A Study of the Anticancer Effect and Radiation Protection Effect of the Hatake-shimeji (Lyophyllum decastes (Fr.) Sing.) on Radiation Exposure

Yeunhwa Gu,1 Yuuichi Ukawa,3 Ikukatsu Suzuki,2 Sangrea Park,1 and Toshihiro Iwasa1

1Department of Radiological Technology, Suzuka University of Medical Science, 1001-1 Kishiokacho, Suzuka City, Mie 510-02, Japan; 2Department of Clinical Nutrition, Suzuka University of Medical Science, 1001-1 Kishiokacho, Suzuka City, Mie 510-02, Japan; and 3Research Center Eishogen Co., Ltd., 98 Fukaya City, Saitama, 366-0815, Japan

This study examined the effects of hatake-shimeji (Lyophyllum decastes) with regard to immunoactivity against cancer, radiation protection, and increase in the lymphocyte vs. multi-form nuclear leukocyte ratio (L/P activity).

To determine the antitumor effect, each of ten 6-week-old ICR mice was inocultaed with the Meth A fibrosarcoma cell (ascites) of 2×10^6 by endoceliac injection in the right and left lower abdomen. Then, to monitor tumor development on the surface of the skin, the tumor head diameter and overall diameter were measured with calipers every other day from the 3rd until the 25th day, for a total of 12 times. Hatake-shimeji in a dose of 100 mg/kg in a saline solution was administered to the test group by endoceliac injection into the tumor. The tendency to repression of development of the lower abdomen transplant tumors of this group was recognized as the antitumor effect.

The radiation protection effect on a 2 Gy radiation-exposed group with hatake-shimeji medication was determined by comparison with an independent 2 Gy irradiated group ($p < 0.005$), using ICR mice. L/P activity was evaluated at $p < 0.05$ on the basis of intraperitoneal administration.