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Single frequency acoustic scattering from an uncertain surface (with sinusoidal components) admits an efficient
Fourier-polynomial chaos (FPC) expansion of the acoustic field. The expansion coefficients are computed non-
intrusively, i.e., by functional sampling from existing acoustic models. The structure of the acoustic decomposition
permits sparse selection of FPC orders within the framework of the Smolyak construction. The main result shows
a minimal, sparse sampling required to exactly reconstruct FPC expansions of Smolyak form. To this end, this pa-
per defines two concepts: exactly discretizable orthonormal, function systems (EDO); and nested systems created by
decimation or “fledging.” An EDO generalizes the Nyquist-Shannon sampling conditions (exact recovery of “band-
limited” functions given sufficient sampling) to multidimensional FPC expansions. EDO criteria replace the concept
of polynomially exact quadrature. Fledging parallels the idea of sub-sampling for sub-bands, from higher to lower level.
The FPC Smolyak construction is an EDO fledged from a full grid EDO. An EDO results exactly when the sampled
FPC expansion can be inverted to find its coefficients. EDO fledging requires that the lower level (1) has grid points
and expansion orders nested in the higher level, and (2) derives its map from the samples to the coefficients from the
higher level map. The theory begins with a single dimension fledged EDO, since a tensor product of fledged EDOs
yields a fledged tensor EDO. A sequence of nested EDO levels fledge recursively from the largest EDO. The Smolyak
construction uses telescoping sums of tensor products up to a maximum level to develop nested EDO systems for sparse
grids and orders. The Smolyak construction transform gives exactly the inverse of the weighted evaluation map, and
that inverse has a condition number that expresses the numerical limitations of the Smolyak construction.

KEY WORDS: Smolyak algorithm, polynomial chaos, stochastic sparse grid collocation, high-dimensional
methods, stochastic partial differential equations, acoustics

1. INTRODUCTION

Computational restrictions often enforce “good enough” approximation of uncertain physical properties, especially
criterion when this involves deterministic computational models with random input. When the input consists of mul-
tidimensional, random, input parameters, minimal sampling becomes a major. At first glance, Nyquist-Shannon sam-
pling notions for a regular grid would seem to incur the curse of dimensionality. Compressed sensing [1], however,
finds many systems require much lower sampling rates, but may require a search for an acceptable system of represen-
tation. Additionally, many physical systems have exploitable properties that allow the use of the Smolyak construc-
tion [2] with sample sizes growing relatively slowly with dimension. The problem herein of acoustic random surface
scattering represents such a system, with relatively weakly coupled parameters. In particular, the scattering problem
has an efficient hybrid Fourier-polynomial chaos (FPC) representation of low order, but with many dimensions. The
polynomial chaos (PC) theory rests upon approximating functions of random variables by sums of multidimensional
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orthogonal polynomials [3]. The random properties of the functions can then be rapidly computed by PC expansions,
with examples in acoustics [4–7]. Finding the coefficients to the FPC expansion for the acoustic scattering prob-
lem uses functional evaluation from a numerical model for various input values of the random parameters on some
part of a regular sampling grid, a non-intrusive PC method. The non-intrusive method finds the non-linear parameter
dependence by linear computations. The expansions in this scattering case contain only terms typical of Smolyak
expansions. The Smolyak construction can be adaptively refined until error estimates are small enough. Gerstner and
Griebel [8] have extended the Smolyak construction to Gauss quadrature for PC coefficients. They base their method
directly on the polynomially exact Gauss quadrature for each dimension. Each different order grid requires a new set
of abscissas (sample points), a significant drawback for PC refinement since the function must be re-evaluated on the
new grid. The use of the Patterson-Kronrod extension of Gauss abscissas [9] permits additional points which contain
the previous grid set, allowing nesting. Unfortunately, the Patterson-Kronrod method for grid refinement may prove
unsuitable. In particular, [10] shows that for Laguerre polynomials of degree larger than 3, the abscissas may include
complex values not usable in standard underwater acoustic models. If, on the other hand, error estimates are known
or previous calculations demonstrate convergence, then one may start with knowledge of the maximal quadrature or
sampling grid required. Given the highest-order Gauss quadrature points, decimation of the grid could leave a nested
sub-grid that can be used for sufficiently accurate functional approximation. This is the goal of this paper within the
context of the acoustic scattering problem. As with many computational models, the smoothness properties of the
computed acoustic fields are not well quantified, so error analysis will be done directly and not by function class (such
as Korobov type, for example).

Compressed sensing offers an approach for sparse PC computations; e.g., see Doostan and Owhadi [11]. Consider
a function represented by linear combination of a sparse set of orthonormal basis functions. The function evaluated
at each point of sparse sampling grid can be accumulated into a vector-matrix equation. Following the example of
compressed sensing, view the evaluation of the expansion as a linear mapping from basis coefficients to sampled
values. An inverse of this map gives the coefficients computed from sample values of the function, and appropriate
weighting vastly improves the condition number. The method described below for finding this inverse has a couple
of advantages over the general compressed sensing method. Firstly, the physical problem itself often determines
sparsity structure of the basis functions without further optimization. Secondly, this structure determines a minimal
sampling grid that allows exact reconstruction for functions of interest. The latter fact derives the Nyquist-Shannon
sampling theory and its equivalent for orthogonal functions. In Fourier analysis, continuous, finite-order (“band-
limited”) functions can be exactly computed from Fourier expansions determined by the coefficients. Conversely the
coefficients can be found by continuous Fourier transform. The discrete Fourier transform (DFT) from functional
evaluations over a sufficiently fine sampling grid (uniformly weighted and spaced) gives identical coefficients to the
continuous transform. This allows exact recovery of the function from finite sampling. This holds even in higher
dimensions, and the inverse DFT is simply the inverse of discretely sampled functional evaluation. The Nyquist-
Shannon argument also holds for Gauss quadrature for computing PC coefficients for orthogonal polynomials and
their tensor products. The Golub-Welsch method for Gauss quadrature weights and abscissas implicitly contains all
the theory required. The FPC combines the PC and the Fourier theory.

The Smolyak construction, as viewed from Fourier analysis, considers multidimensional functions with particular
smoothness properties, for example, Korobov or Nikol’skii class [12]. For these functions, the Fourier order and
sampling can be sparsified immensely, and the discrete cosine transform exactly maps from the functional evaluation
on sparse sampling onto the basis of sparse orders. The standard Smolyak construction typically considers only the
zeroth-order (mean) quadrature, but in fact recovers other sparse-order coefficients, but Temirgaliev, Kudaibergenov,
and Shomanova [13] have studied functional recovery for Fourier-Smolyak constructions. With the knowledge of the
sparse orders, the inverse of evaluation of the Fourier expansion on a sparse grid can be computed directly and uses
sparse transforms. The acoustic scattering problem propagates a periodic signal mediated by environment expressible
by sums of periodic functions with random parameters. It represents a physical system where types of deterministic
phenomena are generally known and largely understood. For this type of problem, compressed sensing will require
at least as many samples as used here to approach the same accuracy, and will lose accuracy with fewer samples. In
contrast, the compressed sensing usually involves poorly studied systems giving rise to matrices of unknown sparsity,
but performs well in the face of minimal information [14].
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In the Smolyak construction, the lower-order, polynomially exact Gauss quadrature for PC coefficients fails to
have a nested grid. By taking a more algebraic approach, one can find alternative, smaller-order transforms with
the identical order of standard Gauss quadrature, but which allow nesting. This requires defining a new measure of
exactness, directed toward the goal of finding FPC coefficients. The fledging process provides nested sequences of
systems, each meeting the new exactness criteria. The criteria will bootstrap from a single dimension into tensor
products and ultimately into the Smolyak construction.

The story develops as follows: The next section outlines an acoustic scattering problem that has a FPC represen-
tation sufficiently approximated by Smolyak orders. The computations use legacy code sampled on hybrid Fourier-
Gauss quadrature grids. Section 3 develops the required theory for fledging exactly discretizable orthonormal systems
in one dimension. Definitions emphasize matrix methods for exact computation of integral inner products, allowing fi-
nite functional sampling to recover the original function, a special property shared by Fourier and PC decompositions.
A theorem gives an equivalent property, which is then exploited to find nested systems with the same property. A
Fourier example illustrates these ideas applied to a non-standard system from the acoustic problem. Section 4 begins
by bootstrapping single dimension results into tensor product spaces, and retraces steps of Section 3. The last bit of
theory is a telescoping sum that allows the definition of the Smolyak construction. The telescoping sum then assumes
the same property of exact functional recovery. Finally, the acoustic problem returns as a basis for studying the errors
incurred for the new Smolyak construction applied to a physical problem.

2. PRELIMINARIES

2.1 Notation and Indexing

Notation for multidimensionality, tensor products, functional order, sub-gridding, and so forth, will require some
conventions. Each section will have its own indexing, and once a concept is developed, indexing becomes implicit, for
example, “Qλ−1 is the fledged sub-matrix ofQλ.” Where possible concepts will be developed in a single dimension.
The sub- and super-scripting roughly follow Novak and Ritter [15]. Superscripts on variables will represent grid points
(abscissas) “φj = F

(
ξj

)
.” An arbitrary dimension is “d” and the largest is “D.” “ P ” represents an orthogonal

function (polynomial or Fourier) and a superscript indicates order “P k, k = 0, 1, . . . .” The notion of level indices
will be indicated by a Greek subscript “Nλ = 2λ for 0 ≤ λ ≤ Λ,” with indexing starting with 0. Square brackets
will indicate the individual component of a vector (lower case bold) or matrix (uppercase bold) “[Qλ]jk.” Linear
transforms, especially those extended from a sub-space to the entire space, will be indicated by the corresponding
italic capitals “[Qλ]jk = [Qλ]gjχk

.” Multi-indices are bold, typically in sub- or superscripts “Pk
(
ξj

)
” or “ NΛ.”

This paper will not distinguish Fourier components from polynomial, and implicitlyP k (ξ) = eikξ, wherei =
√−1,

ξ ∈ [0, 2π) or an equivalent interval, and integerk may be negative. Another approach would be expressing Fourier
terms as monomials on the unit circleP k (ξ) = ξk, |ξ| = 1, ξ ∈ C, which can be regarded as orthonormal with
respect to the uniform distribution on the unit circle [16]. The more standard Fourier notation appears here, since no
real use of orthogonal polynomials on the unit circle is required.

2.2 The Acoustical Problem

The example here revisits the problem of [17]: acoustic scattering from an undulating surface ensonified by an acous-
tic beam. A single frequency line source at range 0 m uses a Gaussian beam source

FT (z) = exp
[
− (z − zs)

2
/σ2

]
exp [iκ sinθ (z − zs) (1 + Θ)] ,

wherezs = 66.12 m is the mean source depth,σ = 27.55 m is effective source width,θ = 10◦ the upward beam
angle, andκ = 2π/λ is the acoustic wavenumber with acoustic wavelengthλ = 3.75 m. The Thorsos taper phase
correctionΘ = (2z2 − σ2)/(κ2σ2 cos2 θ) helps maintain beam shape [18]. The model source achieves zero pressure
at the top surface with a reflection termFs (z) = FT (z) − FT (z + 2zs + 2hs), wherehs is the uncertain surface
height directly above the source. The beam is directed so that it impinges in the middle of variable height surface of
750 m horizontal extent. Other details of the acoustic propagation model (including surface flattening via conformal
mapping) appear in [17].
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Surface wave models commonly use complex Fourier components with random amplitudes with complex normal
distribution. (Taking the real part gives surface height realizations.) This corresponds to exponential distribution of
surface wave energy (proportional to amplitude squared) and uniformly distributed phases. Acoustic wave scattering
from surface components shows strong resonance effects occurring at harmonics of the surface wavelengths according
to Bragg scattering. If each surface wave Fourier component has uniformly distributed phase, the uncertain acoustic
field separates into Fourier orders with respect to the surface wave phase identical to Bragg scattering orders. The
corresponding exponential distribution of amplitude squared then drives the (normalized) Laguerre polynomialsLk,
k = 0, 1, ... paired with Fourier expansions of the acoustic field. Xiu and Shen [19] used physical space Fourier-
Legendre expansions for acoustic scattering from rough cylinders. Their physical space expansion is analogous to the
geometry considered here: in two-dimensions the form Helmholtz equation is invariant under conformal mapping,
and the complex logarithm maps a closed curve to a periodic surface. To simplify presentation of results, this paper
considers the case of a single wavelength surface. In this case, the two random parameters correspond to the phase,
0 ≤ ξ0 < 2π, and the surface amplitude squared,0 ≤ ξ1 < ∞. The uncertain acoustic fieldF (ξ0, ξ1; r, z, ) is
a function of ranger and depthz, increasing downward. Then the acoustic field may be expressed as function of
parameters by a Fourier-polynomial chaos (FPC) expansion

F (ξ0, ξ1) = F (ξ0, ξ1; r, z) =
∞∑

j=−∞

∞∑

k=0

cjk exp (2πijξ0)Lk (ξ1) ,

wherecjk = cjk (r, z) has the spatial dependence suppressed. Since all the discussion that follows applies for point-
wise analysis, that is, for fixed choice of(r0, z0), neglecting spatial dependence will not cause ambiguity. After
pointwise analysis, the results can be recombined to give range-depth plots that accumulate the spatial dependence of
the coefficientscjk. The plots of Fig. 1 show the pointwise results of Fourier-Laguerre coefficient computations, with
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FIG. 1: Acoustic scattering Fourier-Laguerre decomposition.

International Journal for Uncertainty Quantification
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each small frame exhibiting the spatial distribution of logarithm of the amplitude over a range of 750 m and depth of
150 m. The coefficient orders are shown along the outside of the large frame, Fourier orders vertically and Laguerre
orders horizontally. Thec00 frame shows the source on the left, beamed upward at the surface, and to the right, the
mean specular reflection. Each row corresponds to a Bragg scattering order, coincident with the Fourier order. The
actual computations use the Fourier transform with Laguerre-Gauss quadrature over−8 ≤ j ≤ 7 and0 ≤ k ≤ 15
to compute the acoustic field coefficients at each location. These differ from Fourier-Laguerre−16 ≤ j ≤ 15 by
0 ≤ k ≤ 31 computations by10−4. The results for Fourier orders−4 ≤ j ≤ 3 and Laguerre orders0 ≤ k ≤ 7 shown
here are sufficient to compute the acoustic field to two-significant figures accuracy (0.1 dB) at 750 m range appearing
at the right edge of each plot. The ensonifying beam and its specular reflection dominate the mean Fourier termc00.
On the other hand, the Fourier (or Bragg) –1 order dominates allk > 0 contributions and is clearly non-linear in the
Laguerre orders plotted here. The next dominant row fork > 0 is the Fourier order 1 followed by 0, –2, ... . The
main criteria include coefficients across all depths at 750 m range with amplitudes greater than10−3 below the peak
source level; this amplitude contour is indicated in each plot. In fact, the Laguerre order 9 coefficients (not shown)
do fall below that level. The small frames with numbers are those included in a particular Smolyak construction and
conform to the amplitude criteria. This excludes Fourier-Laguerre order (–3,1) which only meets the criteria at shorter
ranges. This includes frames numbered 10–12 which fail to meet the criteria. Thus, the objective becomes to find
a method using a sparse sampling grid that allows computation of the dominant terms in Fig. 1. Lastly, the hybrid
Fourier-Laguerre representation can transform into a Hermite-Hermite representation corresponding to the original
complex normal distribution; although this would be a true PC representation, it is not sparse.

3. EDO AND FLEDGED FUNCTION SYSTEMS OF ONE VARIABLE

The bulk of the heavy lifting follows in a single dimension to develop computational tools. The section starts with
an example to motivate the main definition of EDO. This is then shown to be equivalent to inversion of a weighted
evaluation matrix. Fledging becomes a matter of the relatively simple notion of finding invertible sub-matrices. Iterate
fledging provides the backbone of a nested sequence of EDOs. Much of the theory relies on index bookkeeping of the
grid decimation, and formally this is handled by projection operators. The technicalities, definitions, and structures
follow the example:

Fourier example: Consider the complex exponentialsO =
{
eikξ : ξ ∈ I, k ∈ Z}

, whereI = [0, 2π) and the in-
tegers,Z, index the functions by Fourier orders. The functions are orthonormal with respect to uniform proba-
bility measure, a constantµ ≡ 1/2π :

∫
I
e−ijξeikξµdξ = δjk, the Kronecker delta. In practice, many func-

tions on I have appropriate continuous band-limited approximations, where the order index becomes finite, say
X = {−N, −N + 2, . . . , N − 1}. In such a case, functional sampling onΞ = {ξn : ξn = πn/N, n ∈ G} with
grid indicesG = {0, 1, . . . , 2N − 1} exactly determines the band-limited approximation via the DFT:

f (ξ) =
∑

n∈X

cneinξ, cn =
∫

I

e−inξf (ξ) µdξ =
∑

m∈G

e−inξm 1
2N f (ξm) , (1)

for the linear spanL (OX) of OX =
{
eikξ : k ∈ O}

. In short, the finite discrete sum over the sampling grid exactly
determines the continuous integral in (1). The weighted evaluation vector has components[φ]n = 1/

√
2N f (ξn),

and[c]n = cn. Then, the matrices mappingφ = Qc have[Q]mn = einξm/
√

2N . Inversely,c = Rφ hasR = Q−1

(with unitaryR = Q† andQ, where† denotes conjugate transpose).

3.1 Definitions and EDO Theorem

An orthonormal function systemwritten (I, X, O, µ) has an intervalI andµ a probability measure onI. Theorder
setX indexes the set of orthonormal functionsO with respect toµ; i.e., if P j , P k ∈ O (j, k ∈ X),

∫

I

P̄ j (ξ)P k (ξ) µ (ξ) dξ = δj,k, (2)
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with complex conjugation indicated by the over-bar, as necessary. Selection of a finite setX ⊂ X, reduces the system
to finite dimension,N = N (X). For functionF onI appropriate function space, thetruncation errorεX (ξ) is small
for appropriate choice ofX

F (ξ) =
∑

j∈X

cjP
j (ξ) + εX (ξ) . (3)

The approach here develops computations algebraically, and numerical examples will revisit error estimates. Hence,
in the following, consider the caseεX ≡ 0. In particular, take the continuous system(I, X, OX , µ) with finite
dimensional set of order indicesX = {χ1, . . . , χN} ⊂ X which determinesOX =

{
P j : P j ∈ O andj ∈ X

}
. For

functionf ∈ L (OX), the linear span ofOX ,

f (ξ) =
∑

χ∈X

cχPχ (ξ) . (4)

Integrals with orthonormal functions determine the coefficients, in operator formPX : f 7→ c = [cχ1 , . . . , cχN
], as

vectors, or componentwise

cχ = [PX f ]χ =
∫

I

P̄χf (ξ)µ (ξ) dξ, χ ∈ X. (5)

A discretization(G, X, R, W ) of an orthonormal system(I, X, O, µ) consists of the grid indicesG for the sample
pointsΞ ⊂ I, a matrixR, and weightsW . The cardinalities ofG =

{
g1, . . . , gN

}
, X, andW = {w1, . . . , wN}

must be the sameN = N (G) = N (X) = N (W ), andR must be square of sizeN × N . ConsiderN = N (Ξ).
[Later on, in Section 3.3,N(G) < N(Ξ) requires fledging.] Theweighted evaluationoperatorEG simply creates a
vector of values of a function atξk ∈ Ξ, k ∈ G and multiplies each component bywk ∈ W , viz.,

EGf =




w1f
(
ξ1

)
...

wNf
(
ξN

)


 . (6)

Define(G, X, R, W ) as anexact discretization of an orthonormal(EDO) system(I, X, OX , µ) if for f ∈ L (OX)
a matrix multiplication gives the integral exactly:

cχ = [REΞf ]χ =
∫

I

P̄χ (ξ) f (ξ)µ (ξ) dξ. (7)

The middle term of (7) reduces to the usual Gauss quadrature formula the appropriateW andΞ.

Fourier example:Selectwk =
√

1/2N andξk = πk/N , where the weightwk makesR unitary with [R]jk =
e−πikj/2N/

√
2N . Equation (7) becomes exactly the DFT formula.

BecauseL (OX) is finite dimensional, the value of thecχ exactly determinesf by (4). This with (7) means finite
sampling off on Ξ exactly determinesf on all of I. Also (7) can be writtencχ = [REGf ]χ = [PXf ]χ, so that
REG = PX for EDO systems. Using (4) in (7), and linearity ofEG gives

cχ =


R

∑

j∈X

clEGP l




χ

=
∑

j∈X

N∑

k=1

[R]χk wkP j
(
ξk

)
cj .

Because this holds for all(I, X, OX , µ), it means that the double sum on the right reduces to the Kronecker delta.
Defining the matrixQ of weighted evaluation of the orthogonal functions,

[Q]kl =
[EGP l

]
k

= wkP l
(
ξk

)
, (8)

gives the main tool for EDO systems:
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EDO theorem (in one dimension):(I, X, Ox, µ) is an EDO with discretization(G, X, R, W ) if and only if Q is a
weighted evaluation matrix for orthonormal functions as in (8) with

R = Q−1. (9)

Orthogonal polynomial examples:The theory of abscissas (functional sample grid), weights, as well as the exactness
of Gauss quadrature (sometimes Gauss-Christoffel quadrature) with respect to a PDFµ (ξ) appear in Appendix A. In
fact the notation of the previous sub-section derives from orthogonal polynomials in thatP j stands for polynomial,
thew2

k are the (Christoffel) weights, andξk are the (Christoffel) abscissas (the quadrature sample points). The matrix
of termswkP j

(
ξk

)
are implicit in the Golub-Welsch method [20] as detailed by Gautschi in Chapter 1 of [21]. The

details of interval, probability measure, and symmetric recursion matrixJ (also called the Jacobi matrix) appear in
Table 1.

The weights appear as eigenvalue norming constants and abscissas as eigenvalues of the tridiagonal matrix, with
diagonalan and super- and sub-diagonalbn for n = 0, 1, . . . . WhenΞ contains all eigenvalues andW the corre-
sponding weights,Q andR are the matrices of left and right eigenvectors, respectively, andR = QT.

3.2 Equivalent Vector Space Representations

The theory here relies on matrix manipulation between two vector spaces each equivalent to the original function
spacef ∈ L (OX), one with the objective of reconstruction and the other of sampling. From thereconstructionpoint
of view, the space of coefficientsCX of the orthonormal function expansions (the FPC coefficients) has a bijection
with the function spaceL (OX) ↔ CX : use (5) to mapf 7→ c = [c1, . . . , cN ]T and (4) forc 7→ f . From the
samplingpoint of view, the vector spaceΦG of the weighted functional evaluations at the grid points relates to the

function spaceL (OX) ↔ ΦG; the forward direction byf 7→ φ =
[
w1f

(
ξ1

)
, . . . , wNf

(
ξN

)]T
. The inverse map

φ 7→ f results from the EDO theorem sincec = Rφ ∈ CX and substitution into (4) completesφ 7→ c 7→ f . Thus
the matrix multiplicationsQ : CX → Φg andR : Φg → CX are equivalent to weighted evaluationEG : f 7→ φ,
and integral orthonormal decompositionPX : f 7→ c, respectively. By orthonormality, the inner products off of (4)
andh =

∑
χ∈X dχPχ are

∑
χ c̄χdχ =

∫
I
f̄ (ξ)h (ξ)µ (ξ) dξ = 〈 f, h〉. Let η = EGh, then for EDO systems

〈Rφ,Rη〉CN = 〈PXf,PXh〉CN = 〈 f, h〉L2 , (10)

where the first two inner products are the Euclidean one onCN and the third is the integralL2 inner product onI
with probability measureµ. The mapf 7→ c = Rφ ∈ CX exactly discretizes integral inner products. This extends
to norms as well.

Theorem: (Exact functional recovery): Iff ∈ L (OX), (G, X, R, W ) is an EDO of(I, X, Ox, µ), then f is
uniquely reconstructed by (4) withc given by (7). The norm is preserved,‖c‖CN = ‖f‖L2 .

The development of fledged subspaces use the equivalent spacesCX for reconstructed (or approximate) functions
andΦG for the functional sampling on the grid. By the by,Q andEG do not recreate the integral norms generally, but
will, if W andΞ are complete sets of Gauss-Christoffel weights and abscissas, or follow the Fourier example above.

TABLE 1: Orthogonal polynomial

Family Symbol I µ 〈ξ〉 σ (ξ) an bn

Hermite Hen (−∞,∞) (1/
√

2π)e−ξ2/2 0 1 0
√

n + 1

Legendre Pn (−1, 1) 1/2 0 1/
√

3 0 (n + 1)/
√

4(n + 1)2 − 1

Chebyshev (2nd kind) Un (−1, 1) 2/π
√

1− ξ2 0 1/2 0 1/2

Laguerre Ln [0,∞) e−ξ 1 1 2n + 1 n + 1
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3.3 Fledged EDO Systems and Notation

In the remainder of this section, fix a largest gridΞ and use a set of grid indicesG to indicate subsets of{ξg : g ∈ G} ⊂
Ξ. G also indexes the rows ofQ (and the columns ofR) andX the columns ofQ (and the rows ofR). Consequently
sub-matrices ofQ are determined by sub-grid indicesG′ ⊂ G for rows and order index subsetX ′ ⊂ X. In what
follows, EDO will often stand for the “exact discretization of an orthonormal” system, with the continuous system
(I, X, OX , µ) fixed and implied, so that(I, X ′, OX′ , µ) will be implicit with the selection ofX ′. Define a fledged
EDO (G′, X ′, R′, W ′) of (G, X, R, W ), written (G′, X ′, R′, W ′) l (G, X, R, W ) if X ′ ⊂ X andG′ ⊂ G,
N ′ = N (X ′) = N (G′), the weightsW ′ = {wg : g ∈ G′} ⊂ W , andR′ is N ′ ×N ′ matrix derived fromR. Define
the fledgling indices as those removed for the primed system (the relative compliment):G − G′ andX − X ′. The
nestlingindices remain, exactlyG′ andX ′. The principle fledging result is

EDO fledging theorem(in one dimension): If(G, X, R, W ) is an EDO system withQ = R−1, and given a subset
of ordersX ′ = {χ1, . . . , χN ′} $ X, there is a fledged EDO with(G′, X ′, R′, W ′), G′ = {g1, . . . , gN ′} and

R′ = (Q′)−1
, (11)

where[Q′]jk = [Q]gjχk
and[W ′]j = [W ]gj

.

Proof: By the EDO theorem it is sufficient to show that for any choice ofX ′ ⊂ X, there is some choice ofG′ ⊂ G,
with N (G′) = N (X ′) such that[Q′]jk = [Q]gχ andQ′ is invertible. By induction, it suffices to show only the case
N (X ′) = N (X) − 1. For ease of notation supposeX = {1, . . . , N} andX ′ = {1, . . . , N − 1} (without loss of
generality). Note the invertibility ofQ means det(Q) 6= 0. The proof now proceeds by contradiction; i.e., suppose
there is no invertible sub-matrix with columns determined byX ′. This is the same as saying all minors matricesQ̃jN ,
j = 1, . . . , N have zero determinant (recalling̃QjN is obtained by “crossing out” theN th column andjth row ofQ).

But then det(Q) =
∑N

j=1(−1)N−j [Q]jN det
(
Q̃jN

)
= 0, a contradiction.

Corollary : Let X = G = {1, ..., N}; (G′, X ′,R′,W ′) l (G,X,R,W ) if and only if
[
(R′)−1

]
jk

= wgj P
χk (ξgj )

and[W ′]j = [W ]gj
.

Standard Fourier example:Consider the Fourier indicesX = {−2, −1, 0, 1} and gridξg = πg/2, g ∈ G =
{0, 1, 2, , 3}. The weight is uniformw = 1/2, andQ , the weighted Fourier evaluation coefficient matrix, has
[Q]gχ = (1/2)eπigχ/2. R is the matrix for the DFT,[R]χg = (1/2)e−πigχ/2. The usual order reductionX ′ = {0, 1}
has the sub-sampling indicesG′ = {0, 2} .

Scattering Fourier example:Consider the Fourier system above, withX, G, Q, w, andR as immediately above.
For the acoustic scattering at higher Laguerre orders, the Fourier indicesX ′ = {−1, 1} dominate. The respective
exponential vectors1/2[1 − i − 1 i]T and1/2[1 i − 1 − i]T are the second and fourth columns ofQ. They differ
most at quarter wavelengths, suggesting sub-sampling indicesG′ = {0, 1}. Hence

Q′ =
1
2

[
1 1
−i i

]
, R′ =

[
1 i
1 −i

]
. (12)

The theorem says decimation can work from the highest level to the lowest level, with nesting preserved by transi-
tivity. Levelsλ will index this nesting from 0 to maximal levelΛ. Specifically,l is transitive, and index EDO systems
with κ < λ < ν such that(Gκ, Xκ, Rκ, Wκ)l(Gλ, Xλ, Rλ, Wλ) and(Gλ, Xλ, Rλ, Wλ)l(Gν, Xν, Rν, Wν).
Then(Gκ, Xκ, Rκ, Wκ)l (Gν, Xν, Rν, Wν). Thus the above theorem gives nested systems in a top-down man-
ner, from the finest sampling with the most orders to a singleton sample for single order. A bottom-up theorem would
show that starting at a lower level and inserting an intermediate level also works; that is, given additional orders,
new grid points can be included. In fact, the lowest-level order(s) may be selected first, and then intermediate levels
inserted all the way up as needed, and made to optimize condition numbers forRλ.
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EDO bottom-up fledging theorem: If (G′, X ′, R′, W ′) l (G, X, R, W ). GivenX̃ % X ′ there isG̃ % G′ such

that(G′, X ′, R′, W ′)l
(
G̃, X̃, R̃, W̃

)
l(G, X, R, W ), where theR̃ andW̃ satisfy the correct fledging relations

in both directions.
The proof appears in Appendix B.

3.4 Examples of Fledged Gauss Quadrature Grid Indices

Set the number of initial quadrature points toNΛ = 2Λ with ordersXλ =
{
0, . . . , 2λ − 1

}
. Given theseXλ in

top-down fledging, the criteria forGλ−1 ⊂ Gλ is to select grid sub-indices that maximize the condition number
of sub-matrixQλ−1 extracted fromQλ. This continues to level 1, where level 0 grid index for the larger of[Q1]X0

determinesG0. For the bottom-up method, the2×2 matrixQ1 maximizes condition number for all such sub-matrices
of QΛ for X1 = {0, 1}. ThenQλ+1 is extracted fromQΛ that maximizes condition number with the constraint that
Gλ+1 ⊃ Gλ. Note that the top level has condition number 1 since the discrete basis is orthonormal. Table 2 shows two
examples of fledge gridding, one being top-down, the other bottom-up. Reading up from the bottom, level 1 shows
which point is added to the 0 level point, and level 2 the points added to those below. The condition number is that
of matrix with those grid indices and orders. Bottom-up fledging has a worse level 3 condition number but is slightly
better at lower levels. In either case, the condition numbers give minimal increase in numerical error as the systems
are fledged.

Scattering Fourier example:Set the top level indicesX4 = {−8,−7, . . . , 7} and G4 = {0, 1, . . . , 15} for the
computations of this paper. Orders indices areX0 = {−1}, X1 = {−1, 1}, X2 = {−2,−1, 0, 1}, andX3 =
{−4,−3, . . . , 3}. SetG0 = {0} , without loss of generality; and use bottom-up fledging. WithG4 as above,G1 =
{0, 4}, and subsequently follows the standard DFT grid index selectionsG2 = {0, 4, 8, 12} andG3 = {0, 2, . . . , 14}.
All condition numbers are 1.

3.5 Telescoping Matrices and Inversion

Part of the Smolyak construction requires the definition of telescoping sum of differences of transformsRλ −Rλ−1,
whereRλ = Q−1

λ fixes the matrix size. A formal issue first: the sub-matrixRλ−1 acts on a lower-dimensional
subspace thanRλ. In fact each level has a different dimensionality, andRλ−Rλ−1 is ill defined as a linear map. This
technicality captures the nature of fledged levels reducing the order and sampling simultaneously by sub-indexing.
Projection operators (matrices) do the index bookkeeping in linear algebra. Delvos [22] previously used projections
and their extensions for his construction.

3.5.1 Projection to Lower Level Grids and Orders

The projections defined here reduce dimension size from theΛ to λ levels for the equivalent vector spacesΠXλ
:

CΛ → Cλ andΠGλ
: ΦΛ → Φλ of sub-section 3.2. As matrices the projections are of sizeNλ × NΛ constructed

from theNΛ×NΛ identity matrixIΛ by keeping only rows corresponding toXλ or Gλ. The matrix definitions means
ΠT

Xλ
: Cλ → CΛ andΠT

Gλ
: Φλ → ΦΛ have the transpose matrix representations which embed the lower-dimensional

TABLE 2: One-dimensional Gauss-Laguerre fledging
Level Top-down Bottom-up

Add Pt ind Cond # Add Pt ind Cond #
4 3, 6, 9, 11, 13-6 1 3, 7, 9, 12-6 1
3 1, 7, 10, 12 1.75 2, 5, 10, 11 2.24
2 4, 8 2.20 6, 8 1.87
1 5 1.18 4 1.10
0 2 1 1 1
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vector spaces by using zeros for fledged orders or grid indices (respectively). Note thatΠXλ
ΠT

Xλ
= ΠGλ

ΠT
Gλ

= Iλ,
the Nλ dimensional identity matrix. The operator

[
ΠT

Xλ
ΠXλ

c
]
jk

= [c]k if j = k ∈ Xλ and is zero otherwise,

preserves the nestling order components, but zeros out fledged orders. ThusIΛ − ΠT
Xλ

ΠXλ
keeps the fledged order

components, and zeros the nestlings. Similarly,
[
ΠT

Gλ
ΠGλ

φ
]
jk

= [φ]k if j = k ∈ Gλ and is zero otherwise. A little
thought shows the fledged system has

Qλ = ΠGλ
QΛΠT

Xλ
. (13)

Standard Fourier example:TakeΛ = 2, then forλ = 1; the standard Fourier example has

ΠX1 =
[

1 0 0 0
0 1 0 0

]
andΠG1 =

[
1 0 0 0
0 0 1 0

]
.

Scattering Fourier example:For the same levels, the scattering case has

ΠX1 =
[

0 1 0 0
0 0 0 1

]
andΠG1 =

[
1 0 0 0
0 1 0 0

]
. (14)

3.5.2 Telescoping Difference Operators

One can now extendRλ andQλ to common ranges and domains. DenoteQλ : CΛ → ΦΛ andRλ : ΦΛ → CΛ by

Qλ = ΠT
Gλ

QλΠXλ
andRλ = ΠT

Xλ
RλΠGλ

(15)

then one may correctly write
∆λ = Rλ −Rλ−1, λ > 0

∆0 = R0. (16)

Computationally,Rλ−1 is simply subtracted from the components ofRλ determined byGλ−1 andXλ−1. The obvious
telescoping result is

Rλ =
∑

κ≤λ

∆κ. (17)

Scattering Fourier example:The maximum levelΛ = 2, NΛ = 4, then for level 1

Q1 =
1
2




0 1 0 1
0 −i 0 i
0 0 0 0
0 0 0 0


 andR1 =




0 0 0 0
1 i 0 0
0 0 0 0
1 −i 0 0


 .

The combination of telescoping and projection means that the∆λ coefficients computed at higher levels do not
change lower-level order results. Interpreted in operator form, this gives the technical key to the Smolyak functional
recovery in tensor spaces:

Projection Lemma: If κ < λ then
∆λQΛΠT

Xκ
= 0. (18)

Proof: This only applies to differences in∆λQΛΠT
Xκ

= (Rλ −Rλ−1)QΛΠT
Xκ

= T1 − T2. The rest of the proof
looks like an associative shell game on projections: After distribution, the first term hasT1 = RλQΛΠT

Xκ
=

ΠT
Xλ

RλΠGλ
QΛΠT

Xκ
= ΠT

Xλ
RλΠGλ

QΛ

(
ΠT

Xλ
ΠXλ

)
ΠT

Xκ
, the last insertion is permitted by the nestingXκ ⊂ Xλ.

Equation (13) meansT1 = ΠT
Xλ

RλQλΠXλ
ΠT

Xκ
= ΠT

Xλ
INλ

ΠXλ
ΠT

Xκ
= ΠT

Xλ
ΠXλ

ΠT
Xκ

= ΠT
Xκ

, again by nesting.
The second termT2 = Rλ−1QΛΠT

Xκ
= ΠT

Xκ
by exactly the analogous computation forλ− 1. ThusT1 = T2 giving

difference zero.
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Scattering Fourier example:Maximum levelΛ = 2, NΛ = 4, then for level 1

∆2 =
1
2




1 −1 1 −1
−1 −i −1 −i
1 1 1 1
−1 i −1 i


 and∆2Q2ΠT

X1
=

1
2
∆2




1 1
−i i
−1 −1
i −i


 =




0 0
0 0
0 0
0 0


 .

4. MULTIDIMENSIONAL SMOLYAK GRIDDING AND ORDER

4.1 Multidimensional Tensor Products

The main thrust of this section will be to show tensor products of EDOs are again tensor EDOs, then to review
the telescoping sums and the projection lemma in higher dimensions. This involves turning cranks, starting with the
handles.

4.1.1 Definitions

Start with continuous systems
(
Id, Xd

λd
, Od

λd
, µd

)
in dimensions1 ≤ d ≤ D. The distribution of independent

random parametersΞd ∈ Id, d = 1, . . . , D each have PDFµd, and corresponding orthonormal polynomialsP k
d , P l

d ∈
Od

λd
, k, l ∈ Xd with respect to inner product

(
P k

d , P l
d

)
j

=
∫

P k
d P l

dµj = δkl. A set of orders is the set of multi-

indicesXλ = X1
λ1
×· · ·×XD

λD
and the set of all orders isXΛ = X1

Λ×· · ·×XD
Λ , where each dimension has the same

maximal levelΛ. By independence, the multidimensional polynomials are simply products of the single variable ones.
Thus,P j = P j1

1 · · ·P jD

D where the multi-indexj = (j1, . . . , jD) ∈ Xλ, and one may writeOλ =
{
P j : j ∈ Xλ

}
.

Define|j| = ∑D
d=1 jd; inequalitiesj ≤ k, j < N , and so forth, hold if the inequality holds componentwise. Forξ =

(ξ1, . . . , ξD) ∈ ID = I1 × · · · × ID, the functionf (ξ) ∈ L (Oλ) can be expanded in terms of the multidimensional
FPC expansions of the form

f =
∑

j∈Xλ

cjP
j. (19)

Note thatXλ indexes the product spaces of coefficientsCλ = C1
λ × · · · × CD

λD
, so thatcj = [c]j if c ∈ Cλ and

j ∈ Xλ. If the FPC expansions forλ = Λ are uniformly of the same orderNΛ = N
(
Xd

Λ

)
, over the complete set of

indicesXΛc the sum in (19) hasNΛ terms in each dimension, giving(NΛ)D terms. The coefficient is found by the
inner product

cj =
(
P j, f

)
=

∫

ID

P̄ jf µDdξD (20)

with µD = µ1 · · ·µD anddξD = dξ1 . . . dξD. This completes the definition of the continuous orthonormal system(
ID, Xλ, Oλ, µD

)
.

For the discretized system the maximal computational grid is the grid indicesΞΛ = Ξ1
Λ × · · · × ΞD

Λ and sub-
grids can be selected from this by the multi-indicesGλ = G1

λ1
× · · · × GD

λD
. Define the product weight setWλ ={

wm = w1
m1
· · ·wD

mD
: m ∈ Gλ

}
as the product of weights. The tensor production operatorQλ = Qλ1⊗· · ·⊗QλD

can be constructed from the corresponding coefficients of the tensor matrix product so that its components are products

[Qλ]jk = [Qλ1 ]j1k1
· · · [QλD ]jDkD

= wj1P
k1

(
ξj1

) · · ·wjDP kD
(
ξjD

)
= wjP

k
(
ξj

)
(21)

whereξj =
(
ξ

j1
1 , . . . , ξjD

D

)
, j ∈ Gλ, k ∈ Xλ and maps from the equivalent product spaces of coefficient vectors

Cλ = C1
Λ × · · · × CD

Λ to the product space of weighted evaluation at grid pointsΦλ = Φ1
λ1
× · · · × ΦD

λD
by

[Qλcλ]j = [Qλ1cλ1 ]j1 · · · [QλDcλD ]jD
and [Rλφλ]k =

[
Rλ1φλ1

]
k1
· · · [RλDφλD

]
kD

. (22)

SetΠGλ
= Π1

G1
⊗ · · · ⊗ ΠD

GD
, ΠT

Xλ
=

(
Π1

X1

)T ⊗ · · · ⊗ (
ΠD

XD

)T
, and so forth. Note thatΠXλ

ΠT
Xλ

= IXλ
, the

identity onCλ, for example. AlsoQλ = ΠGλ
QΛΠT

Xλ
= Q1

λ1
⊗ · · · ⊗QD

λD
andQλ = ΠT

Gλ
QλΠXλ

. Similarly for
Rλ = R1

λ1
⊗ · · · ⊗RD

λD
andRλ = ΠT

Xλ
RλΠGλ

. This defines the discrete system(Gλ, Xλ, Rλ, Wλ).
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4.1.2 Tensor EDO Systems

Next turn to showing(Gλ, Xλ, Rλ, Wλ) is an EDO of
(
ID, Xλ, Oλ, µD

)
and, in particular,

EDO theorem (tensor products):
(
ID, Xλ, Oλ, µD

)
is an EDO system with discretization(Gλ, Xλ, Rλ, Wλ) if

and only if
Rλ = Q−1

λ , where [Qλ]jk = (wk) P j
(
ξk

)
, j ∈ Xλ andk ∈ Gλ. (23)

Proof: It suffices to re-express (23) via its single dimension constituents. For the integral, begin by separating each
dimension

cj =
∫

ID

P̄ jf µDdξD =
∫

I1
P̄ j1µ1dξ1 · · ·

∫

ID

P̄ jDµDdξDf (ξ1, . . . , ξD) .

By the EDO property in each dimension, each of these becomes a sum

cj =
∑

m1∈Gλ1

[Rλ1 ]j1m1
w,m1 · · ·

∑

mD∈GλD

[RλD ]jDmD
w,mDf (ξm1 , . . . , ξmD ) .

Group terms forRλ andwm

cj =
∑

m∈Gλ

[Rλ]jm wmf (ξm) = [Rλφλ]j , (24)

where[φλ]m = wmf (ξm), with the vector grid pointξm = (ξm1 , . . . , ξmD ) ∈ Ξλ. Thus there is a matrix multipli-
cation (albeit multi-indexed) that is equivalent to the integral, and so it is an EDO by definition. UsingRλd

= Q−1
λd

and
assembling into a tensor forj,k ∈ Xλ, [Rxλ

]jk = [Rλ1 ⊗ · · · ⊗RλD ]jk =
[
Q−1

λ1

]
j1k1

· · · [Q−1
λD

]
jDkD

=
[
Q−1

λ

]
jk

,

or Rλ = Q−1
λ . Concretely fork ∈ Gλ, componentwise forc ∈ Cλ

φk = [Qλc]k = wk

∑

j∈Xλ

cjP
j
(
ξk

)
=

∑

j∈Xλ

cj

[
w1

k1
P j1

1

(
ξk1

1

)
· · ·w1

k1
P jD

D

(
ξkD

D

)]
, (25)

wherecj = [c]j. This gives the final term of (23).
Because the tensor system is built from single dimensional ones, existence of fledged systems derives from those

criterion this gives a instead of existence.

EDO fledging lemma(tensor products): Suppose
(
Gd

λ, Xd
λ, Rd

λ, W d
λ

)
are EDO systems,1 ≤ d ≤ D, 0 ≤ λ ≤ Λ.

Additionally0 ≤ κ ≤ λ ≤ Λ (componentwise) and for somed κd < λd. Then(Gκ, Xκ, Rκ, Wκ)l(Gλ, Xλ, Rλ, Wλ)
andQκ = ΠGκQλΠT

Xκ
.

Proof: Product space rules giveXκ ⊂ Xλ andGκ ⊂ Gλ. Because of the latter the indices of the weights are nested
soWκ ⊂ Wλ. For individual dimensionsQκd

= ΠGκd
Qλd

ΠT
Xκd

. Then assembly of tensors gives tensor identity.

4.1.3 Telescoping and Projection Lemma

Finally, define the tensor difference maps

∆λ = ∆λ1 ⊗ · · · ⊗∆λD . (26)

Induction on dimension (see Wasilkowski and Woźniakowski [23]) shows the tensor telescoping term

Rλ =
∑

κ≤λ

∆κ. (27)

Tensor Projection Lemma: If for some1 ≤ d ≤ D, κd < λd then

∆λQΛΠT
Xκ

= 0. (28)

Proof: Forκd < λd, ∆λd
Qd

ΛΠT
Xκd

= 0, so∆λQΛΠT
Xκ

=
(
∆λ1Q

1
ΛΠT

Xκ1

)
⊗· · ·⊗ (0)⊗· · ·⊗

(
∆λD

QD
Λ ΠT

XκD

)
= 0

by the Projection Lemma (18).

All the pieces are now here for the Smolyak construction.
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5. SMOLYAK CONSTRUCTION

The Smolyak construction includes sums over levels tensor product. First define the Smolyak sparse grid set and its
index set

ΞS =
⋃

|λ|=Λ

Ξλ =
⋃

|λ|≤Λ

Ξλ andGS =
⋃

|λ|=Λ

Gλ =
⋃

|λ|≤Λ

Gλ (29)

as well as the set of orthonormal functions and their sparse Smolyak order index set

OS =
⋃

|λ|=Λ

Oλ =
⋃

|λ|≤Λ

Oλ. andXS =
⋃

|λ|=Λ

Xλ =
⋃

|λ|≤Λ

Xλ. (30)

The setL (OS) contains polynomials of the form

f =
∑

j∈XS

cjP
j. (31)

The set of weighted functional evaluations,ΦS , consists of vectorsESf with components given byξk ∈ ΞS , k ∈ GS

[ESf ]k = wkf
(
ξk

)
=

∑

j∈XS

cjwkP j
(
ξk

)
=

∑

j∈XS

cj [QS ]kj (32)

wherecj = [c]j, c ∈ CS = {c : cj ∈ CΛ, j ∈ XS}. The final part of (32) definesQS componentwise. The projection
operatorsΠXS

: CΛ → CS andΠGS
: ΦΛ → ΦS track non-zero indices algebraically within the complete product

space of indices. Numerically, standard computational techniques handle the sparsity ofΠXS
andΠGS

, as well as of
the Smolyak computations generallly. The projections appear here formally, and also help defineQS = ΠGS QΛΠT

XS
.

TheoreticallyRS = Q−1
S could apply computationally, but the following lower-cost method works:

Smolyak construction for EDO: The Smolyak system(GS , XS , OS , WS) has EDO(GS , XS , RS , WS) with

RS =
∑

|λ|≤Λ

∆λ (33)

which definesRS = ΠXS RSΠT
GS

. Then
RS = Q−1

S (34)

andRS will be called theSmolyak matrix.

Proof: By the linearity, it suffices to demonstrate thatRSQS is the identity onCS for each component. Select any
component indexj ∈ XS , and then find the smallest level indexκ with j ∈ Xκ ⊂ XS . Because the of the projection
theorem, the contributions from order indexj occur in levels up toκ. Thus, for convenience, introduce vectorδj ∈ Cκ

with [δj]m = 1 if m = j and is zero otherwise. This will zero pad to higher levels as needed. Suchδj corresponds to
φ ∈ ΦS with φk = [φ]k =

[ESP j
]
k

= wkP j
(
ξk

)
= [QS ]kj. Thenφk =

[
QSΠXS ΠT

Xκ

]
kj

=
[
ΠGS QSΠT

Xκ

]
kj

sinceΠXκ projects toCκ which contains vectors with the correct indexj. For δj, φk =
[
ΠGS

QSΠT
Xκ

δj

]
k
. Zero

padφ to all indices withφ̃ = ΠT
GS

φ = ΠT
GS

ΠGS
QSΠT

Xκ
δj = QSΠT

Xκ
δj since projections have exactly the same

non-zero structure asQS . One needs to showRSφ̃ = δ̃j where the extended̃δj ∈ CΛ has
[
δ̃j

]
m

= 1 if m = j and

is zero otherwise. Substituting for̃φ in (33) gives

RSφ̃ =
∑

|λ|≤Λ

∆λφ̃ =
∑

|λ|≤Λ

∆λQSΠT
Xκ

δj. (35)

Now separate (35) into two sums
{

RSφ̃
}

LE
=

∑

λ≤κ

∆λQSΠT
Xκ

δj and
{

RSφ̃
}

NLE
=

∑

λ�κ,|λ|≤Λ

∆λQSΠT
Xκ

δj. (36)
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ThenRκ =
∑

λ≤κ ∆λ, and
{

RSφ̃
}

LE
= RκQSΠT

Xκ
δj = ΠT

Xκ
RκΠGκQSΠT

Xκ
δj = ΠT

Xκ
RκQκδj = ΠT

Xκ
δj =

δ̃j, as required for identity. Turning to
{

RSφ̃
}

NLE
, for each termλ � κ, scrutiny componentwise means that there

is somed such thatλd > κd and so by the tensor projection lemma,∆λQSΠT
Xκ

= 0.
{

RSφ̃
}

NLE
= 0 as required.

Corollary (Exact Reconstruction): The Smolyak construction that most closely corresponds to standard quadrature

AS = RSES : L (OS) → CS (37)

gives coefficientsc = ASf that reconstructf ∈ L (OS) exactly via (31).

The form (37) extends to function spaces well approximated byL (OS); see Novak and Ritter [15]. Error estimates
for such an example will be done numerically and are deferred to that section. They also point out

RS =
∑

Λ−D+1≥|λ|≤Λ

(−1)|λ|−1

(
D − 1
|λ| − 1

)
Rλ (38)

based on Delvos [22] or Wasilkowski and Woźniakowski [23]. Note that the cardinality of the sparse basisNS =
N (OS) = N (ΞS) is identical to the sparse sample size. Re-interpreted in compressed sensing terms: For a K-sparse
Smolyak EDO system,K = NS andK samples suffice.

5.1 Fourier-Laguerre Example

Using the level indices for the Fourier scattering and Laguerre examples, one can piece together the two-dimensional
Smolyak sample points. For two-dimensions and level 4, the order indices are plotted in Fig. 2(a) and the correspond-
ing sampling grid in Fig. 2(b). The grouping of points is indicated in column 2 of Table 3. The levels are indicated
in the first column, and the additional points required for the level in the two-dimensional problem appear in the
second column. The third column shows the Smolyak matrix condition number for the “top-down” fledging, where
lower-level grid point selection from the higher-level grid results from maximizing the condition number given the
set of lower-level orders. For comparison the next indicates the “bottom-up” fledging condition numbers, which are
generally larger. The corresponding orders and grid points to the system give the Smolyak matrixRS , with symmetric
indexing of non-zero entries, with amplitudes indicated in Fig. 2(c). The matrix is sparse with 44% non-zero elements,
and at higher-dimensions becomes sparser with 15%, 3.7%, and 0.64% for 4, 8, and 16 dimensions, respectively. Note
that the Smolyak matrix inverse, the matrix of weighted evaluation of the orthonormal functionsQS = R−1

S , is a
full matrix. Hence, the true inversion to findRS costs more than the Smolyak construction. The remainder of Table 3
shows higher dimensional Smolyak matrix condition numbers for 4, 8, and 16 dimensions, as well as the number of
sample points (equivalently, orders). Even at 16 dimensions, the condition number indicates numerical errors many
orders of magnitude smaller than the approximation tolerance used here.

6. ERROR ANALYSIS IN THE ACOUSTIC SCATTERING PROBLEM

The error analysis for the FPC representation of scattering from a single surface Fourier component appears in Fig. 3.
The estimated error for the full16 × 16 Fourier-Laguerre decomposition is about10−4 compared to the32 × 32
computation for orders shown in Fig. 1. The following error analysis focuses on a hypothetical vertical array with
M = 141 phones at 1 m spacing from 10 to 150 m depth. LetF r

kl (zm) be the reference coefficient of the acoustic field
of Fourier orderk and Laguerre orderl at a depthzm overM phones. The discrepancy of the coefficient computattion
according to SmolyakFS

kl (zm) is described as the error computed on root-mean-square (RMS) of differences Err=√
1/M

∑M
m=1 |FS

kl(zm)− F r
kl(zm)|2. Use of the Smolyak construction to compute various levels gives discrepancy

errors from the full grid in Fig. 3(a). The horizontal axis is the same coefficient number indicated in Fig. 2(a) and for
level 3 numbers inside Fig. 1. The absolute errors drop perhaps a factor of1/5 ∼ 10−0.7 for each additional level. The
top level approximates that of the full grid computation. Indeed, the results reach virtually the same tolerance, and the
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(a) (b)

(c)

FIG. 2: Fourier-Laguerre Smolyak construction orders (a) and grids (b) and the corresponding matrix (c).

TABLE 3: Number of points and condition number. 2-D top-down, bottom-up;> 2-D, top-down only
2-D 4-D, d 8-D, d 16-D, d

Level Added Pts C#, d C#, u #Pt C# #Pt C# #Pt C#
4 21-8, 29-36, 37-40, 41-4, 45-8 8.11 9.08 192 98.4 1059 1416 8021 51390
3 9-12, 13-6, 17-8, 19-20 5.99 6.65 63 35.2 253 338 1273 6982
2 4-5, 6-7, 8 3.95 3.51 19 11.0 53 68.8 169 719
1 2, 3 1.73 1.98 5 3.51 9 11.5 17 47.2
0 1 1

Smolyak construction wins out based on 48 functional evaluations versus 256. The Fourier-Laguerre coefficients RMS

Ampr =
√

1/M
∑M

m=1 |F r
kl(zm)|2 amplitudes vary from10−5 to 1 along the horizontal axis in Fig. 3(b). The vertical
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(a) (b)

(c)

FIG. 3: Error analysis: absolute 3(a), relative 3(b), and phase correlation –1 along array 3(c). Levels: 2× , 3· , 4◦ .

axis of relative error Rel = Err/Ampr varies almost inversely so as to maintain approximately the same absolute error.
On the other hand, acoustic beam-forming requires an array. Beam-forming uses relative phase at phones along the
array to determine direction of arrival. This permits separation of deeper angle reflections from the main reflection in
the (0, 0) plot of Fig. 1 due to the variable surface height. Figure 3(c) addresses the error in phase by looking at the
mean correlation along the array. IfF (zk) is the acoustic field at a depth, the array averaged correlation is

Corr =

∣∣∣∣∣
1
M

M∑
m=1

F̄ r
kl (zm) FS

kl (zm)

∣∣∣∣∣
AmprAmpS

.

This represents an amplitude weighted average of the phase difference. The result is normalized by the RMS ampli-
tudes to give 1 if there is no discrepancy in the phase. Figure 3(c) plots the magnitude of the correlation difference
from 1. The Smolyak construction coefficients have slightly better phase correlation than relative error, typically by
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an order of magnitude. The statistics of beam-forming should have reliable phase components using the Smolyak
method. Overall, the errors of the Smolyak construction compare favorably to the use of the full grid in this case.

7. CONCLUSIONS

The EDO criteria for study of PC and FPC Smolyak construction allow the study of minimal sampling: if a FPC
expansion has orders compatible with a Smolyak construction, this paper outlines a recipe for picking the smallest
number of samples that could recover such a representation. This idea represents an extension of Nyquist-Shannon
sampling theory to multidimensional, sparse FPC representations. The new EDO criteria replace polynomial exactness
and better express the idea of “multi-level PC exact” systems. This paper shows that Smolyak EDO systems actually
achieve the minimal sample size for functional recovery. Additionally, the Smolyak matrix is sparse, further reducing
computational loads.

By backing off from the typical idea of quadrature for PC or FPC coefficient calculations, and treating the problem
algebraically, one can create nested sampling grids. In one dimension, the EDO criteria result in a fledged sub-matrix
that produces the same PC coefficient values as the correct Gauss quadrature of the same abscissa count; this result
bootstraps by tensor products to higher dimensions. The algebraic approach blurs the idea of the quadrature weights
and polynomial exactness in favor of nested gridding and PC coefficient accuracy at specified orders. As noted, the
weights included in the construction only relate to quadrature at the highest level. They allow the iterated fledging
process in one dimension to create sufficient levels, each with sufficiently small condition number. When assembled
into tensor products, the Smolyak EDO construction numerical accuracy can be quantified by condition numbers for
worst case analysis. For the physical problem above, the approximation achieves the desired accuracy with a small
fraction of the evaluation load over the use of a complete quadrature grid. In this study, the use of a sparse grid of level
3 fledged from level 4 abscissas and orders yields results well within tolerance compared to level 3 grid based on the
“correct” level 3 abscissas and orders. This indicates that the penalty for lower-level computations using higher-level
grid locations is quite low in this case. The method provides good estimates of mean phase variability and so is quite
attractive to the acoustic scattering application.

The method here makes no use of specific level sizes or decimation rates. The construction requires only that
tensor products of lower-dimension EDOs nest appropriately in higher-dimensional EDOs and that the nested systems
follow the relatively weak conditions of Sections 4.1 and 5: meeting the criteria of the EDO theorem and the fledging
and projection lemmas. Thus the method here should work for anisotropic cases, and varying order index truncation
schemes similar to those outlined by Blatman in [24] and [25]. It should also extend to the multi-order 0 levels, fixed
sample size across levels in some dimensions, and other idiosyncrasies.

The system of fledged EDOs and their assembly into multidimensional Smolyak EDOs represents a partially
adaptive method of significant flexibility.
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APPENDIX A. GAUSS QUADRATURE AND ORTHOGONAL POLYNOMIALS

This Appendix develops only the orthogonal polynomial theory and Gauss quadrature theory needed for the EDO
theory; derivation of the recursion relationships from the measure appear in Gautschi [21]. The abscissas, weights, as
well as the convergence of Gauss quadrature with respect to a PDFµ (ξ) can be derived from an eigenvalue problem
based on the recursion of the related orthogonal polynomials back to Golub and Welsch. Letµ (ξ) be a standard prob-
ability distribution over the intervalI (namely Normal,I = (−∞,∞), Gamma,I = [0,∞) or Beta distributions,
I = [0, 1]). Here the orthogonal polynomialsP j (ξ), j = 1, 2, . . . will be taken to be normalized

∫

I

P j (ξ)P k (ξ)µ (ξ) dξ = δj,k (A.1)

whereδj,k is the Kronecker delta. In this caseP 0 (ξ) ≡ 1 and the general recursion relationk = 1, 2, . . . can be
written

International Journal for Uncertainty Quantification



Minimal Sparse Sampling 19

(α0 − ξ)P 0 (ξ) + β0P
1 (ξ) = 0, k = 0

βk−1P
k−1 (ξ) + (αk − ξ) P k (ξ) + βkP k+1 (ξ) = 0, k > 0

(A.2)

Note that this can be summarized up to maximum orderN + 1 in the matrix equation

(J− ξI)P =




0
...
0

−βN−1P
N (ξ)


 (A.3)

whereP (ξ) =
[
P 0 (ξ) P 1 (ξ) · · · PN (ξ)

]T
, I is theN dimensional identity matrix, andJ is the Jacobi matrix

defined by

J =




α0 β0

β0 α1 β1

β1
. . .

. ..
. . . αN−2 βN−2

βN−2 αN−1




. (A.4)

(Gautschi uses
√

βn on the off-diagonals.) This matrix has some very useful properties directly related to the polyno-
mials. Note at the zerosξ1 < ... < ξk < ... < ξN of PN , the (A.4) satisfies the eigenvalue equation

(
J− ξkI

)
Pk = 0, (A.5)

with eigenvectorPk = P
(
ξk

)
=

[
P 0

(
ξk

)
P 1

(
ξk

)
... PN−1

(
ξk

)]T
. In fact det

(
J− ξkI

)
= 0 for eachk, and

recursion to theN polynomial givesdet (JN − ξI) = (−1)N
β0...β(N−1)P

N (ξ) and the roots ofPN are exactly
the eigenvalues ofJ. The eigenvectors ofJ, P1,P2, . . . ,PN+1 are standardized to[Pk]0 = P 0

(
ξk

)
= 1. SinceJ

in (A.4) is symmetric so that there is an orthogonal matrixQ which diagonalizesJ, JQT = QTdiag
(
ξ1, . . . , ξN

)
,

expressed withQT, a transpose of the usual form. (Technically, the rows ofQ contain the left eigenvectors ofJ). But
such aQT has eigenvectors columns, so that it must be that

QT = [w1P1 w2P2 · · · wNPN ] (A.6)

wherewk = ‖Pk‖−1
2 =

[∑N
j=0

∣∣P j
(
ξk

)∣∣2
]−1/2

define the norming constantswk for each eigenvalueξk. The set

of orders isX = {0, . . . , N − 1} and the set of abscissa indices isG = {1, . . . , N} . Define the linear operator
EG that evaluates function at theξk and then weights the value as in (6) of Section 3.1. Then each columnQk =[
w0P

k
(
ξ0

) · · · wNP k
(
ξN

)]T = EG

(
P k

)
of Q contains all the weighted evaluations for single order polynomial

P k and is orthonormal compared to other rows, so that the orthonormality leads to

N∑

j=0

w2
j P k

(
ξj

)
P l

(
ξj

)
= QT

k Ql = δk,l. (A.7)

In particular forl = k = 0,
∑N

j=0 w2
j = 1, so that thew2

j plays the discretized role ofµ. Theξ1, ξ2, ..., ξN+1 are
the Christoffel abscissas (quadrature sample points) andw2

k are the Christoffel quadrature weights appropriate to the
probability measureµ (ξ). Write the set of weightsW = {wk : k ∈ X}. Equation (A.7) states the orthonormality of
the polynomials evaluated at the collocation points with respect to the weights. Restrict the dimensionality to finite
polynomial setOX =

{
P k : k ∈ x

}
andL (OX) is the linear span ofOX . Consider a functionf (ξ) ∈ L (OX) =

PN , whereL (OX) coincides withPN the polynomials of orderN . Then

f (ξ) =
N∑

j=0

cjP
j (ξ) . (A.8)
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SetR = Q−1 (in this caseQ−1 = QT). The coefficientsγj can now be found either by (A.1) or by (A.7) so that

ck =
∫

I

f (ξ) P k (ξ)µ (ξ) dξ =
N−1∑

j=0

wjP
k
(
ξj

)
φj = [RW (F )]k (A.9)

whereφj = wjf
(
ξj

)
= [EG (F )]j gives exactly the Gauss quadrature formula for polynomials. In general for

F = f + ε(ξ)

ck =
∫

I

F (ξ)P k (ξ)µ (ξ) dξ = [REG (f)]k + O (‖ε‖2) . (A.10)

The Gauss quadrature error termO (‖ε‖2) expresses convergence in terms ofL2 convergence with respect to proba-
bility measurep. If

∫
εP kµdξ = 0 for k ∈ X, the error is comparable to aliasing of the higher-order variability when

sampling is effectively band-limited.
Sum up the properties in terms of notation from Section 3.1:

Gauss Quadrature for PC as EDO:(G, X, R, W ) is an EDO of(I, X, OX , µ), f ∈ L (OX), thenf is uniquely
reconstructed by (A.8) withc given by (A.9). The norm is preserved,‖c‖CN = ‖f‖L2 . FurthermoreR = QT is
unitary.

The unitarity means the condition number is 1. This is optimal as a start for fledging.

APPENDIX B. BOTTOM-UP FLEDGING PROOF

SupposeQ′ is an invertibleM × M sub-matrix of invertibleN × N Q, with M < N − 1. Only the induction
step requires work and with the EDO theorem, this requires only that there is an invertible sub-matrixQ̃ of Q of
size (M + 1) × (M + 1) with Q′ a sub-matrix ofQ̃. Without loss of generality, supposeX ′ = {1, . . . , M} and
the columns ofQ̃ areX̃ = {1, . . . ,M + 1}. The proof uses the equivalence of invertibility with full rank in square
matrices. HenceQ′ is of rankM . TheQ sub-matrixQ′′ = [Q′q1], with (M + 1) × 1 vector[q1]k = [Q]k(M+1),

is also of rankM . Now the leftM + 1 columns ofQ, matrix,Q′′′ =
[

Q′′

Q2

]
, must be full rankM + 1 sinceQ is

full rank. SinceQ′′ is row rankM there must be another row fromQ2, as the remaining part ofQ′′′, that is linearly
independent of the rows ofQ′, say the1×(m + 1) row vectorq3 with [q3]k = [Q]Jk for appropriatej, M < J ≤ N .

Now Q̃ =
[

Q′′

q3

]
is full rank (M + 1)× (M + 1), and, hence, invertible.
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