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A variant of the s-version of the finite element method (hereafter coined the s-method) for concurrent multiscale cou-
pling is developed. The proposed method is inspired by a combination of the s-version of the finite element method and
the Arlequin method. It features a superposition of a local (fine) mesh, which partly overlaps a global (coarse) mesh,
and appropriate homogeneous boundary conditions on both meshes that enforce solution continuity. Its performance
in terms of accuracy and computational efficiency in solving a class of multiscale continuum mechanics problems is
evaluated by virtue of comparison to the fine reference single mesh and the Arlequin method. Numerical studies are
conducted for one-, two-, and three-dimensional problems. For select local and global meshes, the cause of accuracy
gains in comparison to the Arlequin method, while having almost the same gain in CPU time, with respect to the
discrete single fine mesh for both approaches, is explained.

KEY WORDS: s-method, Arlequin method, concurrent multiscale, enrichment, coupling, finite element
method

1. INTRODUCTION

Multiscale simulation of materials and structures is onthefresearch frontiers in the fields of material science and
industrial engineering. Computational multiscale apphes can be categorized into hierarchical methods, whith ca
be either one- or two-way coupled, and concurrent metholds.above three methods are aimed at different multi-
scale issues. In the one-way coupled hierarchical methedirie-scale information is passed onto coarse scale but
not vice versa. Linear computational homogenization amipwa nonlinear coarse-graining schemes, which focus on
determining effective macroscopic properties, fall irtte tategory of one-way coupled hierarchical methods. The
two-way coupled hierarchical methods (Fish et al., 1998hF2013; Feyel, 1999; Guo and Zhao, 2014) repeatedly
solve a nonlinear boundary value problem at a fine scale atemrse-scale quadrature point. Finally, the concurrent
multiscale methods are closely related to domain decortippsipproaches that either link different mathematical
models described by various physics and/or scales or e mtiathematical models having distinctly different dis-
cretization resolution. Concurrent methods are typicathployed to model nonperiodic solutions, such as localized
failure. For concurrent methods, linking various matheocahimodels, such as atomistic and continuum descriptions,
the reader is referred to (Fish, 2006, 2007; Xiao and Bekisc2004; Xu and Belytschko, 2008; Ben Dhia and
Elkhodja, 2007; Bauman et al., 2008).
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Concurrent methods can be further classified based on haisolis decomposed, i.e., enriched or coupled
(Duval et al., 2016). Coupling schemes can be either ovgilgpor coexistent, and the interface (or interphase)
can be of the same or lower dimensional manifold (Fish etL8R9). Finally, the solution approaches can be either
iterative or direct (Gendre et al., 2009).

In the enrichment-based concurrent methods, the totatisolu is decomposed into coarse-scafe and fine-
scale correction”. A wide range of these methods differ in the approximationg© andu”, the selection of the
interfacel'“~ and the solution of the global-local system of equationsi{ind Shek, 2000). Among the noteworthy
enrichment methods are the variational multiscale methMdM) (Hughes, 1995), the generalized finite element
method (GFEM) (Strouboulis et al., 2000), and the extended EXFEM) (Belytschko and Black, 1999), with the
latter two based on the partition of unity method (PUM) (Mi&dend Babuska, 1996).

In the concurrent coupling schemes, coupling between subi is typically weekly enforced using mortar
FEMSs (Bernardi et al., 1990a,b; Belgacem, 1999) or the Aileframework (Ben Dhia, 1998; Ben Dhia and Rateau,
2005). The Arlequin framework introduces an overlappingjo® in which the two models are coupled using La-
grange multipliers. The dual coupling has been commentegidoyDhia (1999) and Ben Dhia et al. (2008). The
norm and the? scalar product coupling operators in the gluing (or inta#) zone have been studied in detail (Ben
Dhia and Rateau, 2001, 2005; Ben Dhia, 2008; Guidault angt&#iko, 2007; Sun and Mota, 2014). The penalty
operator has also been used (Ben Dhia, 1998; Qiao et al.) 208lthe penalty-duality coupling suggested in (Ben
Dhia, 1998). Because of its flexibility in coupling diffetgphysics and/or scales, the Arlequin method was adopted
in the commercial Code-Aster (Ben Dhia and Rateau, 2002).

Because of the hierarchical decomposition of approximagjzace, multigrid solvers are well suited for solving
enrichment-based concurrent schemes. On the other hamcljrcent coupling schemes are typically solved using
finite element tearing and interconnecting (FETI) (Farmat Roux, 1991; Ben Dhia et al., 2008) and Schwarz alter-
nating methods (Schwarz, 1870; Mota et al., 2017).

The primary objective of the present paper is to study thersion of the finite element method (Fish, 1992a,b,
1993, 1997; Fan and Fish, 2008; Jiao and Fish, 2015a,b) srebabble FE enrichment for which it was originally
developed, but as a concurrent coupling scheme based orearitied junction. To evaluate the efficiency of this
variant of the s-method, it is compared in terms of accuray @mputational efficiency to the Arlequin method,
widely considered as one of the best concurrent couplingraels.

The paper is organized as follows: Section 2 briefly revidvgsstmethod and Arlequin method. The quantitative
comparisons in the accuracy and computational efficieneycanducted in Section 3. In Section 4, we discuss the
consistency and the modeling errors: the cause in accuraiog @f the s-method, for the considered multiscale
continuum mechanics tests, is explained. Concluding riesreme given in Section 5.

2. OVERVIEW OF S-METHOD AND ARLEQUIN METHOD

As a prelude, we start with a brief review of the basic forrialss of the s-method and Arlequin method. The point
of departure is a variant of the s-method to link two subdomaia partial overlap and homogeneous boundary con-
ditions on the interconnected domains. In the present pageconsider concurrent coupling under the assumptions
of infinitesimal deformation, an isothermal quasi-statites, and material nonlinearity.

In the framework conceived originally by Fish (1992a), thaathod features hierarchical decomposition of the
approximation space, i.e., the local mesh is designed asrttiechment to the underlying global mesh. Hence, the
crucial local features, such as crack tips or shear banesgaolved by the superposition mesh (Fish, 1992hb). In the
present paper, the potential of the s-method is exploreddiocurrent coupling rather than as an enrichment scheme.
By this approach, the superimposed local domain is positigrartly outside the global mesh similarly to the setup
considered in the Arlequin method (Ben Dhia and Rateau, &9Shown in Fig. 1.

Consider a nonlinear solid occupying an open-bounded aegldmainQ C RZ. Its boundary is denoted by
012, which consists of the prescribed displacement boun@afy and the prescribed traction bounddky?, such
thatoQ = 9,2 U 9,2 and9d,Q N 9,2 = . Let b denote the prescribed body fordethe prescribed boundary
displacement;, the prescribed traction, andthe unit normal to the boundafyQ2. The domair is partitioned into
subdomain€® (coarse mesh representing the global scale) @hdfine mesh representing the local refinement
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FIG. 1: Two coupling subdomains and the corresponding boundaries

region), such tha®® U QF = Q andQ® N QF = O°, whereQ? is the coupling or overlap zone. The measur@of
meas (°), is such that mea2°) # ). Fori = G, L, T = 9Q1/(99 N 9Q) is the portion 0fdQ* which is not part
of 9Q. For simplicity, the displacement is imposed on the portbn, Q¢ of Q% N 9Q and the surface traction is
imposed only on the portion & Q% of 90¢ N o9.
We start by considering a weak form without partitioning pineblem domain, which states:
Findu € U such that
a(u,v) =1(v),Yv € V 1)

whereld, V are the trial solution and the test function spaces, resgdgtdefined as follows:
U={ulucHQ), u=a on 9,0} 2)
V={vlveH(Q), v=0 on 9,0} (3)

The internal virtual work is given by the bilinear form

a(u,v) = /Q o(u) : e(v)dQ 4)

whereas, the external virtual work is defined by the lineamfo

l(v):/v'bdQJr/ v - tdl (5)
Q 8,0

The constitutive equation is denoted as follows:
oc=o0(e(u),&) in O (6)
whereé denotes internal state variables.
We refer to the exact solution of a single domain model (1hasiact solution, denoted hereinés

2.1 S-Method

In the variant of the s-method considered herein, the dispteent is decomposed into the coarse-scale or global mesh
u% and the fine-scale or local mest. Homogeneous boundary conditions are imposed to maigticontinuity
as described below. The displacements in different subdwnaae defined as follows:
u® in Q%/(Q°
u=<{ u®+ul in o (7
ut in Q/(Q9
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with the following homogeneous boundary conditions:

ul'=0 on TFL
w¥=0 on I¢ (8)

Assuming the displacements and surface traction are indposly on9Q¢ N 99, the trial solution and the test
function spaces are defined as follows:

U = {uu’ e HH(Q),u“=a on 9,0°,u“=0 on I} (9)
Ve = {v9 0% e H1(QY),v9 =0 on I'“Ud,0°} (10)

Ut = {u*|u" e H'(Q"),u* =0 on T*} (11)

VE = {oF|vF e HY(QF),0vP =0 on T} (12)

The test functions, similarly to the trial solution, @ N QF are decomposed as follows:

v =09+ (13)
Assuming infinitesimal deformation, the strains are lihedecomposed as follows:

e=¢% 4 ¢l (14)

e(v) = e(vY) + e(vh) (15)

Let us define the following weak problem:
Find (u%, u%) € U¥ x UL such that

V(v vl) e V& x v

16
CLS(UG + uL,UG + UL) _ ZS(UG + UL) ( )
where
a®(u€ +ul v ol = / o(u® +uk) : e(® +v1)dQ
Qo (17)
+/ o(u) : e(v®)dQ +/ o(ul) : e(v?)dQ

QG /00 QL /Q0
lS(vG—l—vL):/ vG-bdQ+/ vL-bdQ—i—/ v® - dl (18)

Q6 QL 9,06

We next introduce the spatial discretization for the priyrfaglds and test functions as follows:

uf = NG € UOY', of = NGef € 0! (19)
uf = Njjdi € UM, of = Njef e V5" (20)

whereU)h c U<, U c urt, (v c v9, and(Vt)h c VI are finite-dimensional subspaces spanned by
the corresponding interpolation functioris= 1, K, n.4, Wheren,,; denotes the number of space dimensidﬁ%

and N}, areC® continuous shape functions of the coarse and fine meshesctaely;(«, B) = 1, K, N§;, where
N§; denotes the number of degrees of freedom in the coarse fiféshA, I1) = 1, K, nk;, wherenl; denotes

the number of degrees of freedom in the fine m@sh d is the vector of nodal displacements of the coarse mesh
and its components corresponding to nodal point§ ‘e 9,2 should satisfy the prescribed kinematic constrains;
% is the vector of virtual nodal displacements in the coarsemand its components associated with nodal points
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belonging tol'“ U 9,Q¢ must vanish in accordance with the definition\df; andd”, c* are the vectors of nodal
displacements and virtual nodal displacements in the firghmrespectively.
The discretized global and local strains are given by

5 =BG dS el = Bf\dy (21)
where
€]
po — L(ONG | 9N
BL 71‘ 8Nz[1/x 4 aNJLA
AT 2\ ox; T Oy
Substituting the discrete form in (19)—(22) into (16) yeld
e =fa ¢ - £ =0 (23)
rk = vt -t =0 (24)
where
G — / BE  0;(e(d), £)dQ + / BE 0% (e(d?),£9)d (25)
Qo QG /O
foE = / NS b;dQ + NEt;dr (26)
9154 9:06
£t = [ Bhaoyted, g+ [ Bhok(edt), b @)
o 7 QL /QO In
T = / NjibidQ (28)
QL
Because only material nonlinearity is considered, thealiized incremental equations yield the tangent stiffness
matrix
KGG KGL
K- [ ] (29)
KLG KLL

where submatrices in (29) expressed in the indicial nataie given by

orG
K = 5o = / B Lijr B dQ2 (30)
B Q¢
LL 87"1]; L L
i
GL 8r§ G L
chn = —8dL = BijchijleledQ (32)
I Qo
and
Lijin = 5 33
= G (33)
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2.2 Arlequin Method

In the Arlequin method, a partition of unity of the paramstiemctions, representing an appropriately chosen relativ
weight for each model in the overlap, and Lagrange multigliare introduced to enforce weak compatibility between
the two subdomains, where the global and local models areatkfiespectively.

To define the Arlequin weak form, we introduce the trial silntand the test function spaces of the coarse and
fine fields as follows:

U = {uu e HHQ),u“ =u on 9,0} (34)
V€ = {v9]vY e HY(QY),v? =0 on 0,0} (35)
Ut = {ulu e HY(Q")} (36)
VE = {of|vf € HE(QD)} (37)

By theoretical arguments, the Lagrange multiplier is to dugght in the dual space 6{1(Q2°). But for practical
reasons and by using mathematical classical results, theahge multiplier is represented in the (primal) space
H(QO). Thus, its trial solution and the test function spaces canefied as: (see, Ben Dhia, 2008)

U = {A|A e HHQO)} (38)

VA = {ua| v € HY(QO)} (39)

The weak form of the problem is then described as follows:
Find (u%, u®, A) € U9 x U x U™, such that

V(v vk o) € V& x VI x VA

a%(u, v%) + C(A,v%) = 19 (vY)

(40)
at(ut vl) — C(A, vt) = 1F(vh)
C(v*u® —ul) =0
where the bilinear and linear forms are defined as follows
a%(u’, v%) :/ «Co(u’ £%) : g(v)dQ (41)
QG
al(uk vl) = / cLo(ul, &) : g(vl)d0 (42)
Qr
1% = RV - bd) + / pEvY . tdl (43)
9154 J9:06
" (v") = / B’ - bdQ) (44)
JQL
The coupling operator§ based on théZ® coupling are defined by
C(u,v) = / [u v+ Pe(u) : e(v)]dQ (45)
0o

where! represents the characteristic dimension of the coupling £ and/ has units of a length. Herein,is
assumed to be equal to the characteristic size of the fine.mesh
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The energy partition depends on the parametérsx’, which that satisfy
¢=1 in Q%/(Q9
L=1 in o (46)
«f 4ol =1 in QF/(Q0)
The external work parametefs”, 3% are not necessarily identical to”, «’. Nevertheless, herein we select

RY = a%, BL = ! in the numerical examples.
The spatial discretization for the primary fields and testfions is defined as follows:

= NSdS e U, = Nc§ e (VO)" (47)
NAd (uL)ha NH m € (VL)h (48)
A = NNy € UM, = Ny € (WH! (49)

where (U c U, U c ur, (L{A) c u’, (VG) c Ve, (vH ¢ VE and(VM)" ¢ V? are finite-
dimensional subspaces spanned by the correspondingdtagom functions NS, and N4 are the usual® continu-
ous shape functions %, QL respectively. Herein, we follow commonly employed appfom Arlequin [see (Ben
Dhia and Rateau, (2001) and Guidault and Belytschko, (21013/7\)vh|ch M s CO continuous shape functions on
Q0% («, B) =1, K, nGp (A1) = 1, K, nky (A, 9) =1, K, n)y; Whereng’;f, nk;, andn); denote the correspond-
ing number of degrees of freedom, respectivelly; d-, andd” are the vectors of nodal values of the primary fields
andc®, c*, andc are the corresponding virtual nodal values, respectively.

Assuming infinitesimal deformation, the strain reads aefes:

e = Bfjadq. el = Bjadg, el = Bl ad) (50)
where

a

BE } % + 8Nj°‘

e 2 al'j 8951

1(8oNLk ONI
BL == iA J 51
ijA 2 ( awj + awl ( )

B)‘ = } 8NZ)\A + aN;\A

da T2\ ox; 1 Oy

Substituting the above spatial discretizations into thakixflerm (40) yields
O fRC — RO + Cids =0 (52)
ri = ol = B - CRbdy = 0 (53)
rh = CSpdg — Chhdf; =0 (54)
where

= / Bf 08 (e(d), £)d02 (55)
G — / NS b;dQ + NEt;dr (56)

9,06
e N RS (57)

Qr
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o= [ Nhbao (58)
QL
cSh = /Q i (NG - N)y +1°BS - B)g)dQ2 (59)
ok = /Q i (NL - N)s-+1°Bf) - Blyg)dQ (60)
Considering material nonlinearity only, linearizationtbé residuals yields the tangent stiffness matrix given by
O(GKGG 0 CG?\
K = 0 ol K A (61)

(CGA)T _(CLA)T 0

where submatrices in (61) expressed in the indicial nataie given by

or¢
KG§ = = /QG BE (LG, BS 52 (62)
B
LL 87“1% L 7L L
KAH == —(')dL = or BijALijleledQ (63)
I
and o ;
005 0%,
¢, =4 L =_"Y 64
7kl 88]?[ ’ 7kl aaél ( )

Remark 1. The classical displacement continuitf’ — «” = 0in the L? weak sense can be seen as Eq. (65), while
the H* coupling weakly enforcea” — u”) — I?’A(u® — u*) = 0.

C(u,v) = /QO u - vdf) (65)

As a matter of fact, thé&? coupling leads to an ill-posed continuous Arlequin problaimcan be given a sense in the
discretized Arlequin problem (Ben Dhia, 2008).

3. QUANTITATIVE COMPARISONS BETWEEN THE TWO METHODS

In this section, the accuracy and computational efficierfidh@two methods are compared quantitatively.

3.1 One-Dimensional Model Problem

In this example, a one-dimensional model problem of anieléstr (FA = pg = 1, L = 11) is considered. The
meshes for the s-method and Arlequin method are depicteid)ir2 F

The error in the energy norm is computed with respect to aeate fine mesh. The error in the energy norm is
defined as follows:

lle]l = \//QL (gref —e)T L : (evef — €)dQ (66)

The relative error in energy norm is

llell \/fszL (eref — )T L : (eref — €)dQ

= 10— 67
T \/fQL (e7¢)T L : (e7¢f)dS )
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uF =0 the local mesh

\O—O—O—O—O—O—O—O—O—O—O—O—O—O—O—O—O—O—O
the global mesh

O.
Q° —uc=0

3

@)

the local mesh

the global mesh O—O=0=0=0=0"0~0=0=0-0=0"0=0~0=0=0"0"0

o .
the mesh representing
o o
Lagrange multipliers

Q° J
1€ |
(b)
the corresponding zone defined as the
local region in other two methods

FIG. 2: Finite element meshes for the s-method (a), Arlequin metbpdand reference fine solution (c)

wheree¢f ande are strains obtained by the reference fine mesh and one obtiming schemes (the s-method or
Arlequin method), respectively.

The body force is defined as follows:

b(x) = sin [2%(95 - 5)] 5<z <1y (68)

is applied in the local mesh. Relative errors in the energynnaf the and s-method and Arlequin (with linear contin-
uous function) method are shown in Fig. 3.
It is observed that the relative error in the energy norm efdtmethod is lower than in the Arlequin method for

all load frequencies considered. As the load pefibuhcreases, the errors of the two methods reach an asymptotic
value.

15 35

g I 230

€12 | g

s ’ S 25 —8—L*-coupling
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E ] 210 |
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E E o=

E 0.0 ———e - — L 2 i A é 0 L 1 T i A -]
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FIG. 3: Relative error in the energy norm of the (a) the s-method bjpthé Arlequin method
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3.2 2D-2D Coupling for Fracture Analysis

Herein, we consider a plate with a crack subjected to teasiteshear loadings, respectively (Fig. 4). The problem
has been studied by Guidault and Belytschko (2007) in theegbnof the Arlequin method. A plane strain condition is
considered. Material parameters dte= 2 x 1(® MPa andv = 0.3. The geometry parameters ate= 3.5 mm,L =
16 mm, andw = 7 mm (see Fig. 4 for definition). Figure 5 depicts the meshastie global domain discretization,
but only shows the mesh in the coupling zone) used in the aaypthemes. In the Arlequin method, the Lagrange
multiplier field and the coarse fields are spanned by the seir@ basis functions.

The analytical values of the stress intensity factors SéFaarfollows:

e Tensile loading (pure mode I = 9.3721 MPa mrh2.
e Shear loading (mixed mode IIfi? = 34.00 MPa mmY? and K = 4.55 MPa mn¥2,

The extraction of the SIF is obtained using J-integrals. Atwnalized errors obtained from various approaches
are summarized in Tables 1 and 2. It can be seen that the sdietids to consistently more accurate results. Among
the various coupling schemes in the Arlequin method,iheoupling and thed! coupling with linear weighting
functions give rise to higher accuracy, which is consistétit observations made in Guidault and Belytschko (2007).

g s
gL i e 0 O =R e
a a 1 06/0°
e o m 0
= nL/n°
w w
PO O PO I T
Mode I Mode II

FIG. 4: Structure with a traction-free crack in pure mode | (tenlsiteling,c = 1 MPa) and in mixed mode Il (shear loading=
1 MPa); computational conditions of the two methods

FIG. 5: Fine mesh fof2” and coarse mesh {61 (thick line, only shows the coupling zone) using in the cingpschemes
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TABLE 1: Mode | case: value and normalized value of the stress injefasitor
— Fine| sMethod _ Arlequin _
H'-linear | H'-congtant (0.99) | H'-constant (0.5) | L2-linear
|(K) — KP)/KP| x 100% 0.001 0.108 0.150 0.436 0.703 0.236
TABLE 2: Mixed mode Il case: value and normalized value of the strassisity factors
— Fine| sMethod . Arlequin .
H'-linear | H-constant (0.99) | H*-constant (0.5) | L2-linear
|(Ki — KP)/KP| x 100%| O 0.118 0.176 2471 2.176 0.235
(K — KJ)/KJ| x 100%/0.132| 0.154 0.198 0.022 0.176 0.198
We now study the normalized local error in the energy nornméeffias follows:
e,L — ||u B uref”QC’L (69)
|| wrel[ oz

whereu,es andu are displacements in the reference fine mesh and one of tipirpachemes** denotes element

domains i)~ and
l[ullo = L
12 =1 meagq)

The total value$_n®% and Y. n®% are summarized in Table 3. The distributions of the localmsrare depicted

QL QL/Qo
in Figs. 6 and 7. The distribution of local errors is consistith previous observations suggesting higher accuracy
of the s-method and superior performance of linear weigtftimctions in the Arlequin method.

/ e(w): L : e(w)dQ (70)
Q

3.3 3D-3D Large-Scale Nonlinear Coupling

Herein, we consider an earth-rockfill dam with a small-seal®off wall buried in the deep overburden. Figure 8
depicts the maximum cross section and longitudinal profita@dam. The height of the dam is 200 m, and the depth
of the overburden is 100 m; the thickness of the cutoff wall.Bm. The length of the cutoff wall is 63 m, where 60
m is in the overburden. The normal pool level is 190 m. The soite, overburden, thin-layer, and high plastic clay
are all modeled using the Duncan-model (Duncan and Zhang, 1970), and the cutoff wall is mataking ideal
elastic-plastic Mohr-Coulomb model. Material parame#aeslisted in Table 4. The meshes for various methods are
depicted in Fig. 9. The fine and coarse mesh without any cogplie also considered as a reference solution. The
H? coupling with constant weighting functionaf = 0.99) and the coarse mediator space for Lagrange multipliers
are employed for the Arlequin method.

TABLE 3: Total relative errors in local region

o o sMethod H?'-linear | H'-constant (Ogg)equllﬁ;l-constant (0.5) | L?-linear

Mode | Case %ﬂ” 0.165 | 0.251 0.648 0.724 0.271
oo | 0041 | 0057 0.135 0.215 0.072

Vixed Mode I Case %ﬂe* 0.189 | 0.298 0.731 0.816 0.314
oo | 0039 | 0063 0.164 0.255 0.074
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FIG. 6: Tensile loading case: error maf~ from various methods: (a)? coupling-linear weighting function, (&Y *coupling—
linear weighting function, (cH* coupling—constant weighting functionf = 0.99), (d)H* coupling—constant weighting func-
tion («¥ = 0.5), and (e) s-method
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| | I | | | |
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FIG. 7: Shear loading case: error mgap’ from various methods: (a)? coupling—linear weighting function, (¢ coupling—

linear weighting function, (cH* coupling—constant weighting functionf = 0.99), (d)H* coupling—constant weighting func-
tion (x¥ = 0.5), and (e) s-method
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200~

dam
1:0.6 1:0.8

/
"= overburden

100
—

(@) (b)

FIG. 8: High earth-rockfill dam with deep overburden and its cutadfiunit: m): (a) maximum cross section and (b) maximum
longitudinal section

TABLE 4: Material parameters

Saturated c @ Duncan-ev Par ameters Yield | Elastic |Passion’s
Material | Unit Weight |(KPa)| (deg) Stress [Modulus| Ratio
(g/cm3) K| n|Rf| G| F]|D]J[Ku|(KPa)| (KPa)
Soil 2.3 0 45 11050[0.37/0.71| 0.3|0.09| 5.8 2100 — — —
Core 2.22 35 33 |447)|0.4(0.750.39/0.05 1.9 900 | — — —
Overburder 1.99 50 34 |800(0.430.730.44/ 0.1 2 [1500 — — —
Thin Layer 1.2 3 10 | 100|0.45/ 0.5| 0.3|0.04/{0.50| 150 | — — —
ngrélzl)?suc 155 | 39 | 23 [110]0.460.880460.18 1 |220] — | — | —
Cutoff Wall 2.5 2000 48 | — | —|—|—|—]—] — [20,000 3x10 | 0.167

The distributions of stress (stress positive in tensiamcd, and moment of the cutoff wall along the depth for
different models are shown in Fig. 10. Assuming that the fimsmresults are almost exact, we can make several
observations: (i) the Arlequin provides added accuracy thecoarse mesh but is considerably less accurate than the
s-method, in particular, in predicting the maximum comprasstress and (ii) in terms of computational efficiency,
both methods provide considerable savings over the fine mitkithe cost of the s-method and Arlequin method
being 20 and 24% of the fine mesh cost (see Table 5), respgctive

4. DISCUSSIONS

In this section, we explain the reasons for superior precisif the s-method, when used with the given local and
global meshes to approximate the problems considered ipréwous section. We first show in Section 4.1 that the
exact solution of the single domain problerh can be recovered by both the s-method and Arlequin methodhwh
proves the so-called consistency of the two methods. Howewee the spatial discretization is introduced, both
methods are expected to have discretization error. TherdiiCe in accuracy between the s-method and Arlequin
method in solving the problems considered herein is expthin Section 4.2.

4.1 Consistency of the Two Methods with the Single Domain Model

Consider the multidomain problem in Fig 1. For simplicitteation is restricted to elastic body, such that, Eq. (6)
becomes

o=L:e in Q (71)

wherel is the linear constitutive tensor.
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FIG. 9: Various meshes of the multiscale analysis of the cutoff:.w@a)l s-method and Arlequin model, (b) fine model, and (c)

coarse model

Ben Dhia (2008) proved the proposition that the solutionhef linear elasticity single domain problem can be
recovered by the Arlequin solutions. Herein, we give a imilroof for the variant of the s-method.

Letu® defined by
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FIG. 10: Results from various methods
TABLE 5: Computational efficiency of the various methods
Degrees of Freedom CPU Times
Elements | Nodes Value Normalized Valueto Valuels Normalized Valueto
the Fine Mesh the Fine Mesh
s-Method| 212,800 | 231,329 693,987 0.54 181,329 0.20
Arlequin | 265,344 | 236,033| 708,099 0.55 215,491 0.24
Fine 411,952 | 429,633| 1,288,899 — 915,939 —
Coarse 91,392 97,755 | 293,265 — 21,104 —
u® in Q¢/Q0
uw’={ u+ul in QO (72)
ul in QF/QO

be the solution of Eq. (16). The proposition that = u* in Q is proved in two steps. First, we show that is a

unique solution of Eq. (16). Setting® = u*, it is a trivial exercise to show that* is the solution of Eq. (16). Now
assume that there are two solutiang, u5 of Eq. (16). By choosingy — u5 as a virtual field, one deduces that

/ e(uf —u5):L:e(uf —u5)d2=0 (73)
Q
and sincelL is a positive definite, it follows thaty = u5 = u.
In the second step we show that = w*. Consider the virtual displacement defined as as follows:
v¢ in Q¢/Q0
v3=<{ v 4ol in QO (74)
vl in QF/QO
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to be an element o, i.e.,v° € V. We then construct® as follows:

’U*|QG/QO
v = v (75)

*
v |szL/sz°

wherev* is an element i.
Inserting (75) into (16), and due to the uniqueness of th&tielty problem, yields

uw’=u* in Q (76)
which completes the proof.

Remark 2. Solving problem in Egs. (16)-(18) amounts to finding out l@cad global solutions, defined in their
respective domains, whose sum gives the soluiidnwhich, as shown above, is unique. Of course, one can note
that there is an infinity of possible solutiom$’, «” in the overlap whose sum gives the same unique solutign

in the overlap. However, once the spatial discretizatiomtsoduced, at least for the structured mesh superposition
considered herein, the non-uniquenessissue (Fish, 199&aand Markolefas, 1993; Jiao, 2015a,b) can be remedied
by constraining the global mesh nodes that coincide withlloresh nodes in the interior of the overlap to solve the
discreet redundancy issue. We refer also to the Tiling nie{Beroussi et al., 2012), introduced for the coupling of
different ice models of different order complexity wherénailar redundancy issue is treated by using a single layer
of elements in the overlap.

4.2 The Modelling Error with Respect to Discrete Single Domain Model

The difference of accuracy of modeling error results oladiim the previous sections with a variant of the s-method
and Arlequin method is explained in this section. The maimfpis linked to the approximation precision in the
overlap zone that could be expected from the two approaébres,fixed discretization since in the complementary
domains, the same numerical models are used by both of them.

With the variant of the s-method, the unique solutiwh of the continuous classical single model problem is
approximated, in the overlap, by the enrichment of the fines@lhtion of the coarse FE solution and suppression of
redundant basis elements. This results in an approximatioast similar to the single FE model.

With the Arlequin method, it can be easily shown that the diagpoperator [third system in Eq. (40)] used
to enforce the weak equality between the global coarseisnlut® and the local solution.”, in the overlap®,
leads to the enforcement of the equality betwa&nand the orthogonal projection af” on the global coarse space
(see, Ben Dhia and Rateau, 2005). Thus, the soluiionf the continuous single model problem, in the overlap, is
approximated by a partition of the global coarse part anditlegpart of the Arlequin problem solution, the latter being
constrained to have its projection on the coarse space &muahrse part. This leads to an Arlequin approximation
in the overlap that is richer than the coarse part but pobiear the fine part. Alternatively, if the fine space is used as
the mediator space of Lagrange multipliers in the Arlequithod, the coupling operator would have enforced the
exact equality between the local and global fields in thelapeiThis would have led to an approximationf in
00, in the coarse FE space restricted¥b Thus, for both of these two classical choices, if the gldtakoarse part
of the Arlequin solution is not able to capture with a reqdiprecision the solutiom* in Q°, modeling errors are
automatically generated in the overlap (see Figs. 6 anddpaltution errors are diffused in the zone of interest.

5. CONCLUSIONS

A variant of the s-method as an alternative scheme to theucterdt coupling has been developed and compared to
the Arlequin method. The proposed primal method is inspingé combination of s-version of the finite element
method and the Arlequin method. For the example problemsidered, the new variant of the s-method is found
to be more accurate than the Arlequin approach and offeremsmmputational cost savings. The cause of accuracy
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gains is explained in this work. It is linked to the approxtioa of the continuous solution in the overlap by both
methods and used global coarse discretization in this zbees-method uses a finer approximation of the solution
in the overlap (almost as fine as the classical single fine thodl@ecommendation for the choice of the Arlequin
coupling/gluing zone (see, Ben Dhia and Rateau, 2002) tghiedatter has to be a part of the domain of regularity,
where the used “coarse” approximation leads to a targetedracy. In general, this could be achieved by model
adaptivity algorithms (see, e.g., Ben Dhia et al., 2011).

Future work will focus on coupling different mathematicabdels as well as wave propagation problems.
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APPENDIX A. PROGRAM IMPLEMENTATION FOR THE S-METHOD AND ARLEQUIN METHOD IN
ABAQUS

Herein we describe nonlinear s-method and Arlequin prognorementations in ABAQUS (HKS, 2002) by combin-
ing UEL (user element subroutine), UMAT (user material suitine), and UVARM (user element output subroutine),
as shown in Fig. A.1. The preprocessing C and MATLAB scripéswssed to specify relations of nodes and elements
in the coupling zone and generate input files automatic@lhe Lagrange multipliers or the interaction stiffness

¥

Pre-processing C and MATLAB scripts

Read from the external files

storing local coordinates Start calculation
and other information l
»  Loop over all integration points
‘
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.................. O
| p——————— -
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FIG. A.1: Flow chart of the nonlinear Arlequin method and s-methodymm
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matrices were introduced by UEL. The constitutive matariablels are implemented in UMAT. The updated stress
and internal state variables (Belytschko, 2014; Simo, 200®JMAT are passed to UEL to compute the tangent
stiffness matrix. The postprocessing operations are basadvARM, i.e., using dummy elements with negligible
stiffness that coincide with the position of UEL elements.

For the s-method, the UEL1 (user elements 1) structure is

(A1)

(KGG)e (KGL)e
AMATRIX ygr1 =

(KLG)e (KLL)e

In the Arlequin method, two UELs are employed UEl(liser elements’), UEL2' (user elements’®, which are
composed of the coarse-mesh nodes and virtual nodes, aasifele-mesh nodes and virtual nodes, respectively

(CXGKGG)e (CG)\)e

AMATRIX ygL1 = l (GO 0 1 (A.2)
(CXLKLL)e 7(CL)\)6

AMATRIX UgLo = l _lCy 0 1 (A.3)
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