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Computer codes simulating physical systems often have responses that consist of a set of distinct outputs that evolve in
space and time and depend on many uncertain input parameters. The high dimensional nature of these computer codes
makes the computations of Gaussian process (GP)-based emulators infeasible, even for a small number of simulation
runs. In this paper we develop a covariance function for the GP to explicitly treat the covariance among distinct
output variables, input variables, spatial domain, and temporal domain and also allows for Bayesian inference at low
computational cost. We base our analysis on a modified version of the linear model of coregionalization (LMC). The
proper use of the conditional representation of the multivariate output and the separable model for different domains
leads to a Kronecker product representation of the covariance matrix. Moreover, we introduce a nugget to the model
which leads to better statistical properties (regarding predictive accuracy) of the multivariate GP without adding to the
overall computational complexity. Finally, the prior specification of the LMC parameters allows for an efficient Markov
chain Monte Carlo (MCMC) algorithm. Our approach is demonstrated on the Kraichnan-Orszag problem and Flow
through randomly heterogeneous porous media.

KEY WORDS: multivariate Gaussian process, linear model of coregionalization, separability, Markov
chain Monte Carlo, computer codes (experiments)

1. INTRODUCTION

Complex computer codes (or simulators) have been garnering much attention in recent years because of their ability
to make useful predictions about real world systems in many fields of science and engineering. To obtain accurate
statistics, standard Monte Carlo (MC)-based methods require thousands of simulation runs without taking into con-
sideration the cost of deterministically solving the computer code (simulator). Different uncertainty quantification
(UQ) methods based on generalized polynomial chaos (gPC) [1] and Gaussian process (GP) [2] have been proposed
to emulate the simulator outputs to a high degree of precision using only a few hundred runs of the simulator. GP is
successfully used as an emulator because of its simplicity and non-parametric features [2]. Moreover, when an output
is multivariate it can directly model their dependencies as shown in [3–6]. These methods are based on the use of the
separable covariance function between the input and the multivariate output [7]. More recently, [8] uses this model
and Bayesian tree techniques to build a non-stationarity multivariate covariance function. [9] generalized the separable
covariance function to deal with multi-dimensional spatio-temporal computer code output. The proposed covariance
function models the dependencies between distinct outputs, the input, spatial domain, and time.

Despite the successful applications and the attractive computational efficiency, in practice the assumptions asso-
ciated with the separable covariance function may be violated. For example, not all the distinct outputs are likely to
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have the same correlation parameters over the input, spatial domain or time. Another unrealistic assumption of the
separable model is the symmetry of the covariance function;cov(ηl(xi), ηl′(xj)) = cov(ηl′(xi),ηl(xj)) for all
i, j, l, l′. More generalized covariance functions have been proposed in spatial statistics literature to model the cross-
covariances of the multivariate output, see [10, 11] for recent reviews. The linear model of coregionalization (LMC)
[12, 13] is a popular covariance function for spatial multivariate output, based on linear transformations of indepen-
dent latent processes, which overcomes the above restrictions of the separable model. Different variations of LMC
have been proposed to deal with the computational difficulties and types of nonstationarity in the variance [14, 15].
[16] uses a different approach to model cross-covariance functions based on latent dimensions. However, the compu-
tational cost associated with these models is not affordable for statistical inference in the case where the output is a
multi-dimensional spatio-temporal process.

This paper introduces a multi-dimensional spatio-temporal covariance function which allow Bayesian inference
at low computational cost and also explicitly models the dependencies between the distinct outputs. We base our ap-
proach on the use of a generalized LMC for the covariance function of the multi-dimensional spatio-temporal process.
We further investigate ways to simplify the computations. The conditional representation of the LMC and the proper
use of a separable covariance function inside each conditional model enable us to write the huge covariance matrix
as a Kronecker product of smaller ones leading to efficient algorithms for carrying out inference and predictions. All
the distinct outputs in the model have their own input, spatial, and time correlation parameters, in contrast with the
separable model which assumes same correlation parameters for all the outputs in the model. Moreover, the new co-
variance function is not symmetric. In addition, we introduce computational stability in our method by adding nugget
effects into the correlation functions. In this way, the computational complexity of the proposed method remains the
same. The GP defines a probability measure over the input space and can be used to sample more data and predict the
response surface. The uncertainty of the GP model quantifies the lack of information we have about the real response
due to the finite number of samples.

The rest of the paper is organized as follows: In Section 2 we describe the multi-dimensional spatio-temporal
computer codes. In Section3 we describe the multivariate GP and the modeling of the covariance function. Section4
describes the Bayesian inference for parameter estimations and predictions, including details of the implementation.
In Section5 we apply our GP models to quantify the uncertainty in two different problems, Kainchnan-Orszag three-
mode problem and the flow through randomly heterogeneous porous media, and compare it to the GP with separable
covariance function. Conclusions are presented in Section6.

2. PROBLEM DESCRIPTION

Let us consider a physical problem with input domainXξ ⊂ Rkξ , spatial domainXs ⊂ Rks , and temporal domain
which is expressed as an intervalXT = [0, T ], wherekξ, ks are the dimensions of the input and spatial domain. The
input domainXξ usually represents a bounded domain and can thus be considered a compact subset ofRkξ while the
spatial domainXs and time domainXT can be given intervals onRks × R+.

In the computer simulations, we usually fix the spatial and temporal domain and sample the input domain. This
give us computational flexibility because we can represent the domain as a tensor product of the input, spatial, and
temporal domain. For an input parameterξ ∈ Xξ, the computer simulation returns the (multi-output) response on a
given (a priori known) set ofns spatial pointsXs = (s1, . . . , sns)

T ∈ Rns×ks , whereks = 1, 2, or 3 is the number
of spatial dimensions, at each one of thent timestepsXt = (t1, . . . , tnt) ∈ Rnt×1. That is, a single choice of the
input domainξ generates a total ofns × nt training samples. Therefore, the response is a matrix inR(nsnt)×q, where
q is the number of the output variables of the computer simulation.

For modeling reasons we will represent the problem as aq multivariate responseη(xi) = η(ξiξ
, sis , tit) ∈

Rq given input, spatial, and time point. Each of theN = nξnsnt points (ξis
, sis , tit) is represented uniquely by

xi. We denote the multiple observed output vector asY = (η(x1)T , . . . , η(xN )T )T andX = (xT
1 , . . . , xT

N ) as
its corresponding input, spatial, and time vector, whereN = nξnsnt is the total sample size of the new setting.
For simplification purpose, we call the input domain, spatial domain, and temporal domain input, space, and time,
respectively. Throughout this paper we will collectively denote input ofη(.) by x = (ξ, s, t) and the space domain
byX ≡ Xξ ×Xs × [0, T ].
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GP is a tool that has been successful building surrogate model for the computer simulations. The challenge in GP
is to model the mean and the variance. A linear regression model for the mean is usually a good choice for continuous
fields. The covariance function is harder to model and usually depends on the computational complexity and the
form of η(·). In this paper we use a combination of linear model of coregionalizations and the separable model. The
Bayesian formulation assumes a GP prior distribution for the functionη(·), conditional on various hyperparameters.
This prior distribution is updated using a preliminary training sample on input domainXξ ×Xs × [0, T ]. The goal of
this paper is to interpolate within the Bayesian framework a multivariate functionη(.): Rξ ×Rks ×R+ → Rq based
on some observations.

3. GENERALIZED LINEAR MODEL OF COREGINALIZATION

The classical multivariate Gaussian process can be written as

η(x) = µ(x) + w(x) + ε(x), (1)

whereµ(x) is the mean which is usually modeled as alinear regression, w(·) is the spatial correlation,ε(·) denotes
the nugget error. The coregionalization model is based on the representation ofw(x) in Eq. (1) as

w(x) = Av(x), (2)

whereA is a q × r, with r ≤ q, non-singular transformation matrix, which explains the association among the
q variables, andv(x) is a vector ofr independent zero mean, unit variance GPs with correlation functions
ρ1(x, x′; ψ1), . . . , ρr(x,x′; ψr) and hyperparametersψi. This will lead to a valid covariance functionCη(x),η(x′) =∑r

j=1 ρj(x, x′;ψr)Σj . The matrix covariance of the vectorY can be expressed as

C =
r∑

j=1

Rj ⊗Σj ,

whereΣj = aja
′
j , with aj thejth column ofA and

∑r
j=1 Σj = Σ represents the “covariance matrix,”Rj represents

the spatial correlation matrix ofvj . In order to obtain a rich, constructive class of multivariate spatial process models;
we can setr = q and assumeA is full rank. In general we can representA andR as a function of the input.

We define a multivariate input-space-time GPY as

η(ξ, s, t) = h(ξ, s, t)T B + Av(ξ, s, t) + ε(ξ, s, t), (3)

whereB are the parameters of the linear model,A is aq× q weight matrix,v(ξ, s, t) = (v1(ξ, s, t), . . . , vq(ξ, s, t))
is a zero mean and unit variance GP andε(ξ, s, t) is Gaussian white noise as in the simple LMC. This joint model
representation becomes computationally intractable as increasing the dimensionality because annξnsntq×nξnsntq
dense covariance matrix ofY has to be inverted. In order to deal with this issue we investigate computationally more
efficient representations in this work.

3.1 Separable Model

Whenr = 1 the above model is equivalent to the separable covariance model of a multi-output Gaussian process
which has been used by [9]. In this case, whenε(ξ, s, t) = 0 the covariance function can be written as

c(η(x), η(x′)) = ρ(ξ, ξ′; ψξ)ρ(s, s′; ψs)ρ(t, t′;ψt)Σ,

whereΣ is theq × q variance matrix ofY (x) = (η1(x, . . . , ηq(x)) at any locationx, ρ(., .;ψ.) is a known corre-
lation function (e.g., the power exponential, rational quadratic, and Matérn) andψξ, ψs, andψt are the parameters
associated with the correlation function of the input, space, and time domain, respectively.
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The covariance matrix of the vectorY = (η(x1), . . . , η(xn)) can be written as

C = R⊗Σ = Rξ ⊗Rs ⊗Rt ⊗Σ,

whereRξ(i, j) = [ρξ(ξi,ξj ;ψξ)] is the correlation matrix of the inputXξ, Rs(k, l) = [ρs(sk, sl; ψs)] is the
correlation matrix of the spatial domainXs, Rt(h, r) = [ρt(th, tr; ψt)] is the correlation matrix of the time domain
Xt.

The covariance matrix facilitates the computations of the likelihood which depends on the determinant and the
inverse ofC. The determinant can be expressed as|C| = |Rξ|nsntq|Rs|nξntq|Rt|nξnsq|Σ|nξnsnt and the inverse as
C−1 = R−1

ξ ⊗R−1
s ⊗R−1

t ⊗Σ−1. The likelihood of the matrixY shown in Eq. (4) can be written as

log f(Y ) = const− 1
2

log(|Rξ|nsntq|Rs|nξntq|Rt|nξnsq|Σ|nξnsnt |)

− 1
2

tr(Σ−1(Ỹ − µ̃)(R−1
ξ ⊗R−1

s ⊗R−1
t )(Ỹ − µ̃)T ),

(4)

whereỸ = (Y (x1), . . . , Y (xN )) is aq ×N matrix andµ̃ the matrix of the mean of̃Y .
Despite the computational convenience, the above model has some unsatisfying restrictions for real applications.

First of all, it is obvious that it assumes same correlation input, space, and time function for each distinct outputηj(x).
For j = 1, . . . , q, the outputηj(·) is modeled with correlation function equal toρ(ξ, ξ′; ψξ)ρ(s, s′; ψs)ρ(t, t′;ψt).
In simple words, all distinct outputs have the same variation over the input, space, and time. One more weakness of
the above covariance model is the symmetry. Clearly,cov(ηj(x), ηj′(x′)) = cov(ηj(x), ηj′(x′)) for all j, j′, x, x′.
To overcome the restrictions of the separable model and the computational demand of the joint model we introduce
the conditional representation of coregionalization.

3.2 Conditional Generalized LMC

A special case of the coregionalization model is the conditional representation [12, 13, 17]. The conditional represen-
tation is equivalent to the lower triangularA in the joint LMC, i.e., the Cholesky decomposition ofΣ. The conditional
model is written as

η1(ξ, s, t)|θc1 = h̃1(ξ, s, t)T β1 + σ1v1(ξ, s, t) + τ1u1(ξ, s, t),
...

ηq(ξ, s, t)|η1(ξ, s, t), . . . , ηq−1(ξ, s, t), θcq = h̃q(ξ, s, t)T βq + αq|1η1(ξ, s, t) + (5)

· · ·+ αq|q−1ηq−1(ξ, s, t) + σqvq(ξ, s, t) + τquq(ξ, s, t),

whereθc = (θc1 , ..., θcq ) the parameters of the conditional representation of the corregionalization model,h̃j(ξ, s, t)
are the basis functions of thelinear regression modelof the input inηj(ξ, s, t), σ2

j is the model variance,τ2
q is the

nugget variance. To facilitate the representation we denotehj(ξ, s, t)T = [h̃j(ξ, s, t), η1(ξ, s, t), . . . , ηj−1(ξ, s, t)],
for j = 1, . . . , q. We also denoteHT

j = (hj(ξ1, s1, t1), . . . , hj(ξnξ
, sns , tnt)) as the basis matrix,Bj = (βj , αj)

as the linear parameter associated with thehj basis functions, andmj as the total number of basis functions. The
basis function in each of the conditional GP introduces the dependency between the multivariate output data. In order
to enable the conditional and marginal specifications to agree, we will require a common covariate vector or matrix
h̃1(ξ, s, t)T and thatu1(ξ, s, t) = · · · = uq−1(ξ, s, t) = 0.

Despite this simplification, the computational intractability remains since we still have to invertq different high-
dimensional correlation matrices of dimensionnξnsnt × nξnsnt. An important simplification can be achieved if
the spatial and the temporal points at which the output is observed remain fixed independent of the inputξ and if
we assume that the correlation function is separable. The correlation of each latent variablevj(ξ, s, t) in Eq. (5) is
modeled as

corr(vj(ξ, s, t), vj(ξ
′, s′, t′)) = ρj(x,x′; ψ)

= ρξ,j(ξ,ξ′; ψξ,j)ρs,j(s, s′; ψs,j)ρt,j(t, t′; ψt,j),
(6)
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whereρξ,j(ξ, ξ′; ψξ,j), ρs,j(s, s′; ψs,j) andρt,j(t, t′; ψt,j) are valid correlation functions (e.g., the power exponen-
tial, rational quadratic, and Matérn) of thejth conditional representation in the input, space, and temporal domain,
respectively. Each conditional representation has a separable model for the covariance function. For computational
efficiency, we assumeτj = 0 for j = 1, . . . , q and introduce the nugget in the correlation function. The covariance
matrix can be written as a Kronecker product of smaller covariance matrices for each of theq conditional representa-
tions in Eq. (5).

Let Y j = (ηj(ξ1, s1, t1), . . . , ηj(ξnξ
, sns

, tnt
))T denote the response vector of thejth conditional representa-

tion in Eq. 5, forj = (1, . . . , q). The correlation matrix of the vectorY j can be written as

Rj = Rξ,j ⊗Rs,j ⊗Rt,j ,

whereRξ,j ∈ Rnξ×nξ is the correlation matrix generated byXξ andρξ,j(·, ·; ψξ,j) asRξ,j(k, l) = ρξ,j(ξk, ξl; ψξ,j),
Rs,j ∈ Rns×ns is the correlation matrix generated byXs andρs,j(·, ·; ψs) asRs,j(k, l) = ρs,j(sk, sl;ψs), Rt ∈
Rnt×nt is the correlation matrix generated byXt andρt(th, tr; ψt) asRt(h, r) = ρt(th, tr; ψt), and⊗ corresponds
to the Kronecker product.

The above representation of the covariance matrix facilitates the computations of each conditional like-
lihood, which depend on the determinant and the inverse ofRj . The determinant can be expressed as
|Rj | = |Rξ,j |nsnt |Rs,j |nξnt |Rt,j |nξns | and the inverse asR−1 = R−1

ξ,j ⊗ R−1
s,j ⊗ R−1

t,j . Each likelihood of the
conditional representationf(Y j |θc,j) has a separable covariance function for the input, spatial, and time domain

log f(Y j |.) = const− 1
2

log(|Rξ,j |nsntq|Rs,j |nξntq|Rt,j |nξnsq|σj |nξnsnt |)

− 1
2

tr(σ−1
j (Y j − µ)T (R−1

ξ,j ⊗R−1
s,j ⊗R−1

t,j )(Y j − µ)),
(7)

whereµ is the matrix of the mean ofY j as shown in Eq. (5). The likelihood ofY is

f(Y ; θc) = f(Y 1;θc,1) . . . f(Y q|Y 1, . . . , Y q−1;θc,q).

With these simplifications, we can carry out inference in the likelihood avoiding the use of the full covariance
matrix and facilitating the computations significantly. The above form with the right priors can be applied to parallel
computing for the separate conditional representations.

To generalize our approach, we can combine two different domains (e.g., spatial and temporal domains) and use
a non-separable covariance function which in sequence can be combined with the third domain in a separable model.
We can also combine different conditional representations in a separable way if we have the prior information of
the same dependence on the input, spatial, or time domains. This is the same as assumingr ≤ q in Eq. (2) and can
simplify the model. Despite the interesting features of these models they are out of the scope of the present paper.

If we include a nugget erroruj in the model we have to invert annξnsnt × nξnsnt covariance matrix in each of
the conditional representations which we want to avoid due to its high dimensionality. However, we need to include
small quantities of an error term in each of the above correlation matrices due to the ill-conditioned matrix which
are common in practice. Below we give a solution to avoid this computational complexity similar to [18], but our
approach is extended to the multivariate case.

3.3 Choosing the Correlation Function

The models described in previous subsections require the specification of three covariance functions. Because the
computational simplification of the Kronecker product requires the nugget error to be zero, in practice we may ex-
perience computation instabilities. A remedy for the ill-conditioned matrix is to assume in every separate correlation
matrix a positive quantity in the diagonals. Depending on the problem and the correlation matrix, the diagonal positive
quantity can vary usually from10−10 to 10−1. Another, more automatic and sophisticated way of establishing com-
putational stabilities is to assume a nugget random parameter for each correlation function that has to be estimated.
The chosen form of the three correlation functions for each conditional representation ofvj(·) is

ρξ,j(ξ, ξ′;ψξ,j) = ρ̃ξ,j(ξ, ξ′;λξ,j) + g2
ξ,jδξ,ξ′ ,
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ρs,j(s, s′;ψs,j) = ρ̃s,j(s, s′;λs,j) + g2
s,jδs,s′ ,

ρt,j(t, t′; ψt,j) = ρ̃t,j(t, t′; λt,j) + g2
t,jδt,t′ ,

whereψξ,j = (λξ,j , gξ,j), ψs,j = (λs,j , gs,j), ψt,j = (λt,j , gt,j), λξ,j = (λξ,j,1, . . . , λξ,j,kξ
), and λs,j =

(λs,j,1, . . . , λs,j,ks
) represent the correlation strength vector ofvj(·) in the input and spatial domain, respectively,

andλξ,j,k, λs,j,k represents the correlation strength ofvj(·) in thekth direction in the input and spatial domain, re-
spectively, andλt,j represent the correlation strength ofvj(·) in time. Thegξ,j , gs,j , andgt,j are the nugget quantities
used for the stability of the input, space and time correlation matrix. We use “nugget” quantities in the correlation
function and not in the covariance function to avoid the computational cost. We observe better numerical results when
using the nugget as random than fixing it to an arbitrary quantity.

The choice of each correlation functioñρξ,j , ρ̃s,j , and ρ̃t,j , can be chosen independent from each other and
depend solely on the information of the scientist or the computational simplification associated with it. The correlation
functions can be chosen from any well known correlation family such as exponential, square exponential, and Matérn.
In this paper we choose to work with the power exponential family because of its popularity and simplicity:

ρ̃ξ,j(ξ,ξ′; λξ,j) = exp
{
−1

2

kξ∑

k=1

||ξk − ξ′k||ζξ

λ
ζξ

ξ,j,k

}
,

ρ̃s,j(s, s′; λs,j) = exp
{
−1

2

ks∑

k=1

||sk − s′k||ζs

λζs

s,j,k

}
,

ρ̃t,j(t, t′; λt,j) = exp
{
−1

2
||t− t′||ζt

λζt
t,j

}
,

whereζξ, ζs, andζt are values in the interval(0, 2]. Each conditional representation has a separable model for the
covariance function. For computational efficiency, we assumeτj = 0 for j = 1, . . . , q and introduce the nugget in the
correlation function. The covariance matrix can be written as a Kronecker product of smaller covariance matrices for
each of theq conditional representations in Eq. (5). Furthermore, when for a particular domain the data are sampled
in a grid, the correlation matrix of that domain can be also expressed as a Kronecker product of one-dimensional
matrices.

4. BAYESIAN INFERENCE

Prior distributions. Let θc = (β, σ,α, λ, g) denote the parameters of the conditional representation in Eq. (6).
In order to carry out computations in a Bayesian way we assign prior distributions into the parameters and hyper-
parameters which represent prior knowledge about the computer simulator that might be available for non-informative
prior distribution. In general we may choose priors which may facilitate the evaluation of the posterior distribution
of these parameters. The set of parameters to be estimated in the above model isθc = {β, α, σ2, λ, g}, where
σ2 = (σ2

1, . . . , σ
2
q) hasq parameters,λ = (λξ,1, . . . , λξ,q, λs,1, . . . , λs,q, λt,1, . . . , λt,q) hasq × (kξ + ks + 1)

parameters,g = (gξ, gs, gt) = (gξ,1, . . . , gt,q) has3q parameters,βT = (β1, . . . , βq) hasqM parameters, and
αT = (α2|1, . . . , αq|(q−1)) has(q − 1)q/2 parameters.

In order to fitq models separately in the Bayesian inference we use a prior which has an independent parameter
for each conditional model of Eq. (5),π(θc) =

∏q
j=1 π(θcj ) =

∏q
j=1 π(βj , αj , σ

2
j , λj , gj). This will facilitate our

Bayesian inference. The problem can be seen asq different GP regressions each of which can be fitted separately.
Standard method can be used to determine the prior distributions of the parameters in the model. For simplicity,

conjugate prior distributions can be used for the parameters associated with the meanBj = (βj , αj) and varianceσ2
j .

We suggest non-informative priors for correlation hyper-parameters since the choice of conjugate priors is not possible
in practice. We can assignπ(Bj ,σ

2
j ) to be a product of inverse gamma with a normal distributionπ(Bj ,σ

2
j ) ≡

IG(σj ; r,ω)×N(Bj ; 0, ω̃). When there is no prior information aboutBj andσj , we can consider non-informative
prior p(Bj , σ

2
j ) ∝ σ−2

j which will lead to a closed form of the marginal posterior distribution ofλj [6].
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This is the equivalent of using inverse Wishart with diagonal parameter matrix forΣ, [17], in the joint representa-
tion of the coregionalization model. In order to ensure positive support on the values ofλξ,j , gξ,j , λs,j , gs,j , λt,j , and
gt,j we assign exponential prior distributions with parameters depending on the problem. The posterior distribution of
the above parameters can be derived using methods which are similar in computational cost to the separable model.

Posterior distributions. We use the special form of the above conjugate prior forBj ,σ
2
j which isp(Bj , σ

2
j ) ∝ σ−2

j ,
which when combined with the likelihood of thejth conditional GP, leads to further computational simplifications.

The joint posterior distribution ofB andσ is p(B, σ2|·) =
∏

j=1:q p(Bj |σ2
j , Y , λj , gj)p(σ2

j |Y , λj , gj), where

p(Bj |Y , σ2
j ,λj , gj) ≡ N(HjB̂j , σ

2
j (H

T
j R−1

j Hj)), (8)

where
B̂j = (HT

j R−1
j Hj)−1HT

j R−1
j Y j ,

and

p(σ2
j |Y , λj , gj) ≡ InvGam

[N − 1
2

,
(N −mj − 2)σ̂2

j

2
]
, (9)

where

σ̂2
j =

Y jT (R−1
j −R−1

j Hj(HT
j R−1

j Hj)−1HT
j R−1

j )Y j

N −mj − 2
.

Integrating outBj andσ2
j from the posterior ofλj , gj ,σ

2
j , Bj |Y , it can be shown that:

p(λj |Y , gj) ∝ π(λj)π(gj)|Rj |−1/2|HT
j R−1

j Hj |−1/2(σ̂2
j )

(N−mj)/2, (10)

and
p(gj |Y , λj) ∝ π(λj)π(gj)|Rj |−1/2|HT

j R−1
j Hj |−1/2(σ̂2

j )
(N−mj)/2. (11)

The integration ofBj andσ2
j , in Eqs. (10) and (11), is done using probability density function (pdf) properties. We

first integrate outBj with the help of the normal pdf and then integrate outσj using an inverse-Gamma pdf. Both
the posterior distributions (10) and (11) are intractable and the inference is carried out with MCMC computations
techniques. UsingRj = Rξ,j ⊗ Rs,j ⊗ Rt,j facilitates the posterior distribution in the above representation since
we apply the Kronecker product techniques to compute the determinant and inverse the matrix. Yet, integrating over
Bj and σ2

j can improve the mixing of the MCMC [19, 20]. This is crucial since the MCMC we applied in our
problem is a combination of Metropolis-Hasting within Gibbs sampling [21, 22], which requires many of iterations.
The computational cost for the conditional model isq times more expensive than the separable model. However, the
model used here is more general and as we will show, in the numerical example section, it gives better results.

4.1 Predictive Distribution

In this section, we calculate the predictive distribution ofη(x′) ∈ Rq at a new pointx′ ∈ Rk. The main problem is
usually to obtain an analytical representation of the response surface for arbitrary input, spatial, or time values. The
predictive distribution is used to predict the response surface and the error associated with it.

Given the data and all the parameters of the GP, the distribution ofη(·) is

p(ηj(x′)|Bj , σj ,λj , gj , Y ) ≡ N (
m∗

j (x
′), c∗j (x

′, x′;λj , gj)
)
, (12)

where

m∗
j (x

′) = E(ηj(x′)|Y , Bj ,σj , λj , gj) = µj(x
′) + rj(X, x′)T R−1

j (Ỹ j − µ(Y j),

c∗j (x
′, x′; λj , gj ,σj) = Var(η(x′)|Y j ,λj , gj ,σj) = (rj(x′, x′)− rj(X,x′)T R−1

j rj(X,x′))σ2
j .

The above representation can be further simplified by the use of the conditional distribution ofηj(·)|Y j ,λj , gj .
Given that we have chosen the priors specification ofπ(Bj , σj) ∝ |σj |−(q+1)/2 and integrating out bothBj andσj

Volume 5, Number 4, 2015



382 Konomi & Lin

the distribution ofηj(·)|λj , gj , Yj is a multivariatet-student, [6].

p(ηj(x′)|λj , gj ,Y , η1(x′), . . . , ηj−1(x′)) ≡ T1

(
m∗∗

j (x′), r∗∗j (x′, x′; λ)σ̂2
j ; N −mj

)
, (13)

with N −mj degrees of freedom and

m∗∗
j (x′) = hj(x′)T B̂j + r(X,x′)T R−1

j (Ỹ j −HjB̂j),

r∗∗j (x′, x′;λj , gj) = (rj(x′,x′)− rj(X, x′)T R−1
j rj(X, x′)),

B̂j = (HT
j R−1

j Hj)−1HT
j R−1

j Y j ,

σ̂
2
j =

1
N −mj

(Y j −HjB̂j)R−1
j (Y j −HjB̂j).

In practice we do not observe directlyη1(x′), . . . , ηj−1(x′) and the covariance parameters(λj , gj). However,
they can be sampled iteratively from MCMC algorithm.

The Bayesian predictive density functionη(·)|Y is calculated as

p(η1(x′), ..., ηq(x′)|Y ) =
∫

λ,g

p(ηq(x)|λq, gq, Y
q, η1(x′), ..., ηq−1(x′))...p(η1(x′)|Y 1)π(λ, g|Y )dλdg. (14)

Formally speaking, the posterior distribution ofη(x)|Y should be regarded as the emulator. Integration ofλ andg in
Eq. (14) needs to be done numerically since it does not have a closed form. We use MCMC techniques to approximate
the above integral. More specifically, the approximation ofp(η(x′)|Y ) is given by

1. For j = 1, . . . , q, generate MCMC samples(λ(1)
j , g

(1)
j ), . . . , (λ(M)

j , g
(M)
j ) from p(λj , gj |Y ) as we described

in Section 4.

2. Approximatep(η(x′)|Y ) by

p̂(η(x′)|Y ) =
1
M

M∑

k=1

p(ηq(x′)|λ(k)
q , g(k)

q , Y q, η1(x′), . . . , ηq−1(x′)) . . . p(η1(x′)|λ(k)
1 , g

(k)
1 , Y 1).

In computer experiments, we are interested in obtaining an analytical representation of the response surface for
random input and by maintaining fixed the spatial and temporal values. The input, spatial, and time values which we
would like to predict are in the form ofXP = xξ,P ×Xs ×Xt. In this case we can write

p(ηj(XP )|λj , gj ,Y ,η1(XP ), . . . , ηj−1(XP )) ≡ Tnsnt×1

(
m∗∗

j (XP ), r∗∗j (XP ,XP ;λ)σ̂2
j

)
, (15)

where the mean and variance of the predictions are

m∗∗
j (XP ) = hq(XP )T B̂j + α̂j|1η1(XP ) +

· · ·+ α̂j|j−1ηj−1(XP ) + rξ,j(Xξ,xξ,P )T R−1
ξ,j ⊗ Is ⊗ It(Y j − µY j )

and

r∗∗j (XP , XP ;λ) =
{
rξ,j(Xξ,P , Xξ,P )− rξ,j(Xξ,xξ,P )T R−1

ξ,jrξ,j(Xξ, xξ,P )
}⊗Rs,j ⊗Rt,j .

The proposed GP model can also be employed to calculate statistical moments, i.e., mean, variance, and the pdf.

5. NUMERICAL EXAMPLES

5.1 Kraichnan-Orszag Three-Mode Problem

Consider the system of ordinary differential equations as shown in [23]
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dy1

dt
= y1y3,

dy2

dt
= −y2y3,

dy3

dt
= −y2

1 + y2
2 ,

which are subject to random initial conditions att = 0. The deterministic solver we use is a fourth order Runge-Kutta
method as implemented in the GNU Scientific Library [24]. For the two-dimensional problem, the stochastic initial
conditions are defined by

y1(0) = 1, y2(0) = 0.1ξ1, y3(0) = ξ2,

where
ξi ∼ U([−1, 1]), i = 1, 2.

The input variablesξ here represent the initial conditions. The output consist of three distinct variables (q = 3) that
are functions of time(ks = 0). For convenience, we choose to work with a constant prior mean by electinghξ(ξ) = 1
andht(t) = 1.

We fix the sample size,nξ, and gather the input dataXξ ∈ Rnξ×kξ from a Latin hyper-cube design described
in [25]. We solve the system for the time interval[0, 10] and record the response at10 equidistant time steps, i.e.,
Xt ∈ Rnt with nt = 10.

We takenξ = 100 andnξ = 300 samples with a Latin hyper-cube design and try to evaluate the statistics of
each variable with the separable model and the conditional LMC. The priors forλζ,j , gζ,j are specified by setting
the parameter of the exponential prior to0.05 and10−3, respectively. The proposals of the Metropolis-Hastings are
selected to be a log-normal random walk and step which is determined from a pilot study. For each method, we
ran 30,000 iterations to collect posterior samples after a burn-in period of 5,000 iterations. Good convergence of the
respective marginal distributions is indicated by the trace plots of parameters. The MCMC distribution of some crucial
parameter in the the conditional LMC is shown in the Appendix, Fig. A.1.

After the burn-in iterations we numerically compute the Bayesian predictive density function, presented in Sec-
tion 4.1, at120 input grid points and the existing time steps. We compute the mean square prediction error (MSPE)
integrated over the whole input space and time for each variable and present them in Table 1. The MSPE is calculated
as the mean square error of the true value in comparison with the mean of the Bayesian predictive density function.
The LMC for the covariance function gives better results in both cases. Whennξ = 300, the MSPE for all the outputs
is close to half of the MSPE when we use the separable model. The MSPE ofy1 using LMC is almost three times
smaller than the computed MSPE using the separable covariance function. Great differences are also observed in the
case where only100 input samples are taken. The assumptions associated with the separable model seem to be vio-
lated in this set of data. For comparison, we have also used Matérn correlation model as a correlation function. The
results are very similar to the one appearing in Table 1, suggesting less sensitivity on selecting the correlation function
for this system of ordinary differential equations.

Using the same setting we compute the response surface of the mean of Bayesian predictive density function for
the two models. Fornξ = 300 andt = 10 we show the predicted response surfaces in Fig. 1 at a120×120 input grid.
The differences we observed in the table can also be seen in Fig. 1. The conditional coregionalization model gives
better representation of the predicted surface. The response surface ofy1 shows great differences between the LMC
and the separable covariance function.

TABLE 1: MSPE for the two different cross-covariance functions andnξ = (100, 300)
Variable LMC nξ = 100 Separablenξ = 100 LMC nξ = 300 Separablenξ = 300

y1 0.0142 0.0201 0.0022 0.0069
y2 0.0116 0.0160 0.0051 0.0094
y3 0.0341 0.0509 0.0103 0.0184
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FIG. 1: Two-dimensional K-O problem fornξ = 300: The first column shows the exact realization of the three output
for time t = 10. The second column shows the predictive Bayesian mean when we model the covariance function
with the conditional linear model of coregionalization and the third column when we use the separable model.

Since we use a Bayesian hierarchical model, we can also provide the prediction distribution or the prediction inter-
vals for the output at each input and time points. Figure 2 shows the estimated prediction densities of(y1, y2, y3) for
sample sizen = 100 (green dashed line) andn = 300 (black dash-dot line), in input pointsξ∗1 = (−0.3333,−0.5556),
ξ∗2 = (−0.3333, 0.3333), ξ∗3 = (0.1111, 0.1111), ξ∗4 = (0.3333,−0.1111), and timet∗ = 10. We use the last
25,000 MCMC samples to estimate the prediction densities. As expected, the prediction distribution becomes nar-
rower as we increase the sample size. Moreover, the posterior mean moves closer to the real value ofy(·) (red star).
Finally, we compare the output prediction distributions of the proposed model with the output prediction distribu-
tions of separable model. Figure 3 shows the estimated prediction densities for the previous input pointsξ∗ and
time t∗ = 10 using the two different models. The prediction density of the separable model is shown by blue solid
lines and the prediction density of the LMC is shown by black dash-dot lines. The proposed model gives better re-
sults overall in terms of the mean and variance of the prediction distribution. As we can see from the graphs the
dominance of LMC is not in all the input points. However, better results are observed in most cases when using
LMC.

Despite the success of the proposed method, we observe certain aspects that require further investigation. First
of all the data predictive distribution does not seem to capture the discontinuity in the data for values ofx1 = 0.
Moreover, the Latin hyper-cube design for sampling does not seem to be appropriate since the MSPE is bigger in

International Journal for Uncertainty Quantification



Multi-Dimensional Gaussian Process 385

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

20

40

60

80

100

120
LMC−300

LMC−100

(1) y1 , ξ
*

1 , t = 10
−0.4 −0.2 0 0.2 0.4
0

2

4

6

8

10

12
LMC−300

LMC−100

(2) y2 , ξ
*

1 , t = 10
−1.6 −1.4 −1.2 −1 −0.8 −0.6
0

2

4

6

8

10
LMC−300

LMC−100

(3) y3 , ξ
*

1 , t = 10

0.8 0.9 1 1.1 1.2 1.3
0

10

20

30

40
LMC−300

LMC−100

(4) y1 , ξ
*

2 , t = 10
−0.4 −0.2 0 0.2 0.4
0

2

4

6

8

10

12
LMC−300

LMC−100

(5) y2 , ξ
*

2 , t = 10
−1 −0.5 0 0.5
0

1

2

3

4

5

6
LMC−300

LMC−100

(6) y3 , ξ
*

2 , t = 10

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40
LMC−300

LMC−100

(7) y1 , ξ
*

3 , t = 10
−0.4 −0.2 0 0.2 0.4 0.6
0

2

4

6

8

10
LMC−300

LMC−100

(8) y2 , ξ
*

3 , t = 10
0.5 1 1.5 2
0

1

2

3

4

5

6
Separable

LMC

(9) y3 , ξ
*

3 , t = 10

0.7 0.8 0.9 1 1.1
0

10

20

30

40

50
LMC−300

LMC−100

(10) y1 , ξ
*

4 , t = 10

−0.4 −0.2 0 0.2 0.4
0

2

4

6

8

10

12
LMC−300

LMC−100

(11) y2 , ξ
*

4 , t = 10

−1 −0.8 −0.6 −0.4 −0.2 0
0

2

4

6

8
LMC−300

LMC−100

(12 ) y3 , ξ
*

4 , t = 10

FIG. 2: Prediction distribution of the three outputs atξ∗1 = (−0.3333,−0.5556),ξ∗2 = (−0.3333, 0.3333),ξ∗3 =
(0.1111, 0.1111), ξ∗4 = (0.3333,−0.1111), andt∗ = 10 for sample sizenξ = 100 (green dashed line) andnξ = 300
(black dash-dot line). Each column represents one of the three outputs and each row represents one of the four different
input points. The red star denotes the true value of the output.

certain areas. Both of these issues can be solved with adaptive sequential design of experiment via active learning
[8, 26–28].

The nugget quantity in the multivariate Gaussian process introduce numerical stability and usually leads to better
predictions. For example if we fix the nugget effect to0.05 whennξ = 300 the MSPE ofy1 is 0.0025, the MSPE of
y2 is 0.0057, and the MSPE ofy3 is 0.0104, which are bigger than the corresponding MSPEs when we include the
random nugget effect. The same observation is true for the separable model.
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FIG. 3: Prediction distribution of the three outputs forξ∗1 = (−0.3333,−0.5556), ξ∗2 = (−0.3333, 0.3333),ξ∗3 =
(0.1111, 0.1111), ξ∗4 = (0.3333,−0.1111), t∗ = 10, and sample sizenξ = 300 using separable model (blue solid
line) and the proposed LMC (black dash-dot line). Each column represents one of the three outputs and each row
represents one of the four different cases. The red star denotes the true value of the output.

5.2 Flow through Porous Media

We now apply our proposed methods to a two-dimensional, single-phase, steady-state flow through a random per-
meability field. The mathematical models through porous media are well established and can be found in numerous
textbooks. A good review of this model can be found in [9, 29]. We follow these to specify the problem. The spatial
domainXs is chosen to be the unit square[0, 1]2, representing an idealized oil reservoir. Let us denote withp the
pressure andu = (ux, uy) the velocity fields of the fluid in thex andy spatial direction, respectively.
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We set up the physical problem so that there is an injection well on the bottom left corner and a projection well on
the top right corner, while we impose no-flux boundary conditions (model square wells). LetK denote the permeabil-
ity diagonal tensor that models the easiness with which the liquid flows through the reservoir. We restrict ourselves to
an isotropic permeability tensorKij = Kδij andK(s) = exp {G(s)}. The logarithm of the permeability,G(s), is
modeled with a Gaussian random field as

G(·) ∼ N(mG, cG),

with constant meanmG and exponential covariance function given by

cG(s1, s2) = σ2
G exp

{
−

ks∑

k=1

|s1,k − s2,k|
lk

}
,

The parameterslk are the correlation length of the field in thek direction, andσ2
G > 0 is its standard deviation. For

our study we choosemG = 0, σG = 1, andlk = 0.1 for all k. We obtain a finite-dimensional representation of it by
employing its Karhunen-Lóeve representation and retaining50 terms accounting for95% of the field’s energy

G(w; s) = mG +
kξ∑

k=1

wkψk(s),

wherew is a vector of independent standardized Gaussian random variables andψk(s) are the eigenfunctions of the
exponential covariance function. Using a suitable transformation, the final field can be described by50 independent
uniform random variables. The boundary value problem is solved using the mixed finite element formulation.

The above problem can be translated as a forward problem with input dimensionskξ = 50, spatial dimension
ks = 2, and output dimensionq = 3. More accurately, we define the response of the physical model as

f : Xξ ×Xs → Rq,

whereXξ = [0, 1]50, Xs = [0, 1]2, and

f(x) = f(ξ, s) = (p(ξ, xs), ux(ξ, s), uy(ξ, s))

are the solution of the boundary problem at the spatial points for a permeability field.
The boundary value problem is solved using the mixed finite element formulation. We use first-order Raviart-

Thomas elements for the velocity described in [30], and zero-order discontinuous elements for the pressure from [31].
The spatial domain is descretized using a64× 64 triangular mesh. The solver was implemented using the Dolfin C++
library from [32]. The eigenfunctions of the exponential random field used to model the permeability were calculated
via Stokhos, which is part of Trilinos [33].

For each stochastic inputξ, the three responses are observed on a32× 32 square spatial grid. A Latin hyper-cube
design is used to select 120 observations of the solver. Three of these simulations are shown in Fig. 4. To be able to
compare our GP model with the deterministic solver, 10 of these samples are left out for prediction evaluations and
110 samples are used to make Bayesian inference. We sample the posterior of the parameters of the separable and
conditional model 20,000 times and make Bayesian prediction. Good convergence of the respective marginal distri-
butions are indicated by the trace plots of the model parameters. The 5,000 iterations trace plot of the separable model
parameters is given in Fig. A.2 and the 5,000 iterations trace plot of the conditional linear model of coregionalization
parameters is given in Fig. A.3. We conduct predictions for the 10 left-out simulations and compare them with the real
computer code results. Fig. 5 shows the real and the predicted images for the three distinct outputs in a32×32 spatial
grid for the two different covariance models. There is an obvious similarity of the computer code and the Gaussian
predictions with both covariance models. The predicted values using the conditional LMC model give predictions
closer to the real computer simulation. To better see this difference in terms of numbers we compute the MSPE using
the 10 left out simulations. The computed MSPEs for the two different covariance models and for three distinct out-
puts(ux(ξ, xs), uy(ξ, xs), p(ξ, xs)) are given in Table 2. The MSPE for the conditional LMC is significantly smaller
than the MSPE using the separable model. For the pressurep, the MSPE using conditional generalized LMC is almost
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FIG. 4: Output for two different exact computer simulation realizations. Different columns represent different output
and different rows represent different input.

half, comparing to the MSPE using the separable model. This is a strong indication that the separable model may not
always be the best choice to model real problem using computer code simulations.

With the same predictive Bayesian method, we can compute the predictive probability density for each point in
the input domain. Moreover, we can infer the distribution of the mean and variance of the flow through porous media
problem.

6. CONCLUDING REMARKS AND EXTENSIONS

We developed a computationally efficient UQ tool based on a multi-dimensional GP which explicitly models the
correlation between distinct outputs, input domain, spatial domain, and time. We used covariance structures which en-
able the posterior computations. More explicitly, we build a generalized LMC covariance for the multivariate outputs,
where the dependence on different domains (input, space, and time) is considered to be separable. The conditional
representation of the LMC in combination with the separable model for different domains leads to highly efficient
computation in terms of of both storage memory and CPU time.

The prior specification of the LMC parameters leads to an efficient algorithm, since only the parameters of the
correlation function need to be updated in each MCMC iteration. Moreover, we introduce numerical stability in the
covariance function by adding a nugget term, without increasing the computational complexity of the model through
maintaining the Kronecker product structure of the covariance matrix.

Finally, we applied the conditional generalized LMC to the Kraichnan-Orszag three-mode problem as well as to
the flow through porous media problem and compared it with the separable model. Strong support of the use of the
conditional generalized LMC is shown for both problems by comparing the mean-square prediction error. Also, the
use of the random nugget effect improves the overall prediction error.

In practice, the conditional separable form we chose to work, may be too simplistic. For example, problems of
discontinuity and localized features may be present in the computer simulation. For issues related with non-stationarity
we suggest the use of different tree-based techniques already proposed in the literature. The Bayesian tree multivariate
Gaussian process [8], the independent Bayesian tree Gaussian process (BTGP) [34], or the multi-output treed GP
(MOTGP) [28] can be used to partition the space into a tree form and can also reduce the computational cost of the
proposed model. To further reduce the computational cost full-scale approximation methods for the covariance matrix
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FIG. 5: Real and predicted value for 1 of the 10 training observation. First row is the real simulation, second row is
the predicted mean simulation with the separable model, and the third row shows the three output predicted surfaces
using LMC.

TABLE 2: MSPE for the two different cross-covariance functions

Variables MSPE for nξ = 110 Separable MSPE for nξ = 110 LMC
Y1 = ux 5.7250e-005 3.6252e-005
Y2 = uy 6.2589e-005 4.5979e-005
Y3 = p 5.5921e-006 2.9670e-006

as they are suggested in [35] can be used. A more comprehensive study of the non-stationarity will be investigated in
future research.
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APPENDIX: MCMC RESULTS
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FIG. A.1: MCMC for the last 15,000 iterations.

Volume 5, Number 4, 2015



392 Konomi & Lin

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
2

4

6

8

10

12

14

16

18
input correlation length

Iterations

L
e

n
g

th
 s

c
a

le
 ξ

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.005

0.01

0.015

0.02

0.025

0.03

0.035
Nuggets

Iterations

(b)

FIG. A.2: Trace plot of 5,000 MCMC iteration when we use separable model: (a) the input correlation parameters of
50 different dimentions and (b) the nugget parameters.
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FIG. A.3: Trace plot of 5,000 MCMC iterations of the input correlation length of the three distinct conditional models.
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