/2 rotations
(ψ1, . . . , ψq(q−1)/2) (cf. Thiested [29]),

∫
dV =

∫ π

0

· · ·
∫ π

0︸ ︷︷ ︸
q(q−1)/2 times

dψ1 . . . dψq(q−1)/2 = πq(q−1)/2.

Thus

∆−1
C = πq(q−1)/2

[∫

ΩD

1

|D| q+2
2

dD

]
.

Finally, it remains to calculate the integral
∫
ΩD

(1/|D|(q+2)/2)dD. Denoting itI(q, a, β1, . . . , βq), with a = |R|q/p

it is derived by induction onq (the detailed calculation is given in Appendix C and related theories can be found in
Horn and Johnson [30]).

I (q, a, β1, . . . , βq) =
(

q − 1
q

)q−1

I

(
q − 1,

(
a

βq

) q
q−1

, β
q

q−1
1 , . . . , β

q
q−1
q−1

)
, (B.4)

and

I (2, a, β1,β2) =
1
a

log
β1β2

a
+

1
β1β2

− 1
a
.

APPENDIX C. COMPUTING THE NORMALIZING CONSTANT OF THE DIAGONAL VARIANCE
MATRIX DOMAIN

Consider

I =
∫

ΩC

1

|C| q+2
2

dC, (C.1)

when the variance matrixC is diagonal and the domainΩC is defined as follows:

ΩC =
{

C ∈ S+
q st. |C| ≥ |R|q/p, |Cij | ≤

√
βiβj , i, j = 1, . . . , q

}
. (C.2)

SinceC is diagonal, the above definition is equivalent to
{

0 ≤ Ci ≤ βi,∏q
i=1 Ci ≥ a,

(C.3)
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where{Ci, 1 ≤ i ≤ q} are the diagonal elements ofC. Conditions (C.3) are equivalent to the conditions





a

β2 · · ·βq
≤ C1 ≤ β1,

a

C1β3 · · ·βq
≤ C2 ≤ β2,

...
a

C1C2 · · ·Cq−1
≤ Cq ≤ βq.

(C.4)

ConsideringI as a function of(q, a, β1, . . . , βq), the integral (C.1) can be developed as follows:

I (q, a, β1, . . . , βq) =
∫ β1

a
β2···βq

1

C
q+2
2

1

dC1

∫ β2

a
C1β3···βq

1

C
q+2
2

2

dC2 · · ·
∫ βq

a
C1···Cq−1

1

C
q+2
2

q

dCq

=
2

qa
q
2

∫ β1

a
β2···βq

1
C1

dC1

∫ β2

a
C1β3···βq

1
C2

dC2 · · ·
∫ βq−1

a
C1···Cq−2βq

1
Cq−1

dCq−1

− 2

qβ
q
2
q

∫ β1

a
β2···βq

1

C
q+2
2

1

dC1

∫ β2

a
C1β3···βq

1

C
q+2
2

2

dC2 · · ·
∫ βq−1

a
C1···Cq−2βq

1

C
q+2
2

q−1

dCq−1

=
2

qa
q
2
Iq−1 − 2

qβ
q
2
q

(
q − 1

q

)q−1

I

(
q − 1,

(
a

βq

) q
q−1

, β
q

q−1
1 , . . . , β

q
q−1
q−1

)
, (C.5)

where

Iq−1 =
∫ β1

a
β2···βq

1
C1

dC1

∫ β2

a
C1β3···βq

1
C2

dC2 · · ·
∫ βq−1

a
C1···Cq−2βq

1
Cq−1

dCq−1

=
1

(q − 1)!

(
log

β1 . . . βq

a

)q−1

, (C.6)

is obtained by induction and

∫ β1

a
β2···βq

1

C
q+2
2

1

dC1

∫ β2

a
C1β3···βq

1

C
q+2
2

2

dC2 · · ·
∫ βq−1

a
C1···Cq−2βq

1

C
q+2
2

q−1

dCq−1

=
(

q − 1
q

)q−1

I

(
q − 1,

(
a

βq

) q
q−1

, β
q

q−1
1 , . . . , β

q
q−1
q−1

)
,

by the variable change

yi = C
q

q−1
i .

Thus step by step thanks to Eq. (C.5), the integral can be calculated whenC is diagonal. For instance, forq = 2, 3, 4
we get

I (2, a, β1,β2) =
1
a

log
β1β2

a
+

1
β1β2

− 1
a
,
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I (3, a, β1,β2, β3) =
1

3a
3
2

(
log

β1β2β3

a

)2

− 4
9a

3
2

log
β1β2β3

a
− 8

27 (β1β2β3)
3
2

+
8

27a
3
2
,

I (4, a, β1, β2,β3, β4) =
1

12a2

(
log

β1β2β3β4

a

)3

− 1
8a2

(
log

β1β2β3β4

a

)2

+
1

8a2

(
log

β1β2β3β4

a

)

+
1

16 (β1β2β3β4)
2 −

1
16a2

.
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