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High-performance concrete (HPC) has a complex mechanical performance due to its multiscale and multiphase com-
posite structure. In this review, the various methods of multiscale modeling from different disciplines are summarized
and discussed. The conjoint use of multiscale modeling and other methods such as image reconstruction technology for
HPC is introduced. The failure mode modeling of HPC using multiscale methods is discussed. Lastly, the multiscale
extended finite-element method (XFEM) for high-performance fiber-reinforced concrete (HPFRC) is elaborated. The
benefits and perspectives of developing multiscale modeling techniques for HPC are presented.
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1. INTRODUCTION

Concrete is one of the most commonly used construction mgdreing applied to infrastructures. Nevertheless,
those shortcomings of the conventional concrete, suchvastiength, low ductility, and early-age cracking, led to
development of high-performance concrete (HPC). Compaithidhe normal concrete, the HPC has outstanding me-
chanical properties. However, it is a more complex multggheomposite material, which is composed of coarse/fine
aggregates, mineral admixtures and cement paste, cheatdéives (superplasticizers), and sometimes polymer
fibers etc. Therefore, the mechanical behavior and the damaghanisms of HPCs are different from normal con-
cretes (Maekawa et al., 2008). To better understand andcptbdir performances, the development of systematical
multiscale modeling of HPC is indispensable.

With the development of the multiscale method and x-ray amatje reconstruction methods, the complex phys-
ical and chemical properties can be analyzed at varioussdadhsed on fundamental principles, multiscale modeling
provides a framework for constructing mathematical andmatational models for the HPC by examining the interac-
tion of multilength scales and the combination between jgsyand chemistry. Traditionally, conventional macroscal
methods, namely, the finite-element method (FEM) and fuspdsition modeling (FDM), need more refined mesh-
ing to simulate fine scales, and the block element modifieg ssmianalytical method, only needs integration on
the boundary of problem domains. However, it is difficult &t gn analytical-based solution. Besides, it can cause
significant errors when applying a macroconstitutive madeholecular scales. On the other hand, the microscale
methods, such as first principles (Bernasconi et al., 13#8)sity functional theory (DFT), and molecular dynamics
(MD) (Alder and Wainwright, 2004), usually require grediare to simulate macroproblems, as it indeed acquires an
efficient computation to complete the simulation. To solve ¢ontradiction, coupled methods with different length
scales have been attempted in the last two decades, suahmsithoscopic, atomistic, ab initio dynamics (MAAD)
(Abraham et al., 1998), quality control (QC) method (Knad &nrtiz, 2001), quasicontinuum density functional the-
ory (QC-DFT method) (Woodward et al., 2008), bridging seakthod (Fish, 2006; Fish et al., 2007; Li et al., 2008;
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Xiao and Belytschko, 2004), and computer-aided architattiesign (CAAD) (Shilkrot et al., 2002), etc. Interest-
ingly, similar to biological materials, engineering mads can be regarded as a hierarchical design from maceoscal
to nanoscale (Yuan and Fish, 2009a,b). Based on this plkinail framework of FEM, a method called multiresolu-
tion was developed to analyze polycrystalline, porous,gmadular materials (McVeigh et al., 2006).

The multiscale method was based on general laws of mechamitisding the constitutive model, the quantum
theory, and experimental data as well. In the experimerda#d,despecially for multiphase materials (like HPC),
the mechanism of damage and fracture is uncertain. Becduisaations with different length scales and chemical
transport, a new experimental technique must be appliedviestigate the multiscale structure in the whole field.
The x-ray and image reconstruct method (Otani and Obara,)2@M reconstruct the structure of aggregates, mineral
admixtures, etc. The microstructural changes of the HP(®stddl to environment load in real time can be observed
by 4-D image reconstruction (Hinkle et al., 2012; Tang et 2010). Combined with TEM/SEM, the structure at
nanoscale can also be reconstructed (Midgley and Weyl&@@8)2More complex phenomena such as the growth
path of cracks caused by creep and autogenously shrinkegyeadit scales can also be observed and hence, more
accurate multiscale modeling can be established.

In this paper, the development of multiscale modeling aedotnefits of using it are introduced in Section 2. In
Section 3, the multiscale modeling for high-performancectete is discussed; the image reconstruction techniques
and multiscale failure method for the HPC are reviewed. IctiBe 4 we discuss the multiscale modeling of high-
performance fiber-reinforced concrete.

2. MULTISCALE MODELING

The multiscale modeling method includes multiple modeldifferent scales (from atomic scale to macroscale) (Liu
et al., 2004), originating from physical laws of differertares, such as, quantum mechanics, molecular mechanics,
and continuum mechanics (shown in Fig. 1).

Available large-scale models, including the FEM, finitefeliénce method (FDM), boundary element method
(BEM), and meshfree method, should require constitutileticns, which are almost always obtained from experi-
mental data. The microstructure of materials shows comf@itshapes, so mesh refinement is needed at small length
scales with FEM, and even smoothing meshing will fail, onhem it is replaced by vertex meshes, which reduces the
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FIG. 1: The scheme of the multiscale models and their corresporudiagrvation techniques
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accuracy obviously because of tough element boundariescdimputational cost of the meshfree method increases
dramatically, although it is more accurate than FEM. FDM jueseds a simple process by Taylor's polynomial, but
it has lower accuracy than FEM and requires a strict cortijrinithe problem region. For BEM, it needs to provide
an analytical resolution, which it is very difficult to acgeiiin an analytical model in multiple scale domains. To
seek a more efficient numerical model, Belytschko and cgllea (Belytschko and Black, 1999; Dolbow and Be-
lytschko, 1999) developed an extended finite-element ndefKBEEM) based on the classical FEM, the partition of
unity method (PUM) (Melenk and BabusSka, 1996) and levehsethod (LSM) (Osher and Sethian, 1988), in which
merely a background mesh is needed.

As a common macroscale numerical method, the FEM had beepmatrictly by mathematic theories. Based
on the framework of FEM, the programing of XFEM is very easihplemented. That is why XFEM has been applied
into many fields rapidly, including damage and fracture, pogite materials, and microstructure description in the
last decades (Afshar et al., 2015; Fish, 1992; Liu et al.420u et al., 2010).

Unlike classical FEM, XFEM takes just the enriched functiomlescribe the discontinuous interface based on a
physical background mesh and tracks the boundaries omatitfenaterial regions with LSM, which is very convenient
to simulate multiscale problems compared with molecularashlyics and quantum mechanics. For example, XFEM
meshes need no extra remeshing on the included regionL[&ig; on the contrary, the FEM needs mesh refinement
[Fig. 2(b)].

The formula of XFEM is based on FEM with added enrichment gefifumar, 2011):
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FIG. 2: Comparison with (a) XFEM meshes and (b) FEM meshes redraawn fumar (2011)
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Similar to the FEM, the strain can be expressed by
€(x)=B(z) - u* (3)

The straine at any pointz along the direction is written as follows:
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Therefore, the matrix “B” in the XFEM approximation consisif two parts: the classical FEM and virtual part
that corresponds to the enriched functions. The stiffressinputed by gauss integration:

e . ngp
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where B and B; are the strain matrixat, j-th node, respectively. The interfaces can be easily tchtiyel SM.
Meanwhile, the boundaries of images can also be trackedn@aet al., 2011) and applied to image reconstruction
(as shown in Fig. 3).

The disadvantage of XFEM analysis is that the freedoms adtheth using the enrichment functions will con-
sume more computational time. Smoothing the finite-elemethod (Liu et al., 2007), which is just integrated on
boundaries, will reduce the computational time when comtbinith XFEM.

Recently, a series of multiscale models were developed bybgung XFEM with other numerical methods
(Zhang et al., 2014). The multiscale methods based on ctiowah FEM can be transferred into XFEM easily.
Coupling XFEM with the multiresolution method and QC methaill conventionally implement multiple-scale
problems, especially for material failure.

For nanoscale modeling, the molecular dynamics, whichssthan classical mechanics and statistic mechanics,
is applied in chemical physics, materials science, and blecules.

The macroscale models, like FEM models, are of low accura@ntlyze small scales with macroconstitutive
relationships, while nanoscale models can accuratelyuoagimall-scale chemical and physical essential phenom-
ena. However, they require a high computational cost tow#hllarge length scales. The multiscale modeling takes
advantage of different physical laws at different scalessttuce computational costs, with no compromise on the
accuracy. An efficient multiscale modeling system shouldsii of three closely related components: multiscale
analysis, multiscale models, and multiscale algorithnistlly, the relation among models at different scales of res
olutions and multiscale analysis should be understoodn;Tieltiscale models help to establish models that couple
together at different scales. Lastly, multiscale alganghare used to solve the multiscale solution efficiently. Mea
while, to simulate real materials, image processing isiadpb remodel structures at different scales. There arggman
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FIG. 3: The framework of XFEM analysis based on image reconstractiopyright from Legrain et al. (2011)
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FIG. 4. The system of multiscale modeling (AdResS = adaptive réispiischeme; QM/MM = quantum mechanics/molecular
mechanics; HMM = heterogeneous multiscale method)

studies about the multiscale modeling (atomic to continudmwo main sequential and concurrent multiscale models
(Fig. 4) are given as follows.

2.1 Sequential Multiscale Modeling

In sequential multiscale modeling, lower scale simulatoapplied to describe the details of constitutive relation
for microscale models (Kouznetsova and Geers, 2008). Fonple, based on the elastic theory, the macro model for
linear elastic problems can be described as Hooke’s law:

Oij = Cijkl €kl (7)

whereo;;, ex; are the stress tensor and strain tensor, respectivelyg;apds the elastic tensor. In conventional
large-scale models, thg;;; is normally determined from the experiment, while the éasbnstant;;; is deduced

by evaluating the interaction of atoms with a fine model in qusatial multiscale approach. Another example is
performing MD simulation by using empirical potentials, evh the parameters in the potential are precomputed
using quantum mechanics (Legrain et al., 2011).

2.2 Concurrent Multiscale Modeling

Unlike sequential multiscale modeling, different scaltuons are solved by different scale models in concurrent
multiscale modeling (Tinsley Oden et al., 2006). In largendins, macroscale models are computed, and then mi-
croscale models are applied as the computation proceedssias subjected to extreme loads. In the adjacent domains,
the macro- and microscale models are used concurrenthcu@ent multiple-scale modeling can be classified into
two categories: “partitioned-domain” and “hierarchicaiéthods (Oosterlee, 1995).

Partitioned-domain concurrent approaches are implerdéntalividing the physical problem into two or more
contiguous domains, which are solved by a different physicalel for each. An example to analyze dynamic fracture
with coupling MD with XFEM is shown in Fig. 5(a). To acquire ggh accuracy for the stress intensity factor, a fine-
scale model, MD, is used at the vicinity of the crack tip. Oa tither hand, the XFEM is applied to other regions to
improve the computational efficiency. The compatibilityttwine boundary of two methods is ensured by a coupled
domain and Lagrangian multiplier method or penalty meti#adgrtin et al., 2010). Similarly, Gracie and Belytschko
(2009) analyzed multiscale dislocations and fracture lgrab by combining XFEM with the bridging domain method
(BDM) (Xiao and Belytschko, 2004).

Hierarchical methods [shown in Fig. 5(b)], on the other haakle advantage of both scales. The macroscale
model makes regular appeals to the microscale model tordigiea constitutive law and, conversely, the microscale
model assists the large-scale model for its boundary congit
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FIG. 5: (a) The coupled MD and XFEM and (b) the multiresolution framek

3. MULTISCALE MODELING FOR HIGH-PERFORMANCE CONCRETE
3.1 The Framework of Multiscale Model for HPC

The high-performance concrete, characterized by its higfopmance in terms of workability, mechanical properties
and durability, is a complex system that involves differsotles of materials. Concurrent use of supplementary
cementitious materials, superplasticizers, as well asrathemical additives leads to complex effects of each edit
on others and on the properties of the HPC. For example, ttex weducing admixture has expansive behavior, while
the thermal expansion causes evaporation of water, andatlséninkage crack happens. Therefore, new multiscale
and multifield models should be developed with the abilitgiéscribe the physicochemical mechanisms integrated
with structural analysis and materials science (Ahmed.eg2al 3).

In Section 2, the multiscale modeling was briefly introductkis method was widely applied to analyze the
durability, toughness, and damage of infrastructure ri@$eiconcrete and HPC.

Conventionally, fine meshes are used to capture the diseenfeatures and the coarse meshes to describe the
physical problems, albeit all meshes are based on macritttine relationships (Chaudhuri, 2013). These two
or more scale models consider concrete as homogenous iesegpiative elements. However, concrete or HPC is
a complex multiphase material, and its components alwagsritkon the time scale because of physicochemical
interactions (shown in Fig. 6). The multiscale (from namesio macrosize) mechanism of HPC is described not
only by physics but coupling between hygral-, thermal-,naloal-, and mechanical processes. According to the
geometrical size (see Fig. 7), four scales as follows weed ts model the multiscale properties of HPC:

a. Macro- (m): In this structural scale, concrete is regdiaea homogeneous material with different mechanical
behaviors: elastoplastic or viscoelastic. FEM, BEM, or XfFEan be used to simulate concrete at this scale.

b. Meso- (mm): The size of coarse aggregates up to mesoswaleecvisible by human eyes. So, concrete can
be seen as a two-phase heterogeneous material: a matrixafwaetar and coarse aggregates as inclusions.
In high-performance fiber-reinforced concrete, the micetentscale fibers should be considered.

c. Micro- (um): The mortar-forming matrix of concrete can be regardealrandom and heterogeneous material
made of cement paste, fine aggregates, and water. In addiiorent paste, made of different type of compo-
nents, including unhydrated and hydrated cement partiptaes, and capillary water, can be described at the
microscale.
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FIG. 7: Concrete as a multiscale and multidisciplinary material

Meso- and microscale can be simulated by FEM lattice (Gdtak,e2005) to describe different mechanical
behaviors at macroscales.

d. Nano- (hm): The molecular structure of cement (e.g., B-l) is analyzed by MDab initio or DFT at this
scale. The capillary molecular water can also be analyzed.

Concurrent multiscale modeling is mostly used because tBeHCgel, cement paste, fine or coarse aggregates
have different performances in terms of mechanical belnalionanoscale, MD combined witéb initio or DFT
provides important information about the interaction dtizam and silicates, and water molecules and their position
within C-S-H chain. Moreover, like the hydration, trandpair chemicals within the matrix plays an important role
affecting the macromechanical behavior, which needs tahsidered.
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In concrete, the cementitious materials act a time-depdnaghavior, caused by chemical reaction, environ-
mental actions, and external load. This behavior can beritbescat a materials level (physiochemistry reaction and
transport), a structural level (facture), and their coration (Basheer et al., 1996). The hydration process between
cement paste and water, and the degree of hydration detstrbiyy water to cement ratio (w/c), play an essential
role in concrete performance (Narayanan and Ramamurtl®g)2 the last decades, several micromodels have
been developed, namely, CEMHYD3D (Manzano et al., 2009, OM (Bentz, 2006), HYMOSTRUC (Kishi and
Maekawa, 1996), Navi's model Pignat (Navi and Pignat, 1986)l CCBM (Maruyama et al., 2007). The HPC pro-
duces lower hydration heat than conventional concreteusecaf low w/c. Besides, factors such as the transport of
moisture and CQ C&* leaching, Ct ingression, corrosion, and the effect of admixtures (swsch water reducer)
should be considered in multiscale models (Cheung et @120

In general, concrete is regarded as a heterogeneous rhatéhia meso level, but the properties of concrete vary
in different specimens because of various sizes, shapespartial distribution of aggregates. Some stochastidally
signed multiscale models (SMM), which are based on the agyimmomogenization method (Guedes and Kikuchi,
1990) and stochastically FEM/XFEM (Fish and Wu, 2011; Nong €lément, 2010; Wu and Fish, 2010), have been
developed in the last few years and can be used to procesartiemn properties of aggregates (Duddu et al., 2008;
Rahman, 2009). In addition, a so-called interfacial trémsizone (ITZ) between the aggregates and the matrix can
be captured by SMM.

The numerical methods, such as FEM, XFEM BEM, and the mesiheshod, are often applied to simulate the
macrostructural behavior, durability, damage, fractdsgyamic response, etc. for concrete, as well as coupling the
fine scales to describe the properties of microstructureueer, it is a challenge to simulate the time-scale behavior
of concrete (Wu et al., 2016). The macroconstitutive mgasdpecially for damage constitutive relationships, stioul
be built to be coupled with mechanical, thermal, and trartspaperties of concrete (Cervera et al., 1999). The
concurrent multiscale method, used in multiphase at diffescales, is more efficient.

3.2 Combining Image Reconstruction with Multiscale Modeling

In the most mesoscale models, the random structure of agfgies often generated by 2D or 3D stochastic compu-
tational algorithms or determines the spatial structureldstructing the concrete. On the contrary, the micro-x-ray
computed tomographyCT) which is widely applied in medical examination and getmoesngineering, when
coupled with image reconstruction algorithms, such asRastier transform (FFT) and LSM, can provide a nonde-
structive technigue to reconstruct the distribution ofraggte, and even the multi-interface will be captured. Base
on image reconstruction, efficient multiscale models caadtablished (see Fig. 8).

In a common image reconstruction model, a coarse boundtew f captured because of low resolution of CT
based on x-ray. Furthermore, voxel meshes are used in thiscalg model. However, the image reconstruction based
on LSM can track the smooth boundary and be simulated aatyitay XFEM (Lian et al., 2013). It is worth noting
that the image reconstruction can be assembled with an imesgdution of the x-ray, the multiresolution image
technique, or microscopy scanning tools (SEM/TEM or AFM)eTramework of multiscale image reconstruction is
given here (see Fig. 9).

The micromodel of concrete can be reconstructed by compimith SEM/TEM or AFM with x-ray tomography
(Liu et al., 2013). Through adding a time scale, the 4D imag®nstruction can be used to describe the multiscale
structure of concrete in real time. The multiscale modektasn multiscale resolution image reconstruction can
then be built. The displacement and strain of the 3D field forcrete can be determined by coupling with digital
volume correlation (DVC) (Bay et al., 1999), which is wideypplied in biological, geometrical, and aerospace
research.

3.3 Multiscale Analysis for Material Failure of HPC

Indeed, HPC performs with outstanding mechanical propeedompared with conventional concrete. However, the
different damage mechanisms (e.g., crack growth, interiigbonding, and chemical erosion) also can decrease the
strength and toughness of HPC.
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FIG. 8: The scheme of multiscale analysis for HPC (Lian et al., 2013)

Nonstructural cracks are one cause of failure, which is &mtiny heat conduction and shrinkage and adversely
affect the early-age strength of HPC. The heat from hydnaticfreeze and thawing causes thermal stress within the
matrix due to thermal gradients by which thermal cracking®. The chemo-mechanical-thermal model is often ap-
plied to analyze the damage of concrete using a constitrdlationship based on the free energy in thermodynamics
(Cerveraetal., 1999). The frost damage of concrete wagestigt combining the XFEM and cohesive models based
on the mechanism that crystallization of ice exerts presearthe capillary pores and causes the crack initiation and
propagation (Ng, 2012).

On the other hand, the mechanism of shrinkage crackingdantms shrinkage cracking and drying shrinkage
cracking) is primary attributed to three factors: capyllension, disjoining pressure, and surface tension obtal
cement hydrate (Hua et al., 1995). However, temperatuferdifce and water contents produced by hydration can
affect the shrinkage cracking. Therefore, the multiscattraultifield models are mostly used to simulate the shrink-
age or shrinkage cracking. There is a two-phase multiscaiemsimilar to a composite material model, to analyze
the shrinkage which suggests that chemical shrinkageibates clearly to the autogenous shrinkage at early stages
(Wu et al., 2017). However, the drying shrinkage and longtamtogenous shrinkage occur due to capillary tension
and disjoining pressure (Schrofl et al., 2012). The voluati® rof the mixture (cement paste to aggregate and water-
to-binder ratios) was optimized by an atom-continuum apphowith reduced deformation caused by autogenous
shrinkage (Pichler et al., 2007). In common multiscale nimydée aggregate shrinkage was ignored. A new mul-
tiscale model base DuCOM showed that the shrinkage of ctnarereased significantly when the shrinkage of a
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low modulus aggregate was taken account (Asamoto et aB)28&0, a chemo-, porous-, viscoelastic modeling was
proposed, which suggested that pore pressure is crucistitoate the capillary tension (Pittman, 1992). Porositg wa
considered in this model as the chemical dilation or watapevation are affected by the pore structure in concrete.

In contrast to a nonstructural crack, structural cracks oaase catastrophic destruction of concrete when sub-
jected to external loads. For structural cracks, the damégencrete is simulated by coupled thermo-hygro-chemo-
mechanical models. Under fire loading, for instance, sp@lbf concrete takes place attributed to two principal
mechanisms: thermohygral and thermomechanical interatin recent research (Gawin et al., 2006), it shows that
in the thermohygral process the pore pressure increasée gote water vaporizes, and then the tensile stress in
the concrete matrix increases drastically. In thermomeichiprocesses, compressive stresses parallel to thecheat
surface increase; in contrast, the tensile strength pdipalar to the heated surface drops down, which causes de-
lamination of concrete mainly at the surface. The meshfregatproves to be efficient to model large displacements
(blastimpact, explosion) without mesh generation, algioitiincreases the computational time compared to FEM. A
multiscale meshfree modeling, based on a semi-Lagrangmoducing the kernel particle method (Wang and Lin,
2011) and energy bridging theory (Li and Ren, 2010), is @&pbld simulate the damage of high-strength concrete
under explosion penetration. As the extreme material s¢iparand number of fragments are formed, the LSM is
used to determine the surface normal given a contact surfdeefore, the damage evolution model based on a
continuum-damage link to microscale failure was develdpedjcinovic, 2000).

In multiscale modeling, which considers moisture trangpbe porosity described at different scale is shown in
Fig. 10.

4. MULTISCALE MODELING FOR HIGH-PERFORMANCE FIBER-REINFORCED CONCRETE

Different contents and types of fibers are used to enhandetlgéness of high-performance concrete. The multiscale
modeling for high-performance fiber-reinforced concrétBFRC) should be considered differently, with the addition
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FIG. 10: The multiscale structure of porosity (Maekawa et al., 2008)

of fibers, from the multiscale modeling for HPC. The correxting models can be classified into three categories:
(a) multiscale continuum models, in which equivalent séfs and modulus are acquired by regarding the fibers and
the matrix as a homogenous composite material; (b) embemnidelels that define the matrix element by taking the
fiber stiffness and considers the rotation of fibers (Monti 8pacone, 2000); and (c) multiscale structure models that
consider the fibers and matrix as separate constituents.

Multiscale continuum models are the most common model irchvtiie fiber-reiforced concrete can be regarded
as an isotropic or anisitropic composite material due todifferent oritention of the fibers. In this model, the ho-
mogneous method is mostly used as well as the continumm daoragonlocal damage models (Han et al., 2014;
Karihaloo and Wang, 2000). As for the second category, aredoidd rebar model is applied to analyze the fracture
of high-performance fiber-reinforced cementitious conies§HPFRCC) combined with XFEM, although as mul-
tiple cracks are simulated, there are some errors betweanaion and expriemental results in four-point bending
expeiments; and the interface of the fiber and matrix is igethgPadmarajaiah and Ramaswamy, 2002). In another
embedded model using micromorphic approach, the slipgitigedfiiber-matrix interface is considered in mesoscale,
albeit the slippage does not occur (Huespe et al., 2013).ultistale structural models, a 3D modeling for carbon
nanotube/polymer composites has been proposed and the EMdrks and polymer interphase regions were de-
scribed clearly. The results proved that the polymer iritage region predominantly attribute to reinforcement (Han
et al., 2014). Another multiscale structure model was basedFEM, in which the fibers are regarded as 1D “inclu-
sion,” an enrichment function to describe the discontiriatesface of the fiber and the matrix (as shown in Fig. 11).
The translation and rotation of fibers were considered bgid tonstraint equation, but bending and stretching were
ignored because of the low stiffness of fibers. This appraacicessfully avioded the complex mesh generation in
FEM and accurately characterized the elastic behavior difpteishort fiber-reinforced composites without complex
mesh refinment at the interface (Thostenson and Chou, 280@)ever, the failure model of fiber was not taken into
account.

The pullout of fiber is important to evaluate the fiber-matnterface strength (Thouiess et al., 1989). But few
multiscale models considered both fracture and debonirfipef, even though the fiber-matrix interface had been
described accurately by LSM (Sonon and Massart, 2013).drfitier-reinforced concrete, except for fracture, the
pullout and delamination of fibers can cause the prematiltedaf reinforced concrete.

The interface between fibers and the bulk paste can actiratgrowth of microcracks when the concrete is
subjected to external loads. Some literature has propossgtizal and empirical models to evaluate the interfacial
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FIG. 11: (a) The scheme of a 2D fiber-reinforced problem and (b) theMFResh for a single-fiber redraw from Pike and Oskay
(2014)

fracture (Akisanya and Fleck, 1992; Hutchinson and Suo21B§oji and Jin-Quan, 1992). However, the interfacial
fracture behavior for multiphase materials (like concreteder moisture environments is not yet well explained.
Previously, the interface fracture was tested on trilapecsnens: carbon FRP, epoxy adhesive, and concrete [shown
in Fig. 12(a)] (Au and Blyukoztirk, 2006a,b; Lau andyBkodzturk, 2010) under different moisture environngent

It was found that the fracture toughness of the trilayer ni@tsystem dropped dramatically because of the presence
of moisture, which was studied by MD [Fig. 12(b)]. Resultswmhulation showed that the adhesive strength between
epoxy and silica was reduced with the decrease of the enargighF,. However, a coupling between MD and FEM

is required to characterize the interface mechanism airdifit scales.

(a)

(b)
H,0 molecule

Bond destroyed by
»H,0 molecules

CFRP

Intact bond .
between polymer

& substrate Concrete

Substrate

FIG. 12: (a) Plasticization of an epoxy-penetrated concrete lagdr(l) weakening of the bond between epoxy and concrete,
copyright from Blylkozturk et al. (2011)
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5. SUMMARY AND PROSPECTIVE
5.1 Summary

Numerical modeling, especially the multiscale modelinghod, always performs an important role in describing
the mechanical properties of HPC and HPFRC. The concurretitscale models are more efficient approaches to
characterize different mechanisms with different modefspared to the sequential multiscale models. The common
multiscale methods often use homogenous methods and eogsidcrete as homogenous or simple two-phase com-
posite materials in representative volume element (RVEjrtaulate the problems by quantitates. In contrast, HPC
performance consists of more than two phases and the meahpnbperties are determined by multiscale and mul-
tifield, not only by physical models. So, the multiscale modgintegrates the material and structural mechanics and
describes the performance of HPC more accurately. On ther odnd, the image reconstruction technology (such
as x-ray,uCT) provides an opportunity to establish real models irtbtefahypothetical ones. The real multiscale
modeling can be built to analyze the multiphysics behaviestPC and HPFRC.

5.2 Prospective

As the HPC is a complex multiphase material, the structunect@nge because of hydration heat and the different
components used. Therefore, the multiscale homogenousagpshould take the time-scale, scholastic, and the
chemical admixtures into account. The multiscale XFEM cascdbe the multiple phase materials and track the
dynamic boundary of inclusion (such as aggregate, C-S-Hfipelr) with the level-set method and can be applied
instead of FEM.

For HPFRC, a multiscale structure model based on XFEM has bei#t, but the failure of fiber and debonding
is not considered. The nanoscopic chemomechanical iti@nacat the fiber-matrix interface in carbon nano- and
microfiber is reinforced with cement composites. A multis@mputational framework for modeling the mechanical
response of nano- and micro- reinforced concrete is cetimrgicomposites.
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