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In modeling and simulation of material failure, a major challenge lies in the computation of stress redistributions during
the stochastic propagation of localized failures. In this study, an n'"-order generalized local load sharing (GLLS) model
is introduced to account for the complexity of such local interactions in an efficient way. The rule is flexible, covering
a wide range of load sharing mechanisms between the equal load sharing and local load sharing types. A Monte Carlo
simulation model employing various orders of this GLLS rule is used to study the effect of such load redistributions
on the failure of a micron-scale carbon nanotube (CNT) fiber. These CNT fibers exhibit a hierarchical structure. At
the lowest length scale are single- or multi-walled CNTs with nanoscale diameters (e.g., 1-10 nm), which are aligned
and clustered to form small bundles at the next higher length scale (15-60 nm in diameter). Thousands of these CNT
bundles aggregate and align to create CNT fibers with micron-scale diameters. The results of this study indicate that the
mean strength of the CNT fibers reduces by approximately two-thirds of an order of magnitude when up-scaling from
an individual CNT to a CNT fiber. This dramatic strength reduction occurs at three different stages of the up-scaling
process: (1) from individual CNTs of length I, to CNT bundles of the same length; (2) from a CNT bundle of length
l; to a CNT bundle of length 1y (1,=101:); and (3) from CNT bundles of length I, to CNT fibers of the same length.
The specific strength reductions during these three stages are provided in the paper. The computed fiber strengths are in
the same general range as corresponding experimental values reported in the literature. The ability of the GLLS model
to efficiently account for different mechanisms of load sharing, in combination with the multi-stage up-scaling Monte
Carlo simulation approach, is expected to benefit the design and optimization of robust structural composites built up
from carbon nanotubes.

KEY WORDS: load sharing models, statistical size effect, statistical failure, carbon nanotubes, hierarchical
structure, Monte Carlo simulation

1. INTRODUCTION

In a typical failure scenario of solids under stress, acdation of atomic scale instabilities triggers nucleatidn o
micro-flaws and micro-voids; the growth and coalesce of #igel leads to formation of macroscopic cracks and
ultimately results in a catastrophic rupture. Such a corfaiure process involves (1) a large number of fine-scale
field quantities representing both material and mechafficaing components, and (2) the quasi-static or dynamical
evolution of these quantities at multiple length scalese&tiquantification or measurement of these field quantities
space and time is challenging, if not impossible in somesdnehis sense, probabilistic descriptions and uncetain
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guantification models are of paramount importance in the@gdeaxf robust advanced materials and reliable prediction
of the stresses and strains at failure.

Recent dramatic progress in multi-scale research is glasginected with the rapid growth of nanotechnology
starting in the 1990s. Most bottom-up multi-scale modetitrgtegies involve passing information regarding defects
microstructure, and their interactions from the atomidesta the micro-scale and eventually to the macro-scale. To
date, determinism has remained an almost universal syratamost of these models, in which average properties,
constants, or representative unit processes are trapgfap through the scales. While this approach works well
when the material response of interest is stable, such aedarlelasticity or small-scale plasticity, it becomes a
severe limitation when material behavior is governed byahsget of inhomogeneities and instabilities. Defects and
microstruture at all length scales are random in nature aiharé properties, such as peak stress or peak strain, are
highly sensitive to these uncertainties. A determinidtiwdation merely corresponds to a single point in the random
space of failure stress or strain and does not offer religlit sensitivity information. To understand and quantify
uncertainty at different length scales and study how it iatpphenomena operating at other length scales, one needs
to develop a multi-scale stochastic modeling strategy ¢oawt for incomplete microstructure information, stadet
defects, random failure initiation, stochastic progressiarge sample sets or ensemble, and scaling laws [1-6].

In modeling and simulation of material failure, a major dbagje lies in the computation of stress redistribution or
in establishing a local load sharing rule during the nuade@eand propagation of localized failure events. Considgri
the large defect and micro-structural parameter spaceehssthe need to simulate a very large number of samples
for each parameter set, it becomes prohibitively experiveputationally to employ sophisticated mechanics mod-
els. Consequently, it becomes highly desirable to seek r@@apibut accurate and efficient, surrogate load sharing
models as an alternative. The main objective of this paptr istroduce such a surrogate model—namelyn&n
order one-dimensional (1D) and two-dimensional (2D) galiwed local load sharing (GLLS) model—and to apply
it in simulation to study the statistical strength of micreeale carbon nanotube (CNT) fibers. The characteristics
of load redistribution can be altered by the ordesf the GLLS rule, which can vary from ductile-like (diffust)
brittle-like (localized). The CNT fibers have a complex highical nanostructure consisting of thousands of CNT
bundles, which in turn consist of dozens of CNTs. Each CNTraadom strength that leads to random strength bun-
dles, which in turn leads to random strength CNT fibers. Assthe scale increases, the mean strength and variance
are predicted in this study to decrease in a manner that dspenthe details of the load redistribution (orar
At the end, model predictions are compared with some datadfau the literature and recommendations for future
extensions are provided.

2. GENERALIZED LOCAL LOAD SHARING MODEL

Originally introduced to explain ruptures of bundles ofthds [7], fiber bundle models have been applied to problems
involving cracks and fractures, earthquakes, and othexkioie@vn phenomena. In such models, the fibers are usually
assumed to be aligned and loaded with the same force aloffigénéirection. The strengths of the fibers are modeled
as independent and identically distributed random vaemtConsequently, as the applied load increases, the wieakes
fiber will break first. The load carried by this weakest fibeéopto failure is redistributed among the surviving ones.
The nature of this redistribution reflects the interactibthe components in a system.

To circumvent complex and time-consuming mechanics-beatedlations for load redistribution following fiber
breaks, load sharing rules are employed. The two classiedl $haring rules are the equal load sharing (ELS) rule
[7], where the load is uniformly (equally) distributed angoall intact fibers, and the extreme local load sharing
(ELLS) rule [8, 9], where the broken fiber affects only the msasurviving fibers. Although the mechanics are only
approximated, these rules can make possible relatingtizadly stochastic failure processes to statistical gjtenFor
instance, to relate load sharing to probabilistic bundiergith, Harlow and Phoenix [8, 9] proposed a simple ELLS
rule for 1D systems by transferring the load only to the twareet surviving bonds. As a result, exact recursion
relations were established. Their work was later extendexttount for the next-nearest neighbors by Phoenix and
Beyerlein [10].

In actuality, load redistribution lies in between the li;m@f ELS and ELLS. The variation is very broad and the
extent of re-distribution depends on many material/sygpanameters. Hedgepeth and Van Dyke [11] developed a
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shear lag model to compute the stress concentration faasoasresult of a 1D row of breaks (cracks) by assuming
the elastically deforming matrix only serves as shear dogdetween neighboring fibers. The Hedgepeth and Van
Dyke model was later extended to treat a general arrangeshéber breaks [12] showing that details of stress fields
caused by breaks depend on the properties of the fiber, mamdxfiber-matrix interface deformation.

In order to provide an efficient load sharing rule that camsjp@ range between ELS and ELLS, aif-order
GLLS model is proposed in this study (a thermodynamic foatiah will be reported in a separate paper). The two
limiting cases of the GLLS model, the zeroth-order GLLS anffigently high-order GLLS, reduce to the ELS
model [7] and ELLS model [8, 9], respectively. Instead okdity simulating a failure process for different material
microstructure parameters, the GLLS model introduceslsimpes that can be empirically calibrated to account for
a variety of complex local interactions. In this way, GLLYg®to circumvent the issue aficomputability[13] in
nonlinear mechanics or the so-called “curse-of-dimeradityi in mathematics.

2.1 An lllustrative Elastic Beam Model

To illustrate the mechanisms behind the rules used in GLL&phlem involving load redistribution in an elastic
beam-spring assembly is considered first. The elastic beadehconsists of a large number of parallel and aligned
elastic springs attached to two parallel beams. The loweugper beams are modeled as perfectly rigid and elastic,
respectively. The springs, with identical length at restdve linearly elastic until breaking at a certain stredigtit
under an incremental load. When a spring is broken, theseteforce serves as an upward perturbing force acting on
the upper beam. The resulting deformation of the upper beadslto redistribution of this force among the remaining
intact springs, which determines the local load sharing.rul

For an infinitely long elastic beam lying on elastic springthvgpacingl, following classical beam theory, the
Green'’s function is analytically given as

ﬁeﬂ\\zl [cos(Ax) + sin(A |z])] (1)

Gl) =35

which corresponds to the deformation of the beam at locatéhre to a unit point force applied at the origin. Parameter
A= (k/4lEI)1/4 indicates the degree of localization, wiih andk denoting the bending stiffness of the beam and
the elastic constant of the springs, respectively. For @afitly smallA, the deflection becomes almost identical
throughout the beam, and the redistribution of the forceesponds to the ELS rule. As parame}emncreases,

the size of the neighborhood participating in load sharngeduced, and the load sharing becomes more localized,
approaching the ELLS model. This trend is illustrated in BEigvhere beam deflection profiles resulting from a broken
spring atx = 0 are graphed for different values ®fConsequently, with the use of a single paramgterwide range

of load redistribution patterns can be obtained betweewbextreme cases of ELLS and ELS.

2.2 Generalized Local Load Sharing Rules

This section describes tmé&*-order GLLS model for 1D and 2D systems. The familiar ELLS reldsl described first
in order to distinguish it from tha*"-order nearest neighbor GLLS.

2.2.1 One-Dimensional ELLS Model

Consider a 1D system of bonds in which load sharing follovesEh LS rule [8, 9]. As shown in Fig. 2(a), when
the central bond is broken, the load released from the brbked is shared equally by the two nearest-neighboring
bonds. If any of the nearest-neighboring bonds are alreaakeh [Fig. 2(b)], the load meant to be redistributed to
this bond will be equally shared by its two nearest neighbbhss load sharing process continues iteratively. The
criterion for the iterations to stop is when the shared loady broken bond becomes negligibly small. Analytical
expressions can be established for the load distributiiwsraf the 1D ELLS model. For example, for the case shown
in Fig. 2(b), the ratios of the load distributed to the neeseasviving bonds to the left and to the right are calculated a
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FIG. 1. Beam deflection profiles resulting from a broken spring:at O for different values of the localization
parametel (k=1,1=1).
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FIG. 2: Schematic of the load distribution for the 1D ELLS model ({onous, intact bonds; dashes, current broken
bonds; dots, pre-existing broken bonds).
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wherei represents the iteration step. For the case shown in Fij.tB@load distribution ratios are obviously equal
to (1/2,1/2). The load distribution ratios for the broken bond in Fig.)2{@n be derived using straightforward math-

ematical induction as
R L

"Ltk "TILYR
whereL and R denote the distances to the left and right nearest survivamgls from the broken bond.

®)

L

2.2.2 One-Dimensional n**-Order GLLS Model

Then'"-order GLLS rule is used to describe general failure phemaneheren corresponds to the size of the “dam-
age zone”. The concept of the damage zone is employed tormidooinelastic mechanisms, such as yielding, soften-
ing, and micro-cracking. The damage zone is centered ambnuken bondand for thent”-order GLLS rule consists
of nsites to the left and sites to the right of bond denoted a®; = {i —n,i —n+1,--- ;i —1,i+1,--- ;i + n}.
When bond breaks, its nearest surviving bonds within the damage zalhshvare a certain ratié, (0 < & < 1) of
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the released load. This ratipis calculated based on the algorithm described in the néogestiion. The remaining
ratio of the released load ¢ &) will be equally shared by all surviving bonds in the systéfithere are no surviving
bonds within the damage zone, the load will be equally shbyeall surviving bonds in the system. When the size
of the damage zone is equal to zero (i.e., no local intemas}jdghe corresponding zeroth-order GLLS model reduces
to the classical ELS model, where 100% of the load releasedtiypken bond is equally shared by all the surviving
bonds in the system. At the other end of the spectrum, wheddheage zone is as large as the entire system (i.e.,
extreme local interactions), the GLLS model becomes theEiriodel. As illustrated in the previous subsection, the
ELLS rule corresponds to an extreme localization of loadisgasince all the load formerly carried by the broken
bond is transferred only to the nearest surviving bondshigdase, zero percent of the released load from a broken
bond is equally shared by all surviving bonds in the system.

The localization parametér is similar to parametek in the elastic beam model and indicates the degree of
localization for a particular microstructure. For examjpiea polymer composit&, depends on the shear lag behavior
between the matrix and the reinforcement. Specifically,)(Z-indicates the ratio between the global and local effects
induced by a local failure.

2.2.3 Two-Dimensional nt*-Order GLLS Model

The 2D GLLS model is developed around a 2D discrete lattigesisting of N; x N» bonds. LetS = {(4,)|1 <
i < N1, 1 < j < N>} index a discrete set of sites for the bonds on the rectanéattane. Figure 3 shows two
types of 2D nearest neighborhoods for a square array: (h) bands in Moore’s model [14] and (b) four bonds in
Von Neumann’s model [15]. In this work, the eight-bond Mdsraodel is selected for all cases considered. For each
case in Fig. 3, the damage zone for the first-order GLLS rutaiiBned by dashed lines, while for the second-order
rule by bold lines. Note that the GLLS rule is not restrictecitsquare array. A hexagonal arrangement, for instance,
can also be considered. For simplicity, all nearest-nesghlg bonds in Moore’s neighborhood are treated equally;
i.e., one-eighth of the load from a broken bond is assigneshtt nearest neighbor. Other non-uniform distribution
schemes can be assigned, such as those based on Hedgepéth arydke’s model [11].

To implement am‘”-order GLLS rule numerically in a 2D lattice system, a foomatrolled quasi-static algorithm
is described below. It is assumed that the strength of eaol oprovided by randomly sampling from a given
probability distribution with no correlation among theesigths of individual bonds. The elastic modulus of the bonds
is assumed to be deterministic and identical for all bonds.

1. Determine the strength,; (k,l) € S of each bond by randomly sampling from a prescribed prolgliistri-

bution. Initialize force#,g?) = fo for every ,I) € S. The value forf; is selected so that no failures (breaks)
are observed initially to any of the system’s bonds.

X X

(a) (b)
FIG. 3: Moore’s neighborhood [gray area in (a)] and Von Neumannighit®rhood [gray area in (b)] of the broken
bond (black square), with the first- and second-order darmages indicated with dash and bold lines, respectively.
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2. ldentify the weakest bondj() that is to be broken in the current loading step t:

(t)
(i,7) = argmax (m = i) 4)

(k,1)eS Ski

3. The total force on the entire systdi’) is adjusted to a level leading to failure of the weakest bajat the

current loading step t:
N1 N2

FO = 5SS )

"ij ==
Compute the displacemeatt) = F*) /(N,k), wherex is the elastic modulus of the bonds axglis the number
of surviving bonds. Update the force on the broken bgﬁjjbl: 0.

4. ldentify then"-order damage zor®;; of the broken bondi§) (e.g., 24 bond sites for the second-order GLLS
rule as shown in Fig. 3).

5. Distribute the load of the broken boo‘tﬁ? equally to all the bonds (intact or broken) in its nearesheig
bond Moore’s neighborhood;;. For any pre-existing broken bond,fj € A;;, the load allocated to it is
equally redistributed (i.e., one-eighth) to each bond ®bitvn nearest eight-bond Moore’s neighborhddgd
that belongs t®,;; i.e., Ny, N D;;. This re-distribution process continues iteratively Litite load shared by
any pre-existing broken bong,Q) € ©;; becomes negligibly small.

6. Sum up all the loads resulting from the redistributionodie®d in the previous step to determine the percentage
& of the Ioadfi(;) of the broken bond that has been redistributed within theadpnzoned;;. Then distribute

the remaining loadl — &) x fi(;) equally to all the surviving bonds in the system.

7. Go back to Step 2 for the next loading step with all the updi&drces.

2.2.4 lllustrative examples involving the 2D n'"-order GLLS model

e Example 1: Suppose that in the current load step bifigi{reaks and its nearest neighbors are all intact. Based
on the first-order GLLS rule and the algorithm described & phevious section, the load distribution factors
are calculated as shown in Fig. 4(a). Since there is no pethex broken bond in the nearest neighborhadod,
=1 and all higher-order GLLS rules will yield the same resal$ the first-order rule.

e Example 2: Suppose two adjacent bonid§)(@nd (, j+1) break simultaneously and all the bonds surrounding
them are intact. The load distribution factors are showni@gs.F4(b) and 4(c) based on the first- and second-
order GLLS rules, respectively. It is also interesting tdenthe difference in the values of the localization
parameteré = 0.9524 and;, = 1 for the first- and second-order rules, respectively. AJhler-order GLLS rules
will yield the same results as the second-order rule.

e Example 3: Suppose four adjacent bonglg)( (i, j+1), (+1,)), (i+1, j+1) break simultaneously and all the
bonds surrounding them are intact. The load distributi@tois are shown in Figs. 4(d) and 4(e) for the first-
and second-order GLLS rules, respectively. Ehealues for the two rules are 0.7555 and 1, respectively. All
higher-order GLLS rules will yield the same results as tteoed-order rule.

The above examples confirm the following behavior for the Glrhodel that has been postulated: for a sufficiently
high-order rule, that is when the damage zone is larger thasize of the cluster of breaks, load distribution and,
hence, failure progression become "brittle-like” with &ization parametet = 1.

Figure 5 displays a sample set of five stress-strain cunesamesponding snapshots at the peak load for a 50
50 lattice system using the force-controlled quasi-sitgrative algorithm described earlier. The five curves ave fi
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FIG. 4: Calculated load distribution factors (summing upétthat can be less than unity) for examples involving:
(a) a single broken bond; (b) two simultaneously broken kamsing the first-order rule; (¢) two simultaneously
broken bonds using the second-order rule; (d) four simattasly broken bonds using the first-order rule; (e) four
simultaneously broken bonds using the second-order rule.

shapshots provided correspond to five different orders®f3hLS rule. For direct comparison the five curves and
snapshots correspond to the same sampling from a Weibtrildion for the strengths of the 50 50 bonds of the
lattice system. The Weibull distribution selected has aattaristic strength of 50 GPa and a shape parameter equal
to 1.5 [refer to Eq. (8)]. The elastic modulus of the bondshissen to be equal to 1,000 GPa. The meaning of the
coloring in the snapshots is the following: a black pixeligades an intact bond while a white pixel indicates a broken
bond. The snapshots indicate that as the GLLS order incsegtieenumber of broken bonds at the peak load reduces.
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FIG. 5: A sample set of five stress-strain curves and correspondimgsbots at the peak load for a 5060 lattice
system. The five curves and snapshots correspond to fiveatitferders of the GLLS rule. In the snapshots, a black
pixel indicates an intact bond while a white pixel indicaadsroken bond.

Figure 5 also indicates that as the GLLS order increaseotiaization effect becomes stronger, leading to a higher
degree of brittleness.

3. MULTI-SCALE STOCHASTIC MODELING OF HIERARCHICAL STRUCTURE OF CNT FIBERS
3.1 Hierarchical Structure of CNT Fibers

Due to the difficulty of dispersing CNTs homogeneously in atimy matrix, micron-diameter CNT-based fibers have
become an ideal candidate for harnessing the strength os@N3tructural fiber-reinforced composites. These CNT
fibers are fabricated by spinning millions of nanotubes,, @ —10° multi-walled CNTs into a fiber with a diameter
in the range of 5-2Qim [16]. To improve the packing density and alignment, CNTriman be further post-processed
with twisting, and a twisted fiber is also called a CNT yarn][17

As illustrated in Fig. 6, a CNT fiber or yarn exhibits a hietsioal structure. At the lowest length scale are single-
walled (or multi-walled) CNTs with nanoscale diameterg (€1-10 nm) and micron-scale length (e.g.,.if). At
the next length scale up are CNT bundles with diameters of #5660 nm [18]. CNT bundles are naturally formed
by approximately 10-100 aggregated CNTs [18, 19] due to eanVhals forces. Due to overlapping of individual
tubes, the length of a CNT bundle is not well defined, and iecadly up to a specific model to make an appropriate
choice (e.g., 36—360@m following a shear lag model). At the final length scale age@NT fibers with micron-scale
diameters and a length similar to that of the bundles. A CNe@&rfionsists of thousands of CNT bundles that have
formed a network or web with a preferred orientation along\& Giber axis. As a result of differences in fabrication
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methods and fiber microstructure, the reported strengt@\df fibers vary widely with values ranging from 3.3 GPa
[20, 21] to 6.8 GPa [22]. These values are one order of magmitower than the strength of individual CNT’s as
reported, for example, by Yu et al. [23], Demczyk et al. [24]d Barber et al. [25].

Sensitivity to size and statistical variation in the strigngf a CNT fiber demonstrated in experiments [22, 26]
indicate that CNT fiber failure is a multi-scale stochasti@pomenon. The failure process of a micron-scale CNT
fiber begins with the individual CNTs, which have been showpegimentally to have a strength following a Weibull
distribution with a mean of the order of 100 GPa and a larg#ictent of variation of the order of —-60% [25]. Growth
of statistical atomic defects leads to failure of certainvéld CNTs (the ones with the lowest strengths from the
Weibull distribution). The load released from a broken CNThien transferred to neighboring CNTs within the CNT
bundle via slippage due to low inter-tube shear strengthseeMa relatively weak CNT bundle reaches its strength
limit, its load will be distributed to neighboring CNT buredl. Consecutive failure of CNT bundles across the CNT
fiber will eventually lead to failure of the entire CNT fiber.

Sensitivity to defects and flaws at multiple length scale®issidered a major issue in the pursuit of robust design
and fabrication of nanostructures. To further bridge thengrscale gap between CNTs and macroscopic composite
structures, the major engineering challenge is buildingfficient and robust multi-scale structure hierarchically
based on models that account for uncertainty in materiahgth and structure. In addition to the uncertainty of
atomic defects that will propagate up to the micron-scalerfib the topological uncertainty at the bundle and fiber
scales, such as bundle entanglement, chain ends, lontatugiriations of carbon contents (i.e., uncertainty in the
number of CNTs and bundles), surface defects, etc. [21].

To demonstrate how uncertainty propagates across diffezagth scales, the main objective of this work is to
scale the effect of Weibull statistics of CNT strength [2B]to the micron-scale CNT fiber. A range of*-order
GLLS rules is applied to simplify the complex topology asated with actual CNT fibers. Following the hierarchical
structure of the CNT fibers illustrated in Fig. 6, the stot¢itawodel used consists of two “up-scaling” processes [27]:
CNT-to-CNT bundle and CNT bundle-to-CNT fiber, as detailethie following two subsections.

3.2 Up-Scaling from CNT-to-CNT Bundle
3.2.1 Statistical Strength of Individual CNTs of Length [,

The characteristic lengtl) and diameted of individual single-walled CNT (SWCNTSs) (refer to Fig. 6leaselected
as

l;=10um and d=1.7nm (6)
SWCNT SWCNT-bundle SWCNT-fiber
(d=1.7 nm) (d&=17 nm) (d=0.46~0.6pum)

10um

100um

Weibull statistics 100 um<

)
~_

FIG. 6: Hierarchical structure of CNT fibers (the parameter vallnesvi correspond to the actual values used in the
simulation).
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The strengtls of an individual SWCNT with lengtlis modeled as a random variable assumed to follow a Weibull

cumulative distribution function: N
S
FPent(s) =1 —exp {— (s_> } (7)
t

wheres, is the characteristic strength ands the shape parameter. For the purposes of this study, thesvafs; and
« are selected as
st =50GPa and a«=1.5 (8)

These numerical values for the characteristic strengthshage parameter correspond to a mean value of 45.1 GPa
and a coefficient of variation (cov) of 67.9%.

3.2.2 Statistical Strength of CNT Bundles of Length I, (Up-Scaling from CNTs to CNT Bundles)

A CNT bundle is modeled here a8 x 10 = 100 individual CNTs assembled on a square grid and lying in pelral
along a CNT bundle axis. At this stage, the length of the CNiidbeiis considered to be equal to the length=
10 um of an individual CNT. The strengths of these 100 individDBITs are modeled as independent and identically
distributed Weibull random variables with the parametevemin Eq. (8). The 2Dn!"-order GLLS rule is used to
model the failure of this CNT bundle. An individual CNT withthe bundle behaves elastically until it breaks at
its individual strength limit. The individual CNTs have atéeninistic elastic modulus equal to 1,000 GPa that is
assumed to be the same for all 100 CNTSs.

Before using the 2Di*"-order GLLS rule on tha0 x 10 = 100 bundle, the closed-form solution for the mean
strength of a bundle consisting of an infinitely large numdfendividual CNTs following the ELS rule is considered

for comparison purposes [7]:
1\ /> 1
o (2) " (1)

Using the values fos; and « in Eq. (8), the mean strength of a bundle consisting of anitefilumber of CNTs
following the ELS rule is computed as
w2, = 19.6 GPa (10)

It should be noted that the corresponding standard dewiafithe bundle strength asymptotically approaches zero as
the number of individual CNTs approaches infinity.

To determine the corresponding mean bundle strengthsdingaio the 2D zeroth-to-fourth-order GLLS rules
on thel0 x 10 = 100 CNT bundle, Monte Carlo simulations are performed usingftihee-controlled quasi-static
iterative algorithm described earlier. The following ritsare obtained using 10,000 sample functions, a sufficient
number to achieve convergence for all the orders considered

w”, = 20.8 GPa cov” = 9.1% (11a)
uy”, = 20.2 GPa cov!) = 9.2% (11b)
uy?, = 19.7 GPa cov? = 9.6% (11c)
u”, =19.5GPa cov® = 9.9% (11d)
Y, =19.5 GPa cov® = 10% (11e)

Although at this stage the length of the CNT bundle is equéi¢dength of an individual CNT/; = 10 um), there
is a significant drop both in the mean value and the coeffic@&rariation of the bundle strength when compared to
the corresponding values for an individual CNT (having med®.1 GPa and cov = 67.9%).

The mean bundle strengptffi)lt decreases as the order of the GLLS rule increases, whilecthexhibits the
opposite trend [Eq. (11)]. However, as indicated in Eq. (11¢ effect of the order of the GLLS rule is relatively
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minor. The mean bundle strength based on the zeroth-ordeSGELS) rule for the finite-size bundle considered
here @f)o_)lt = 20.8 GPa) is higher than the closed-form solution for the infigitarge systemi{;°, = 19.6 GPa).
Using a size effect justification, it can be claimed that tlesed-form solution for the infinite-size system represent
a lower bound for the strength of any zeroth-order GLLS (Efir8)e-size system.

Using the generated strength values from the aforememtidtonte Carlo simulations (10,000 values for each
order of the GLLS rule), it is possible to estimate which pability distribution these values follow. The normal
probability paper plot in Fig. 7 indicates that the bundkesgiths are not Gaussian (after all, strength is a physical
guantity that only takes non-negative values). This estithaon-Gaussian probability distribution of the strengjth
a CNT bundle of lengty is denoted byP,_;, (s).

Atthis juncture, it should be mentioned that although thef®\ndles considered in this study consist@k 10 =
100 individual CNTs arranged on a square grid, it is customargaiesider that CNT bundles are circular. For this
purpose, an "equivalent” circular CNT bundle can be definél & diameter of 17 nm as indicated in Fig. 6. The
main conclusion of this part of the up-scaling process (@d&iom individual CNTs of lengtti, = 10 um to 10 x 10
CNT bundles of the same lengt}) is that there is a significant drop both in the mean value haccbefficient of
variation of the bundle strength when compared to the cpomgding values for an individual CNT.

3.3 Up-Scaling from CNT Bundle to CNT Fiber

3.3.1 Statistical Strength of CNT Bundles of Length [,

The lengthl;, of the CNT fibers is one order of magnitude larger than theadttaristic lengtti; of individual CNTSs.
As [; was assumed to be 10n in Eq. (6), the length of the CNT fibers is set equal to

I, = 100 um (12)

The first step in up-scaling from the CNT bundle of lengtliexamined in the previous section) to the CNT fiber of
lengthl, is to up-scale from a CNT bundle of lengthto a CNT bundle of lengtly,. This is accomplished using the
smallest value exact distribution of extremes (weakektriodel).

Normal Probability Paper
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FIG. 7: Normal probability paper plot for the strengths of CNT buesddf lengthl; = 10 um obtained using the 2D
zeroth-to-fourth-order GLLS rules on 2010 CNT bundles (10,000 values are plotted for each ordereof3hlL. S
rule).
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Denoting the probability distribution of the strength of HTbundle of length, by P,_;, (s), its functional form
is given by
Py, (s) = 1= [1 = Py, (s)] /" (13)
Using Eqg. (13) and the five probability distributions 8, (s) established in Fig. 7 for the five different orders of

the GLLS rule, the resulting probability distributiofs_;, (s) for the strength of a CNT bundle of lengthare plotted
in Fig. 8. The corresponding mean values and coefficientaigétion are given by

u”, =17.9GPa co? = 6.2% (14a)
Y, =17.3GPa cov!) = 6.4% (14b)
uy?, =16.7GPa cov? = 6.8% (14c)
u?, =16.6GPa co/®) =7.1% (14d)
u, =165GPa cov =7.1% (14e)

As the smallest value exact distribution of extremes wasd @seakest link model), there is a drop both in the mean
value and the coefficient of variation of the strength of thedle of lengthl, [Eq. (14)], when compared to the
corresponding values for the strength of the bundle of khdEq. (11)].

3.3.2 Statistical Strength of CNT Fibers of Length [, (Up-Scaling from CNT Bundles to CNT Fibers)

A CNT fiber of lengthl;, = 100 umis modeled here in the following way58 x 50 = 2, 500 square grid is considered,
but unlike the case of the) x 10 = 100 square grid considered for the CNT bundle, not all 2,500tlona are filled
with CNT bundles now. This is done to account for the wellAkndow packing densityp, of CNT fibers. Two
cases are considered: one with a packing density, ot 50% (1,250 CNT bundles randomly distributed over the
2,500 grid locations) and one with a packing densitypf= 30% (750 CNT bundles randomly distributed over

ot
©
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FIG. 8: Probability distributions for the strengths of CNT bundt#dength/, = 100 pm obtained using the 2D
zeroth-to-fourth-order GLLS rules on 2010 CNT bundles.
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the 2,500 grid locations). The strengths of the individubliTCbundles are modeled as independent and identically
distributed random variables following the distributisst®own in Fig. 8 (depending on the order of the GLLS rule
used to establish the strength of the CNT bundles).

To determine the probability distribution of the strengftttte CNT fibers according to the 2D zeroth-to-third-
order GLLS rules on thé0 x 50 = 2,500 CNT fiber, Monte Carlo simulations are performed again ushe
force-controlled quasi-static iterative algorithm ddésed earlier (using 5,000 samples for each case). It is aisvio
that for every combination of a packing density value and mteoof the GLLS rule used on th# x 50 = 2,500
CNT fiber grid four different probability distributions cdre computed for the strength of the CNT fibers, each one
corresponding to a different GLLS rule used on the undeglyinx 10 = 100 CNT bundle grid. For simplicity, only
two of these four probability distributions are kept: oneadled the upper estimate and the other the lower estimate
(the intermediate ones are not considered in this study).

At this juncture, it should be mentioned that although theTGNbers considered in this study are based on a
50 x 50 square grid, it is customary to consider that CNT fibers awutir. For this purpose, an "equivalent” circular
CNT fiber can be defined with a diameter of 046@ for the case of packing density = 50% and 0.46um for p, =
30%, as indicated in Fig. 6.

Figures 9 and 10 depict the resulting probability distridwis for the strengths of the CNT fibers with = 50%
and 30%, respectively (based on 5,000 simulated valuesiftrease), while Table 1 provides the corresponding mean
values and coefficients of variation. The normal probabpéper plots in Figs. 9 and 10 indicate that the CNT fiber
strengths are not following a Gaussian distribution (ohk/zeroth-order GLLS rule yields curves that are reasonably
close to the Gaussian except for their left tails). Tabledicates a decrease in the mean value of the strength as the
order of the GLLS rule increases, and the opposite trendssmid for the coefficient of variation.

The main conclusion of this part of the up-scaling processn@from individual CNT bundles of length to
CNT fibers of the same length) is that there is a significanp dinathe mean values of the fiber strength (Table 1)
compared to the corresponding values of the bundle stréBgth(14)].

It is very difficult to make direct comparisons of our numatig established results for fiber strength (Table 1)
with tensile test data, as it is practically impossible tswee that the exact same types of CNT fibers are compared.
Consequently, the experimental results provided in tHeviehg should be used with great caution and certainly not
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FIG. 9: Normal probability paper plots for the upper strengths offldibers of length, = 100 pm obtained using
the 2D zeroth-to-third-order GLLS rules on 5050 CNT fibers. Plot obtained using = 50% and the 2D zeroth-
order GLLS rule on the 1& 10 CNT bundles. Each curve involves 5,000 simulated poCGase identified in Table 1
asp, = 50% (upper estimate).
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Normal Probability Plot
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FIG. 10: Normal probability paper plots for the lower strengths of Chbers of length, = 100 um obtained using
the 2D zeroth-to-third-order GLLS rules on 5050 CNT fibers. Plot obtained using = 30% and the 2D fourth-
order GLLS rule on the 1& 10 CNT bundles. Each curve involves 5,000 simulated poCGase identified in Table 1
asp, = 30% (lower estimate).

TABLE 1: Mean values and coefficients of variation for the strengt@NT fibers of length, = 100 um estimated
from 5,000 simulated samples in each case.

GLLS rule used on thg0 x 50 CNT fibers
GLLS rule used onthe (o) (1) (2) (3)
10 % 10 CNT bundles | 7 (GPa)lcov| ;' (GPa)/cov| p;”(GPa)/cov| u,”(GPa)lcov
= 0,
e timz?eg)(”pper zeroth-order 15.2/054% | 14.1/21% | 13.9/25% | 13.9/2.5%
= 0,
Py = 50% (lower fourth-order 13.8/0.58% | 12.7/22% | 12.6/2.6% 12.6/2.7%
estimates)
= 3009
o timz?e@)(”pper zeroth-order 15.2/070% | 14.51.6% | 14.1/2.6% | 14.0/2.7%
= 0,
Py = 30% (lower fourth-order 13.8/0.76% | 13.1/1.6% | 12.7/27% | 12.7/2.9%
estimates)

for a direct comparison with our numerical results. A firdtafdest data by Li et al. [22] considered CNT fibers with
diameters in the range of 7.6-21ufn (in contrast, our fibers have diameters of 68660 u.m), packing density of
bundles around 48% (one of our cases considers 50%, whiclitesajose to 48%), and a length of 10 mm (our fibers
have a length of only 100m = 0.1 mm). Li et al. [22] tested six CNT fiber samples of thisgyand reported strengths
from 1.1to 6.8 GPa. A second set of test data by Ma et al. [26icered CNT fibers with a packing density of bundles
in the range of 30%-50%, but there was no mention about threed& or length of these fibers. In this work, the
reported strengths were in the range of 0.9-1.6 GPa for eipfikyated fibers and 0.7—-1.3 GPa for poly-vinyl-alcohol
infiltrated fibers. It is interesting to note the significaiffatences between these two sets of experimental datat (mos
probably due to the fact that the CNT fibers tested were qufiterent). The important conclusion here is that our
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numerically established values for the CNT fiber strengthsrathe same general range as the experimental results.
Any more direct comparison beyond this statement of “in iraes general range” would be meaningless considering
that: (1) there are very significant differences in the ditarseand lengths of the fibers used in the experiments versus
those used in this paper; (2) all the strengths in this papedatermined using true (solid) cross-sectional areas,
while in the experimental works nominal cross-sectionsused that incorporate the void parts of the cross-section
as a solid part; and (3) there might be other critical diffees not clearly specified in the literature in the overall
configuration of the fibers used in the experiments versusdhesponding configuration of the fibers considered in
this paper. The following general conclusions can be dragwm considering the entire up-scaling process from the
individual CNT to the CNT bundle and then to the CNT fiber: (i¢re is a very significant reduction in strength
from a value of 45.1 GPa for an individual CNT to approximate?.6—15.2 GPa (Table 1) for a CNT fiber, and (2)
there is an equally significant reduction in the coefficigntariation of the strength from a value of 67.9% for the
individual CNT to approximately 0.54—-2.9% (Table 1) for aTHRber. It should be noted here that this numerically
established cov range of 0.54-2.9% for the strength of th& @idérs is considered relatively low, as experimental
results usually indicate higher values [22]. It is belietieat this is due to a series of simplifying assumptions made
in this work, including bundle packing density constantadhe length, fiber packing density constant from fiber to
fiber, assumption of independence for the random variabtetefing the strengths of individual CNTs and individual
CNT bundles, etc. It is expected that when these assumprenglaxed in a future study, the coefficient of variation
of the fiber strength will increase.

4. CONCLUSIONS AND FUTURE WORK

In this study a GLLS model is introduced to study the statdttrength of a micron-scale CNT fiber, a nanocomposite
consisting of a hierarchical structure of CNTs aligned @tT bundles, and CNT bundles aligned into a CNT fiber.
The basic result of the model indicates that the mean stemegluces by approximately two-thirds of an order of
magnitude when up-scaling from a nanoscale CNT (1.7 nm imefiar and 1@um in length) to a micron-scale CNT
fiber (0.46~0.60um in diameter and 10Qm in length). This strength reduction occurs at three diff¢istages of
the up-scaling process: (1) up-scaling from individual GNoF lengthl, to CNT bundles of the same length; (2)
up-scaling from a CNT bundle of lengthto a CNT bundle of lengtl, (I, = 10l;); and (3) up-scaling from CNT
bundles of lengtli, to CNT fibers of the same length. The specific strength redustiluring these three stages are
provided in the paper.

The multi-scale stochastic model developed in this worloaats for a number of sources of uncertainty common
to most nanocomposites [21]:

1. Uncertainty due to atomic defect distribution, représdrby Weibull statistics for the strength of individual
CNTs.

2. Bundle entanglement and misalignment, accounted foabying the order of the GLLS rule.

3. Effect of spatially random distribution of CNTs withinglCNT bundle, considered by using a Monte Carlo
approach to randomly distribute CNTs of randomly varyingsgith within the bundle grid.

4. Statistical size effect of CNT bundle strength accouftethrough a weakest link model (exact distribution of
extremes).

5. Effect of spatially random distribution of CNT bundlegaroids within the CNT fiber, considered by using a
Monte Carlo approach to randomly distribute CNT bundlesaaofiomly varying strength within the fiber grid.

Future work will include the investigation of the followirigsues for a more thorough quantification of the CNT
fiber strength uncertainty (especially of its coefficienwafiation that is currently predicted to be lower than what
experiments indicate):

1. Effect of random variation of carbon content along therféds.
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2. Effect of random variation of fiber diameter and of bundlte s

3. Three-dimensional GLLS modeling using load transfetdiacalong the bundle and fiber axes.

4. Use of a random field model [28] to better model the randaostridution of CNTs within a CNT bundle of

arbitrary length and of CNT bundles within a CNT fiber.

5. Effect of bundle clustering when up-scaling from a CNT dilerto a CNT fiber.
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