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ABSTRACT: Cold plasmas induce angiogenesis, enhance coagulation and wound healing, 
and selectively ablate microbes without harming eukaryotes. Work on bone tissue has been 
minimal; initial studies show enhanced osseointegration, increased gene transcription, and mes-
enchymal stem cell growth. Mesenchymal stem cell osteoblastic differentiation is required for 
bone formation and healing. The present study employs a novel device to assess whether cold 
argon plasma induces osteogenic differentiation of human mesenchymal stem cells. Human 

-
ionized argon gas, argon plasma, and argon plasma with osteogenic stimulation. Known osteo-
blastic differentiation markers (alkaline phosphatase, osteocalcin, RANKL) were assessed on 
days 1, 10, and 28. Cellular DNA production was measured for normalization. Novel dielectric 

distance 22 mm, and duration 30 sec. Alkaline phosphatase level was decreased compared to 
-

line phosphatase (p < 0.0014) compared to other groups. Osteogenic stimulation did not result 
in difference from growth. Changes in osteocalcin or receptor activator of nuclear factor kappa-
B ligand (RANKL) were not observed. 
plasma to induce osteoblastic differentiation cannot be made. Lack of -glycerophosphate ad-
dition on day 14 prevented osteogenic media from responding as expected. Interestingly, non-

possibly due to argon shielding or shear force production, merits further study.
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I. INTRODUCTION

-
ciplines of plasma physics, engineering, and biology to exert effects on biological tissue. 
“Plasma” refers to the application of plasma as the fourth state of matter—a cloud of 

-
1,2 There are many different types of plasmas and different methods to create 
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them, but the most appropriate for living tissue use are called nonthermal atmospheric 
pressure plasma (NTAPP) or cold atmospheric plasma (CAP).1 They are so named be-
cause they function at much lower temperatures and pressures than other more familiar 
forms of plasma, such as stars.

The effects of CAP on living tissue are far-reaching, affecting a myriad of different 
cell populations and biological processes. CAP exposure has demonstrated the follow-
ing broad effects: (1) inducing angiogenesis by increasing endothelial cell migration 
and proliferation1,3,4; (2) altering local nitric oxide concentration and cytokine milieu1,5; 

1,5; (4) modifying cell mem-
brane properties and polarization6; (5) killing microbes without damaging eukaryotic 
cells1,7–18 19; (7) creating reactive oxygen and nitrogen 
species that penetrate deep into tissues1,20; (8) inducing apoptosis in malignant cells9; (9) 
accelerating blood coagulation by effects on coagulation proteins, platelet aggregation, 

1,9,21; 
(10) accelerating wound healing1,22,23; (11) inducing changes in cell surface receptors24,25; 
and (12) displaying various effects on lymphocyte subpopulations.26

To date, minimal work has been done investigating the effects of CAP on bone tissue. 
Previous studies in animal dental and tibial implants,27–31 32–37 
and cell culture38–40 show initial promise. These experiments demonstrated enhanced im-
plant osseointegration27–31,33,34,36,37,41 (measured by surface hydrophilicity, removal torque, 

-
genic gene transcripts and mesenchymal stem cell growth.2,36,38–40 One possible explana-
tion for these phenomena is that CAP induces mesenchymal stem cell (MSC) differentia-
tion into osteoblasts, resulting in the previously mentioned enhanced osseointegration 

assessed the potential for nonthermal plasma to convert MSCs into osteoblasts.

It is known that increased MSC osteoblastic differentiation results in accelerated and 
enhanced fracture healing.42,43 Therapies such as bone morphogenetic protein44 are em-

osteolysis and postoperative radiculitis, and great expense.45 Nonthermal plasma has 
been shown to be safe when applied to eukaryotic cells.1,7–17 If osteoblastic differentia-
tion of MSCs can be demonstrated, it holds future promise as an orthopedic surgical 
adjunct in situations such as the treatment of nonunion fractures and spinal fusion. The 
present study employs a novel dielectric barrier discharge device for nonthermal atmo-
spheric pressure plasma creation, aiming to ascertain if cold atmospheric argon plasma 
induces human MSCs to differentiate into the osteoblastic lineage.

II. MATERIALS & METHODS

A. Sample Selection

The human MSCs were acquired from three human donors from the laboratory of James 
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Dennis, Ph.D., at Baylor College of Medicine in Houston, Texas. The cells were initially 
collected from the femoral necks from each of the donors.

B. Experimental Design

were as follows:

-
gle’s medium with low glucose (DMEM-LG); fetal bovine serum (FBS); 
antibiotic/antimycotic

Group 2: positive control (growth media + osteogenic media: dexametha-
sone, ascorbic acid, -glycerophosphate)

Group 4: argon plasma (growth media + ionized argon plasma)

Group 5: combination (growth media + ionized argon plasma + osteo-
genic media)

groups were assessed with measurement of alkaline phosphatase, receptor activator of 
nuclear factor kappa-B ligand (RANKL), osteocalcin, and DNA assays at three time 

was assessed in triplicate for all four assays at all three time points. All assays were as-
sessed at each time point except for RANKL and osteocalcin, which were not assessed 

for argon gas (group 3) and argon plasma (groups 4 and 5) are detailed next.

C. Nonthermal Argon Plasma Device and Exposure Parameters

This experiment employed a novel device (Figs. 1 and 2) for nonthermal atmospher-

(Champaign, IL). Several unique characteristics allow enhanced nonthermal plasma 
delivery. This device is a hybrid combination of dielectric barrier discharge (DBD) and 

-
mal plasma several centimeters from the device tip. This permits conformal nonthermal 
plasma coverage over surfaces, penetration into wounds or cavities, and placement of 
sheaths on surfaces to increase ion energy at atmospheric pressures. Frequency can also 
be titrated from low-frequency AC/pulsed (kHz) to high-frequency (MHz/GHz). The 

-
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els. The dielectric surface itself can be either alumina or glass, and the dielectric barrier 
limits transferrable charge, minimizing streamer transition and direct-metal arcs. These 
features allow simultaneous creation of both direct and indirect nonthermal plasma, and 

ing distance compared to other DBD devices.
The argon plasma parameters for the present study were as follows: energy level 

6-well (35 mm) plates. Parameters were selected based on a literature review of oper-
ating parameters for nonthermal atmospheric pressure plasma devices. Argon gas for 
the experiment was purchased in a T type cylinder (330 cu ft) from Matheson Tri-Gas 
(Houston, TX).

D. In vitro Osteogenic Induction of Human Mesenchymal Stem Cells

Human mesenchymal stem cell differentiation was accomplished through exposure to 
dexamethasone and ascorbic acid. The cells were initially thawed at room tempera-
ture. The osteogenic-supplemented (OS) culture media consisted of FBS containing 

–7 M dexamethasone and 120 nM ascorbic 
acid 2-phosphate. Cells were counted and seeded at 5 × 103 per cm2 in serum contain-
ing medium on 6-well (35 mm) plates and grown to approximately 70%–80% con-

FIG. 1: CAP device setup. FIG. 2: Argon plasma beam.
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experimental process.

E. Alkaline Phosphatase Assay

The cells were assessed using a quantitative alkaline phosphatase activity assay. Cel-
lular production of alkaline phosphatase typically reaches peak levels between 9 and 12 
days after plating. For the quantitative biochemical assay, alkaline phosphatase cleaves a 
phosphate ion from p-nitrophenyl phosphate. The product, p-nitrophenol, is then added 
to a solution containing sodium hydroxide and the absorbance of the resulting solution 
is read at 405 nm with a Tecan microplate reader. The measured results were then com-
pared to a standard curve that was also generated.

F. Osteocalcin and RANKL Enzyme-Linked Immunosorbent Assay (ELISA)

The human osteocalcin and RANKL levels were measured in cell culture supernatants 
using enzyme-linked immunosorbent assay (ELISA) kits, purchased from R&D Sys-
tems, Inc. (Minneapolis, Minnesota). The measurements were completed in triplicate, 
and the optical density was determined at 540 nm using a Tecan plate reader. Sensitiv-
ity of the osteocalcin assay was 0.402 ng/mL. The intra-assay and inter-assay precision 

log graph by plotting the mean absorbance for each standard against the concentration. 
Concentration of RANKL in the plates was determined by plotting the mean absorbance 
for each standard against the concentration.

G. DNA Assay

The Hoechst dye method was used to assess for cellular DNA production, permitting 
normalization of data per cell number. The samples from the 6-well (35 mm) plates were 
collected and 50 μl was placed in wells on 96-well black plates; 100 μl of Hoechst dye 
was added to each well, and the plates were read at an excitation of 365 nm and emission 

fusion plate reader. The data were assessed using a standard curve generated through the 
same protocol with a calf thymus DNA standard.

H. Statistical Analysis

Statistical analysis was performed with the assistance of Wei Zhang, Ph.D. at the Out-
comes & Impact Service at Texas Children’s Hospital in Houston, Texas. A generalized 
linear model was applied to assess group and donor effects. Analysis was performed for 
overall group and donor effects, pairwise group comparisons, and pairwise group com-
parisons with each of the three human donors.
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III. RESULTS

-
tal groups at each of the three time points (days 1, 10, and 28). Cellular production of 
DNA was assessed to allow normalization of these three metrics per cell number. For 
normalization, two wells per donor per group per time point were considered for alka-
line phosphatase, and one well per donor per group per time point was considered for 
osteocalcin and RANKL.

Figures 3, 4, and 5 demonstrate normalized measurements of alkaline phosphatase, 
osteocalcin, and RANKL.

FIG. 3: Normalized alkaline phosphatase levels for groups 1–5 at days 1, 10, and 28. The x-axis 
represents duration of the experiment, from day 0 to day 28. The y-axis represents nmol/mL/min 
of alkaline phosphatase per ng/mL of DNA
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Of note, group 1 (growth media only) was not assessed for osteocalcin and RANKL. 
Time point 1 (day 1) for groups 3–5 was also not assessed for osteocalcin and RANKL.

The results for pairwise comparison for group and donor are described in Tables 1 to 
3. Pairwise comparisons of osteocalcin and RANKL with respect to each donor were not 

value (day 1) and “Growth Rate” refers to the speed of growth, taking into account all 
three time points to estimate the slope of the line in the plots.

FIG. 4: Normalized osteocalcin levels for group 2 at days 1, 10, and 28, and for groups 3–5 at 
days 10 and 28. The x-axis represents duration of the experiment, from day 0 to day 28. The y-
axis represents ng/mL of osteocalcin per ng/mL of DNA
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TABLE 1: P-values of overall group and donor effects
Alkaline Phosphatase RANKL Osteocalcin

Baseline
Group Effect <0.0001 0.3660 0.7220
Donor Effect 0.0002 0.0294 0.0098
Growth Rate
Group Effect <0.0001 0.3777 0.5028
Donor Effect 0.0425 0.0153 0.0330
Effects of p

FIG. 5: Normalized RANKL levels for group 2 at days 1, 10, and 28, and for groups 3–5 at days 
10 and 28. The x-axis represents duration of the experiment, from day 0 to day 28. The y-axis 
represents pg/mL of RANKL per ng/mL of DNA.
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production were observed at baseline. During the growth period, nonionized argon gas 

compared to group 1 (0.000246, p < 0.0001), group 2 (0.000247, p < 0.0001), group 
4 (0.00025, p < 0.0001), and group 5 (0.00009, p = 0.0013). Argon plasma (group 4) 
decreased alkaline phosphatase levels compared to all other groups, with varying levels 

changes in any of the experimental groups in terms of levels of osteocalcin and RANKL 
at the three time points.

TABLE 2: Pairwise group effect comparison
Alkaline Phosphatase RANKL Osteocalcin
Effect P-Value Effect P-Value Effect P-Value

Baseline
2 vs. 1 0.000047 0.9376 0.003999 0.0579 0.03336 0.0524
3 vs. 1 0.00023 0.6990 0.00060 0.8033 0.00622 0.7477
4 vs. 1 0.000178 0.7660 0.000923 0.7034 0.006643 0.7313
5 vs. 1 0.00003 0.9614 NA NA NA NA
3 vs. 2 0.00028 0.6423 0.00460 0.0344 0.03958 0.0271
4 vs. 2 0.000131 0.8264 0.00308 0.1273 0.02672 0.1058
5 vs. 2 0.00008 0.8992 0.00400 0.0579 0.03336 0.0524
4 vs. 3 0.000410 0.4954 0.001525 0.5326 0.01286 0.5105
5 vs. 3 0.000203 0.7350 0.000602 0.8033 0.006221 0.7477
5 vs. 4 0.00021 0.7295 0.00092 0.7034 0.00664 0.7313
Growth Rate
2 vs. 1 0 0.9657 0.00019 0.0870 0.00149 0.0819
3 vs. 1 0.000246 <0.0001 7.963E-7 0.9947 0.000198 0.8339
4 vs. 1 0 0.9164 0.00004 0.7269 0.00028 0.7651
5 vs. 1 0.000157 <0.0001 NA NA NA NA
3 vs. 2 0.000247 <0.0001 0.000188 0.0858 0.001689 0.0529
4 vs. 2 1.64E-6 0.9505 0.000145 0.1736 0.001209 0.1489

5 vs. 2 0.000158 <0.0001 0.000188 0.0870 0.001491 0.0819
4 vs. 3 0.00025 <0.0001 0.00004 0.7220 0.00048 0.6127
5 vs. 3 0.00009 0.0013 7.96E-7 0.9947 0.00020 0.8339
5 vs. 4 0.000159 <0.0001 0.000042 0.7269 0.000282 0.7651
G1: growth media; G2: osteogenic media + growth media; G3: nonionized argon gas + growth media; G4: 
argon plasma + growth media; G5: argon plasma + osteogenic media + growth media
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IV. DISCUSSION

Nonthermal plasmas have shown remarkable effects in many biological applica-
tions, such as accelerated coagulation,1,9,13 increased angiogenesis,1,3,4 accelerated 
wound healing,1,6,22,23 and selective ablation of microbes without harming eukaryotic 
cells.1,7,8,11,13,15–17,46 Furthermore, experiments on bone tissue have demonstrated en-
hanced implant osseointegration28–31,33,34,36,37,41,47 and increased production of osteogenic 
gene transcripts and mesenchymal stem cell growth.2,36,38–40 These initial experiments are 
promising in the study of bone formation and clinical applications in orthopedic surgery, 
because MSC differentiation into osteoblasts is a necessary step in bone healing.43,44 If 

TABLE 3: Pairwise group effect comparison of alkaline phosphatase with respect to donor

Alkaline  
Phosphatase

Donor A Donor B Donor C
Effect P-Value Effect P-Value Effect P-Value

Baseline
2 vs. 1 0.000302 0.6271 0.000173 0.5094 0.00033 0.4508
3 vs. 1 0.00027 0.6594 0.000343 0.2180 0.00077 0.1200
4 vs. 1 0.000824 0.2170 0.000168 0.5212 0.00046 0.3142
5 vs. 1 0.000347 0.5782 0.00014 0.5922 0.00029 0.5033
3 vs. 2 0.00058 0.3697 0.000170 0.5161 0.00043 0.3396
4 vs. 2 0.000522 0.4119 5.02E-6 0.9843 0.00012 0.7755
5 vs. 2 0.000045 0.9416 0.00031 0.2561 0.000039 0.9268
4 vs. 3 0.001097 0.1189 0.00018 0.5043 0.000308 0.4847
5 vs. 3 0.000620 0.3367 0.00048 0.1045 0.000471 0.3015
5 vs. 4 0.00048 0.4507 0.00031 0.2629 0.000162 0.7073
Growth Rate
2 vs. 1 6.81E-6 0.8520 5.43E-6 0.7243 8.833E-6 0.7619
3 vs. 1 0.000401 <0.0001 0.000141 <0.0001 0.000196 <0.0001
4 vs. 1 0.00002 0.5719 2.78E-6 0.8566 0.000015 0.6034
5 vs. 1 0.000173 0.0002 0.000147 <0.0001 0.000150 0.0001
3 vs. 2 0.000408 <0.0001 0.000146 <0.0001 0.000187 <0.0001
4 vs. 2 0.00001 0.7033 2.654E-6 0.8630 6.355E-6 0.8273
5 vs. 2 0.000179 0.0002 0.000153 <0.0001 0.000141 0.0002
4 vs. 3 0.00042 <0.0001 0.00014 <0.0001 0.00018 <0.0001
5 vs. 3 0.00023 <0.0001 6.541E-6 0.6714 0.00005 0.1295
5 vs. 4 0.000193 <0.0001 0.000150 <0.0001 0.000135 0.0003
G1: growth media; G2: osteogenic media + growth media; G3: nonionized argon gas + growth 
media; G4: argon plasma + growth media; G5: argon plasma + osteogenic media + growth media
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nonthermal plasma can indeed induce human mesenchymal stem cells to differentiate 
into the osteoblastic lineage, it has the potential to positively impact bone healing and 

current therapeutics such as bone morphogenetic proteins.45

atmospheric argon plasma to induce hMSC differentiation into osteoblasts. The osteo-
genic group (group 2) was meant to serve as a positive control for hMSC differentiation 
into the osteoblastic lineage. However, a lapse occurred in the addition of -glycero-
phosphate (BGP) on day 14 of the experiment. Along with dexamethasone and ascorbic 
acid, BGP is necessary for in vitro osteogenic differentiation of MSCs.48 BGP addition 
on day 14 allows for mineralization of preosteoblastic cells; without it, a necessary step 
in MSC osteogenic differentiation cannot occur. Lacking this known control, we are 

CAP’s inherent inability to trigger such a response, or rather a consequence of nonreac-
tive donor cells. Furthermore, this limited our study of the combination group (group 
5), because the osteogenic media was incomplete. The fact that BGP must be added on 
day 14, two weeks after dexamethasone and ascorbic acid, increases the probability of 
error. It is imperative that future researchers enact stringent methodologies to prevent 
similar lapses.

Another point of consideration for future study is single versus successive nonther-
mal plasma exposure. Human MSCs in our study were exposed to a single treatment of 
CAP, for the purpose of modeling the device as a potential adjunct during orthopedic 
surgeries. In a surgical setting, the increased morbidity from repeatedly opening a surgi-

achieved through the adjunct. Other in vitro nonthermal plasma studies have employed 
multiple plasma treatments over the duration of experiments.8,19,22 This repeat exposure 
to nonthermal plasma may play a factor as mesenchymal stem cells progress through 
the three main stages of osteoblastic differentiation.49 Future studies employing multiple 

-
ferentiation stages to fully commit to the osteoblastic lineage.

mesenchymal stem cell production of alkaline phosphatase. A prior study by Shuvalova 
et al.50 demonstrated that mesenchymal stem cells exposed to a gas mixture containing 
high concentrations of argon gas (93%) led to enhanced MSC proliferation. However, 
increased alkaline phosphatase production by human MSCs exposed to argon gas has 

hypoxic environment above the MSCs, in a process called argon shielding (also referred 
to as argon blanketing).51,52 This refers to the use of inert gases, such as argon, in steel 
welding to shield a site of interest from oxygen and water vapor. In biological application, 
argon shielding will naturally create a local hypoxic climate due to its higher molecular 
weight and density compared to atmospheric air. Additionally, the production of shear 
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forces by the argon gas stream may also be a contributing factor. The anaerobic environ-
ment from argon shielding and the shear force from the gas stream may trigger a stress 
response in human MSCs, resulting in increased metabolic activity and enhanced produc-
tion of cellular factors such as alkaline phosphatase. The fact that groups 4 and 5 did not 
exhibit increased hMSC alkaline phosphatase production may indicate that ionization of 
argon into plasma prevents argon shielding and/or shear force production. The creation 
of smaller molecules and charged species within the plasma1,2 may somehow interfere 
with shielding and shearing effects. Future studies assessing MSC response to nonionized 

gas mixture, and MSC production of other molecules in addition to alkaline phosphatase.
-
-

ments of osteocalcin and RANKL had to be eliminated for group 1 (growth media only) 
and for time point 1 (day 1) for groups 3 to 5, because of the cost associated with ELISAs.

Ultimately, the present study is inconclusive in demonstrating whether cold atmo-
spheric argon plasma causes osteogenic induction of human mesenchymal stem cells. 
The lapse in BGP addition invalidated the osteogenic positive control. Thus, we are 

-
tive cells or the inability of CAP to trigger such a response. Future studies with proper 
controls should reveal the effects of single and repeat nonthermal plasma application on 
hMSC osteoblastic differentiation. Finally, a single exposure to nonionized argon gas 

possibly resulting from cellular response to argon shielding and/or shear forces, merits 
further exploration.
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