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Constitutive models in nanoscience and engineering often poorly represent the physics due to significant deviations
in model form from their macroscale counterparts. In Part 1 of this study, this problem was explored by considering
a continuum scale heat conduction constitutive law inferred directly from molecular dynamics (MD) simulations. In
contrast, this work uses Bayesian inference based on the MD data to construct a Gaussian process emulator of the
heat flux as a function of temperature and temperature gradient. No assumption of Fourier-like behavior is made,
requiring alternative approaches to assess the well-posedness and accuracy of the emulator. Validation is provided by
comparing continuum scale predictions using the emulator model against a larger all-MD simulation representing
the true solution. The results show that a Gaussian process emulator of the heat conduction constitutive law produces
an empirically unbiased prediction of the continuum scale temperature field for a variety of time scales, which was
not observed when Fourier’s law is assumed to hold. Finally, uncertainty is propagated in the continuum model and
quantified in the temperature field so the impact of errors in the model on continuum quantities can be determined.

KEY WORDS: constitutive model, Bayesian inference, Gaussian process, uncertainty, sampling data,
continuum model

1. INTRODUCTION

In many problems involving nanoscale phenomena, the mathematical models used to form continuum models may
not be consistent with the discrete atomistic reality. This inconsistency is related to the closure problem in classical
physics in which constitutive relationships are needed to provide unknown fluxes in order to make the equations
well-posed. Even when developing computational multiscale models of nano-phenomena, much attention is given
to the coupling conditions necessary to exchange information between the mathematical models (e.g., [1]) while
relatively little is provided to ensure consistency between the equations. Discrepancy between the two model forms is
particularly apparent for problems in which fluctuations are present in the small-scale motions but not representable in
the large-scale equations [2]. This difficulty is not insurmountable; Feng and Jones [3] used continuum beam theories
modified with energy equipartition from statistical mechanics to develop a continuum model of the vibrations of a
carbon nanotube.

At larger scales, analytical homogenization (e.g., [4]) is attractive in deriving large-scale equations, including
constitutive models, arising from small-scale systems. However, homogenization theory is typically limited to appli-
cations with strict scale separation, i.e., it is possible to take the limit of the small-scale parameters to zero while
the large scale is invariant. This assumption is violated at the nanoscale (as well as in many macroscale problems,
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e.g., turbulent fluid flows [5] and crystal plasticity [6]). At these scales, difficulties also arise because there are still
fluctuations in the quantities of interest. For example, macroscale Navier-Stokes descriptions must give way to fluc-
tuating hydrodynamic models such as the Landau-Lifschitz Navier-Stokes (LLNS) equations [7]. These equations
include stochastic forcing terms which make the continuum model consistent with the fluctuations present due to
atomic motions [8]. It has been shown by Donev et al. [9] that using the LLNS equations is necessary to perform
coupled continuum/Direct Simulation Monte Carlo (DSMC) particle simulations as opposed to using the traditional
Navier-Stokes equations.

While not focused on developing continuum models, several efforts have attempted to extract the continuum
equivalents of mechanical properties from atomistic simulations. Irving and Kirkwood [10] proposed the original
such procedure, which has since been greatly expanded. These approaches often produce results which diverge from
classical macroscale continuum models, e.g., elasticity, for nanoscale phenomena. Unsurprisingly, attempts to use
established constitutive model forms for nanostructures have met with much difficulty and are the subject of active
research, for example models of carbon nanotubes [11].

The proposed approach in this work builds on our previous effort [12] in which constitutive laws for large scale
equations are statistically inferred from smaller scale realizations. In Part 1 of this series [12], Bayesian inference was
used to estimate the coefficients of a polynomial chaos expansion (PCE) model of the thermal conductivityκ. An
assumed form was used based on Fourier’s law:

q = −κ∇T

κ = A−BT (1)

In the above equation,q is the heat flux,T the temperature, and the parametersA andB are each represented by a PCE
informed by small-scale molecular dynamics (MD) simulations with prescribed boundary conditions [13]. The most
significant issue was that many realizations produced a negative value forκ, violating the solvability constraints of the
continuum diffusion equation. (This inconsistency manifests itself in some macroscale physics as well; for example,
it is the reason that plane averaging is used in the dynamic Smagorinsky turbulence model [14]). A Rosenblatt trans-
formation provided mitigation and resulted inP(κ > 0) = 1, but was responsible for a biased estimate of the correct
solution. Specifically, when the inferred continuum model was compared to an equivalent large MD calculation, the
estimate converged from below with increasing sample size.

At the microscale, heat is transported in crystal lattices by phonons: lattice wave packets which travel in random
directions, but preferentially in the opposite direction of the temperature gradient [15]. Fourier’s law is only expected
to hold when this condition is met. For more details, the reader is referred to discussions on the fluctuation-dissipation
theory [16]. Therefore, any appropriate thermodynamic average will result inκ > 0 and the resulting heat flux will
be the difference between phonons traveling with the temperature gradient and those traveling against it. While these
averages may be approached computationally through increasing averaging windows, they can never be completely
realized, and hence there will always be an inconsistency between molecular simulations and a continuum description
predicated on Fourier’s law.

This present paper focuses on a method which, empirically, produces an unbiased estimator for the heat flux. It
allows for negative heat fluxes with a frequency consistent with the distribution of phonons in the system and the
coarse-graining operators connecting atomistic to continuum models. In the process, Fourier’s law must be jettisoned.
Instead, a Gaussian process emulator with a nonparametric error model is used to represent the heat fluxq rather
than the conductivityκ. The inferred heat flux may then be used in a continuum simulation where negative heat
fluxes are possible. The MD simulations are the same as used in Part 1, including the “local” and “global” sampling
strategies, so the details are not repeated here. However, Fig. 1 shows that in many cases, a heat flux counter to that
expected from Fourier’s law does occur, providing motivation for the approach taken in this work. At high values of
the time averaging windowtw, we notice that when using a local sampling approach, the data span a limited region
in the{T,∇T} space. The data cover a bigger range in the{T,∇T} space in a more uniform manner using a global
sampling approach.

In the next section, we provide the mathematical formulation for the Gaussian Process (GP) [17–19] representation
used for the heat flux, followed by the Bayesian inference methodology to infer the heat flux surface. We also discuss
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FIG. 1: Plots showing short-time averages of the temperature, temperature gradient, and heat flux. Results are gener-
ated: (top row) using a local sampling approach from MD simulations forTHOT = 60 K, TCOLD = 40 K (see Part
1 [12]), and (bottom row) from MD simulations with a global sampling approach, forLa = 53 nm when the statistical
steady state is reached for different time averaging window widthstw, as indicated.

the solvability criterion for this formulation of the heat transport equations. Anad hocmethod is shown to transform
the raw GP into one satisfying this constraint. Section 3 presents the GP results for our example problem and compar-
isons are made between the uncertain continuum equations and a corresponding MD simulation to demonstrate the
unbiased estimate produced by this formulation. The effect of the sampling approach on the inferred heat conduction
constitutive law is also studied and reported in this section. Some concluding thoughts are offered in Section 4.

2. MATHEMATICAL MODEL FORMULATION

In this section we describe the mathematical formulation for the inferred conductivity with specific implementation
details. Major steps of the inference process are illustrated in Fig. 2.

2.1 Emulating the Heat Conduction Constitutive Law by a GP

We build the heat conduction constitutive law as a functionf(·) that emulates the relationship between heat fluxq,
temperatureT , and temperature gradient∇T , namely

q = f(T,∇T ) (2)

The data{Ti,∇Ti} extracted from the MD simulation form the design points based on which the emulator is built. The
qi extracted from the MD simulations are the output of the emulator and constitute the training data for the inference
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FIG. 2: Schematic illustrating the major steps of the constitutive law inference process.

of f(·). TheT , ∇T , andq data are collected when the a statistical steady state is reached in the MD simulation of
the 1D bar. Moreover, these data are noisy with a level that decreases with the averaging time scale according to
the central limit theorem (CLT). In such cases, the Gaussian assumption is reasonable with regard to the statistical
discrepancy from the true value ofq [18]. Therefore, we represent the emulatorf(·) as a single-output GP. We use
Bayesian inference to construct this GP since it is suitable to handle noisy data as well as other heterogeneous sources
of uncertainty, and because it provides a heat flux estimate uncertainty certificate (unlike maximum likelihood estimate
methods) regardless of how noisy and scattered theT ,∇T , andq data are [20–22]. We denote byθT

i = {Ti,∇Ti} ∈
Rp. Hence the design points matrix and training data vector are given by

θT = {θ1, . . . , θN} ∈ RN×p

qT = {q1, . . . , qN} ∈ RN (3)

wherep = 2 andN is the number of short-time averaged data points extracted from the MD simulations.
We assume that the uncertainty in the emulator output can be described as a GP. There are different mathematical

formulations for a GP in the literature [18]. In this paper, we choose the most general formulation of O’Hagan et
al. [17]. Hence the prior knowledge aboutf(·) is given by a GP of meanE(·) and covarianceΣ(·, ·) [17, 23]

E(θ) = h(θ)T · β
Σ(θ, θ′) = σ2C(θ,θ′) (4)

whereh(·) ∈ Rv is a function of the inputθ, i.e., the temperature and the temperature gradient,β ∈ Rv is a vector of
coefficients to be determined,σ2 is a scale factor to be determined, andC(·, ·) is given by

C(θ,θ′) = exp
[−(θ− θ′)T Ψ(θ− θ′)

]
+ s2δ(θ, θ′) (5)

wheres2 is a noise term that can be deduced from the observedq data (see Fig. 1), andδ is the Kronecker symbol. The
noise amplitude given bys2 depends on the temperature in the MD simulation [12] but we assume that it is constant
and equal to the variance of the MD heat flux data. There is no specific rule to choose the functionh(·). However, it
is should be chosen such that it incorporates any knowledge about the relationship between the outputq and the input
θ. In this study, we seth(·) as

h(θ)T = {1, T,∇T, T∇T, T 2,∇T 2, T 2∇T, T∇T 2} (6)
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such thatv = 8. The relationship in Eq. (6) can be thought of as a generalization of the Fourier law between the heat
flux q, the temperatureT , and the temperature gradient∇T in that the heat flux is a more general function of the
temperature and temperature gradient, rather than the less general product of a temperature-dependent conductivity
and the temperature gradient normally associated with Fourier’s law. The matrixΨ ∈ Rp×p is diagonal and contains
the data roughness parameters that we determine as described later in this section. Unlike the parametric Bayesian
approach [12], the GP formulation allows for model inadequacy errors and accounts for the correlation between the
output and the data through the covarianceΣ in Eq. (4). Based on a Gaussian assumption, we write

P(q|β,σ2, Ψ) ∼ N (Hβ, σ2A) (7)

where
H = {h(θ1), . . . , h(θN )}T ∈ RN×v (8)

Ai,j={1,...,N} = C(θi, θj) (9)

We now would like to update our belief about the outputf(·) represented by Eq. (4) with the dataq extracted from
the MD simulations at the design pointsθ [see Eq. (3)]. Given the likelihood function in Eq. (7) and the prior knowl-
edge onf(·) given by Eq. (4), we apply Bayes theorem [24] and derive an analytical expression for the conditional
posterior distribution off(·) as

f(·)|q,β,σ2, Ψ ∼ N (m(·), σ2c(·, ·)) (10)

where
m(θ) = h(θ)T β + t(θ)T A−1(q −Hβ)

c(θ, θ′) = C(θ, θ′)− t(θ)T A−1t(θ′)T

t(θ)T = {C(θ, θ1), . . . , C(θ,θN )} (11)

We now include any prior knowledge aboutβ andσ2. We assign an improper uniform prior to the coefficients of
β on [−∞, +∞] [21, 24]. Forσ2, leveraging the fact that there isa priori complete ignorance about its value except
that it cannot be negative, we assume a Jeffrey’s prior such that

P(β, σ2) ∼ 1
σ2

(12)

After a series of Bayes theorem applications on Eqs. (7) and (12), and after marginalizing overβ andσ2, we obtain a
Student-t distribution for the final posterior

P(f(·)|q,Ψ) ∼ S(N − v, f̄(·), σ̂2V (·, ·)) (13)

where
f̄(θ) = h(θ)T β̂ + t(θ)T A−1(q −Hβ)

V (θ,θ′) = C(θ, θ′)− t(θ)T A−1t(θ′)T

+
[
h(θ)T − t(θ)T A−1H

] (
HT A−1H

)−1 [
h(θ′)T − t(θ′)T A−1H

]T

β̂ =
(
HT A−1H

)−1
HT A−1q

σ̂2 =
qT

[
A−1 −A−1H

(
HT A−1H

)−1
HT A−1

]
q

N − v − 2
(14)

Because of the normality of the GP and the priors we chose, we can derive analytical expressions for this Bayesian
inference problem. However, in many other cases one cannot and has to resort to more expensive Markov Chain Monte
Carlo (MCMC) methods [21]. The analytical framework makes the inference more attractive and easier to implement.
The only unknowns that remain in the previous derivation are the roughness parameters (the diagonal elements of the
matrixΨ) since the derivation above is conditional onΨ that has an intrinsic dependence on the dataθ andq. Inferring
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roughness parameters often leads to ill-posedness and is not tractable analytically. Hence, we fix these unknowns and
choose their values as the ones that maximize the following likelihood function [19, 23]

L(Ψ|θ, q) ∝ |A|−1/2|HT A−1H|−1/2σ̂v−N (15)

Further details about this GP emulation can be found in [23]. According to this derivation, we can write Eq. (2) as [17]

q(θ) = f̄(θ)︸︷︷︸
q̄

+
√

σ̂2V (θ, θ)︸ ︷︷ ︸
σq

ξ (16)

where
θ = {T,∇T},
ξ ∼ S(N − v, 0, 1) (17)

ForN > 30, a Student-t process can be easily approximated by a GP [21], i.e.,ξ ∼ N (0, 1).

2.1.1 Enforcing the Well-Posedness of the Constitutive Law

In Eq. (16), the heat flux has two components. The first term on the right-hand side is the mean of the flux as a
function of temperature and temperature gradient, while the second term encompasses the uncertainty due to the
intrinsic fluctuations in the atomistic data. The mathematics of the continuum diffusion equation require a positive
thermal conductivity everywhere. However, the atomistic data used to inform the procedure described above produce
negative values as, due to nanoscale fluctuations, the heat flux can align with the temperature gradient with nonzero
probability [12]. In other words, the functionf in Eqs. (2) and (16) is not guaranteed to strictly decrease as a function
of the temperature gradient∇T . In order to guarantee that well-posed solutions exist for the continuum heat transport
equations, we propose a smoothing operation on the functionf(·) to allow the heat flux to follow the opposite direction
of the temperature gradient. According to Eq. (2), we require that

∂q

∂∇T
≤ 0 for all T and∇T (18)

Due to the difficulty of enforcing this type of constraint on the GP emulator, an alternatead hocmethod is used to
enforce the needed behavior of the heat flux to serve as a proof of concept of this method (we defer a more rigorous
approach to constraint-realizing GPs to a future effort). The parabolic partial differential equation (PDE) operator is
known to have a transient smoothing effect on a given function. We propose to solve the following parabolic PDE:

∂q

∂τ
=

∂2q

∂T 2
+ s

∂2q

∂∇T 2
in [0,∇Tmax]× [Tmin, Tmax] (19)

as a function of some fictitious timeτ until Eq. (18) is satisfied, settings = 10 to bias the smoothing toward the∇T
dimension. We first assume that the heat fluxq is defined for a range ofT ∈ [Tmin, Tmax] and∇T ∈ [0,∇Tmax].
This range can be set following the range ofT and∇T in the atomistic data. Given this range, suitable boundary
conditions are needed to solve Eq. (19). For∇T = 0, we setq = 0 as required by the continuum constitutive law. For
the remaining boundariesTmin, Tmax, and∇Tmax, the derived heat flux in Eq. (16) incurs the following relationships:

q = g1(∇T ) for T = Tmin

q = g2(∇T ) for T = Tmax

q = g3(T ) for ∇T = ∇Tmax (20)

whereg1, g2, andg3 are nonmonotonic functions due to the fluctuating nature of the emulator surfaceq. Thus we
perform linear curve fits on these functions and impose them as conditions at their corresponding boundaries. We
denote these linear fits byg1s, g2s, andg3s. The full smoothing problem is thus solved using Eq. (19) and the following
boundary conditions:
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q = g1s(∇T ) for T = Tmin

q = g2s(∇T ) for T = Tmax

q = g3s(T ) for ∇T = ∇Tmax

q = 0 for ∇T = 0 (21)

The solution of this problem is denoted byqs and referred to as the smoothed heat flux surface. It will be used to solve
a continuum scale heat conduction problem as described in Section 3.

2.2 The Inferred Heat Flux Surface

The mean of the inferred continuum scale mean heat flux,q̄(T,∇T ) [see Eq. (16)] can be represented by a surface,
shown in Figs. 3 and 4 (top row). Using a “local” sampling strategy, this surface exhibits significant fluctuations that
decrease with the time averaging windowtw because the fluctuations in the MD training data decrease withtw, as

FIG. 3: Plots showing (top row) the mean surfacef̄(·) [see Eq. (14)] of the GP (middle row) the smoothed mean
surface, and (bottom row) the variance of the GP. Results are generated using a local sampling approach from MD
simulations forTHOT = 60 K, TCOLD = 40 K, and La = 53 nm (see Part 1 [12]) withN = 64 short-time
averaged values of the flux, temperature, and temperature gradient and for different time averaging window widths
tw, as indicated. Note the scale of the variance is decreasing with increasingtw.
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FIG. 4: Plots showing (top row) the mean surfacef̄(·) [see Eq. (14)] of the GP (middle row) the smoothed mean
surface, and (bottom row) the variance of the GP. Results are generated from MD simulations with a global sampling
approach forLa = 53 nm (see Part 1 [12]),N = 64 short-time averaged values of the flux, temperature, and
temperature gradient and for different time averaging window widthstw, as indicated. The dashed line in the top
left panel delineates the{T,∇T} range covered by the local sampling approach. Note the scale of the variance is
decreasing with increasingtw.

depicted in Fig. 1. The{T,∇T} range covered in a local sampling approach is significantly smaller than the one
covered in the global sampling approach as visualized by the dashed line in Fig. 4 (top left). Hence, fluctuations are
less likely to happen using a global sampling approach since the training data spread over a bigger{T,∇T} range
granting the emulator a smoother interpolation.

After enforcing the well-posedness of the constitutive law, the oscillations in the heat flux surface are eliminated
for all values oftw as shown in thēqs plots in Figs. 3 and 4 (middle row). The effect of this smoothing is nearly
absent when the global sampling approach is used since deviations from the solvability constraints are much smaller
in the raw heat flux surfacēq. Enforcing the well-posedness under a global sampling approach is only present for high
temperatures and temperature gradients as shown in Fig. 4. This is due to the linear fit for the boundary condition used
in the smoothing process, as described in Section 2.1.1, and could be improved with a more accurate treatment at the
boundaries.
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The uncertaintyσq in the inferred heat flux is plotted in Figs. 3 and 4 (bottom row). This uncertainty is due to
the inadequacy of the relationship in Eq. (6) as well as the noise present in the MD data and represented bys2 [see
Eq. (5)]. There is a substantial decrease in this uncertainty for increasingtw throughout the whole{T,∇T} space and
for both sampling approaches, due to the significant reduction in the MD data noise with more averaging. When using
a local sampling approach, the uncertainty drops in a restricted area in the{T,∇T} space where the training data are
located. The uncertainty is more uniform in the{T,∇T} space using a global sampling approach since the training
data are more uniformly spread as depicted in Fig. 1.

3. RESULTS

3.1 Simulating the Continuum Using the Uncertain Constitutive Law

In this section we propagate the constitutive law derived in the previous section into a 1D continuum problem. Figure 5
shows the schematic of such a continuum simulation. The length scale of this simulation should be at least an order of
magnitude bigger than the atomistic simulation length scale, i.e.,Lc ≥ 10La, to get into a regime where the continuum
formulation is valid. We discretize the continuum simulation domain such that the local shape functions spread over
a length scale comparable to the atomistic simulation domain size, resulting in the mesh sizeh satisfying2h = La.
Consistent with the MD simulation, we impose Dirichlet boundary conditions on the continuum domain.

Given the heat flux constitutive law in Eq. (16), the PDE governing thermal transport for the continuum scale 1D
bar is written as

ρcp
∂T

∂t
=

∂qs(T,∇T )
∂x

(22)

At each time step, the temperature gradient is computed from the current temperature field. The heat flux is then
interpolated inqs (see Section 2.1.1) at all mesh points enabling the computation of the temperature field at the next
time step.

3.2 Continuum Simulation using the Mean Heat Flux Surface

To demonstrate the model in an application, we use the inferred constitutive law in a continuum scale simulation
of a 1D bar as described in Sections 3.1 and 2.1.1. We select the 1D bar length to be 10 times the one used in the
atomistic simulation such thatLc = 10La = 0.53 µm. During the simulation, we assign Dirichlet boundary conditions
Tc,1 = 60 K andTc,N = 40 K that are held fixed throughout the simulation.

In order to validate the model, we also simulated the same continuum scale heat transfer in the 1D bar directly
using MD as described in Part 1 [12]. We denote this large validation simulation by the “validation MD simulation.”
We compare the results of these two simulations of the large 1D bar in Fig. 6 in terms of the mean of the temperature
computed based on the mean heat flux surfaceq̄s, which in turn is inferred according to local and global sampling
approaches. Unlike the fully parametric inference of the constitutive law [12], there is good agreement between the
means of the temperature computed using the two approaches for all time averaging windowstw considered in this

FIG. 5: Schematic showing the 1D continuum simulation domain. Dirichlet boundary conditions are imposed on the
bar, as indicated. The bar has a lengthLc = 10La = 0.53 µm. The black dots represent mesh points such that the
mesh size is equal toLa/2 = 26.5 nm (see Part 1 [12]).
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FIG. 6: Plots showing (top row) the temporal evolution of the temperature in the middle of a continuum scale 1D
bar (x = 0.26 µm), and (bottom row) the temperature field in the bar at steady state. Results are generated using two
approaches: (blue, green, and red lines) by propagating the smoothed mean heat flux surfaceq̄s inferred from MD
simulations into a continuum simulation, and (black circles) the validation MD simulation of the continuum scale bar
(Lc = 0.53 µm). The error bars represent the calculated standard deviation in the temperature. Results are obtained
with an initial conditionsTinit = 40 K and for continuum boundary conditionsTc,1 = 60 K andTc,N = 40 K (see Part
1 [12]). The heat flux surface is extracted using a local sampling approach from MD simulations forTHOT = 60 K
andTCOLD = 40 K (left column), and a global sampling approach (right column) and forN = 64 and different time
averaging windowstw, as indicated. The dashed line denotes the result generated with a heat conduction law obtained
using a fully parametric inference from Part 1.

study. Using GP emulation of the heat flux as a function of temperature and temperature gradient has empirically
greatly reduced the bias in the predicted temperature at the continuum scale.

3.3 Uncertainty Quantification in the Continuum Simulation

Finally we propagate the full expression of the inferred heat flux surface into the continuum simulation. In this exer-
cise, random samples are drawn from Eq. (16) assuming thatξ ∼ N (0, 1). We enforce the well-posedness of each
sample of the heat flux surface such that it can be used as constitutive law to solve for the temperature field in the
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continuum scale 1D bar. Results for each sample are obtained with initial conditionsTinit = Tc,N = 40 K and for
continuum boundary conditionsTc,1 = 60 K andTc,N = 40 K that are held constant throughout the simulation. The
probability density function (PDF) of the temperature can therefore be built at each time step and over all the finite
element mesh points. Figure 6 shows the standard deviation of the temperature in terms of error bars for different time
averaging windows. The standard deviation decreases withtw, as expected.

For different times, we report the PDF of the temperature in the middle of the bar in Fig. 7. Initially, the uncertainty
in the temperature increases as represented by the spread in the PDF. As the system approaches the steady state, the
trend is reversed and the PDF converges to a steady state distribution aroundt = 0.48 µs. At steady state, the global
sampling approach results in a narrower PDF indicating a more accurate temperature prediction since it covers a
bigger range of temperature and temperature gradient and results in smoother interpolations.
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FIG. 7: Plots showing the temporal evolution of the PDF of the temperature in the middle of a continuum scale 1D
bar (x = 0.26 µm). Results are generated by propagating5000 samples of smoothed heat flux surfaceqs inferred
from MD simulations into a continuum simulation of a 1D bar (Lc = 0.53 µm). Results are obtained forTc,1 = 60 K
andTc,N = 40 K (see Part 1 [12]). The heat flux surface is extracted using a local sampling approach from MD
simulations forTHOT = 60 K andTCOLD = 40 K (top) and a global sampling approach (bottom) fortw = 128 ps
andN = 64.
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3.4 Discussion

Similarly to Part 1 of this study [12], the Bayesian inference of a GP emulator of the heat flux as a function of tem-
perature and temperature gradient from MD simulations data resulted in a heat conduction constitutive law. Inference
using either a local or a global sampling approach resulted in an accurate prediction of the spatial and temporal mean
temperature field in a one-dimensional continuum scale heat transfer problem. The generation of the MD data in the
global sampling approach considered in this study costs 25 times more than the local sampling approach since more
MD simulations had to be performed [12]. This additional cost incurred different benefits to the inference of the
constitutive law. First, the heat flux surface inferred using a global sampling approach occupies a bigger area in the
{T,∇T} space, allowing us to solve heat transfer problems with a variety of temperature ranges. Secondly, the data
obtained in a global sampling approach are more uniformly distributed in the{T,∇T} space. This feature is crucial to
minimize the model error when inferred as a GP. Third, the effort to enforce the well-posedness of the constitutive law
is minimal in a global sampling approach since the model error is decreased and the fluctuations in the heat transfer
surface are significantly decreased. The choice between a local and a global sampling depends on the scope of the
continuum scale problem to be addressed, e.g., the temperature ranges and acceptable levels of uncertainty. There
is a trade-off between spending an additional computational cost to generate data in a global sampling setting and
affording restricted ranges of temperature with increased levels of uncertainty.

4. CONCLUSION

This paper presents a proof-of-concept study for a mathematical formulation in which generalized constitutive mod-
els are inferred for use with continuum models of nanoscale phenomena. In this paradigm, a continuum model is
connected to an atomistic model through inference of appropriate constitutive relationships. In Parts 1 and 2 of this
study we have identified the trade-offs amongst different methodologies to realize this type of nanoscale continuum
model. First and foremost, there is a significant advantage in predictive ability to inferring a nonparametric model of
constitutive law as opposed to fitting an assumed form. In general, there is no guarantee that prescribed constitutive
relationships are consistent with the behavior of the atomic data from which they are generated. Even small inconsis-
tencies can lead to numerical instabilities when the solvability criteria of the continuum equation are violated; in the
case of the heat equation, even one realization in which the heat flux is counter to the temperature gradient can cause
the continuum solution to be unachievable.

While the more flexible constitutive relationships are advantageous, they are not without additional cost. It is im-
portant to understand the new solvability criteria associated with the generalized PDE and incorporate these criteria
into the GP representation of the constitutive information. In the heat transfer example, the solvability criterion is
already known, but the complex equations with additional terms in the parameter space the existence and uniqueness
conditions may require new theoretical developments. Additionally, incorporation of constraints into the GP repre-
sentation is nontrivial. In order to evaluate the soundness of the overall method, we resorted to anad hocmethod to
smooth the emulator function and to satisfy the constraints on the heat flux. More rigorous techniques for constraint
enforcement will be the focus of future work. Further, improved means to differentiate the uncertainty due to lim-
ited data from the physical uncertainty in the GP will enable more meaningful uncertainty quantification within this
paradigm as well as improve its predictive ability.

Finally, we have considered two sampling strategies to understand how changes to the underlying small-scale data
lead to differences in large-scale behavior. It has been determined that more localized samples are less accurate but
also less expensive than a global evaluation of the parameter space. In this case, the global study was an order of
magnitude more expensive than the more targeted sampling strategies, but had much better performance than when
the smaller cases required extrapolation to provide data to the continuum. While unsurprising, this result points to
the need to either intelligently choose the initial samples to correspond exactly to the parameter space which will be
encountered by the larger scales, or to provide a means for adapting an initial sample. It should be noted that the
entirety of the small MD samples was obtained at 1/25th the cost of the validation MD simulation, demonstrating the
potential of this method to not only improve accuracy, but performance as well.
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