
International Journal for Uncertainty Quantification, 3 (6): 523–540 (2013)

EFFECT OF PARAMETRIC UNCERTAINTIES ON THE
EFFECTIVENESS OF DISCRETE PIEZOELECTRIC
SPATIAL MODAL FILTERS

Marcelo A. Trindade,∗ Carlos C. Pagani, Jr., Leopoldo P. R. Oliveira, &
Ernesto Massaroppi, Jr.

Department of Mechanical Engineering, Sao Carlos School of Engineering, University of Sao
Paulo, Av. Trabalhador Sao-Carlense, 400, Sao Carlos-SP, 13566-590, Brazil

Original Manuscript Submitted: 4/30/2012; Final Draft Received: 9/30/2012

Modal filters may be obtained by a weighted sum of the signals of an array of sensors distributed on the host structure.
However, the effect of parametric uncertainties on the effectiveness of the modal filter has received little attention.
This work presents some numerical and experimental results on the effect of uncertainties of sensor array spatial
distribution and weighting coefficients on the modal filtering effectiveness. For that, a free rectangular plate with
twelve bonded piezoelectric sensors is considered. The spatial distribution of the array of piezoelectric sensors was
optimized in a previous work to improve the effectiveness and frequency range of a set of modal filters. An experimental
implementation of the modal filters was performed through a voltage divider and summing amplifier circuits and used
to validate the performance of the modal filters. From numerical and experimental analysis, it was noticed, however, that
the effectiveness of the modal filters are quite sensitive to the array spatial distribution and weighting coefficients. First,
the effect of uncertainties of the array spatial distribution on the output of the modal filters was analyzed numerically
using a finite element model. In this case, the main challenge was the cost of function evaluation and, thus, focus was
put on solutions for the parameters sampling and approximations using response surface methods. Then, the effect of
uncertainties of the weighting coefficients was evaluated using stochastic modeling combined with the measurement
of individual responses of piezoelectric sensors. Confidence intervals for the modal filters output were evaluated and
compared to experimental results with satisfactory results.
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1. INTRODUCTION

Piezoelectric materials have been extensively used to build integrated sensors and actuators shaped as small, thin, and
lightweight patches of several geometries that can be bonded to or embedded in flexible structures. They are rela-
tively inexpensive and present the necessary electromechanical coupling to provide satisfactory sensing and actuating
effectiveness for very flexible structures in bending [1]. Integrated piezoelectric patches have been applied to several
applications, such as active and passive vibration control [2, 3], damage detection and structural health monitoring
[4, 5], and power/energy harvesting from mechanical vibrations [6].

When integrated into a vibrating flexible structure, surface-bonded or embedded piezoelectric patches provide
adequate electromechanical coupling to low-frequency vibration modes and, thus, may be used to monitor and/or
control them. For certain applications, it would be interesting to control only a small subset of the structural vibration
modes. In these cases, the concept of modal sensors and actuators could be used to improve the overall performance
of the control system [7, 8]. In general terms, the idea of controlling only a selection of vibration modes aims (i) at
minimizing the required control effort, since no (or less) energy would be spilled with untargeted vibration modes,
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and (ii) at reducing spillover and instabilities issues of active controllers, since excitation of untargeted and unmodeled
vibration modes would be diminished. The development of active control strategies with optimal performance using
modal sensors and actuators has been the object of intensive research [9–13]. The performance of modal controllers
depends on several parameters. The size, form, and effective electromechanical coupling coefficient of a piezoelec-
tric material must be considered in the development of modal sensors and actuators. Although pioneer works have
proposed continuous modal sensors and actuators [8], the evolution of modal filter techniques and its applications to
active vibration control indicates several advantages in the use of an array of discrete sensors instead.

Continuous modal sensors are designed to ensure shape coupling between sensing material and elastic strain due to
the target vibration modes of the host structure [8, 11]. An array of sensors, on the other hand, is in general composed
by small piezoceramic patches and depends on a convenient weighted sum of sensors’ signals to achieve a modal
filtered output signal [9, 10]. Several methodologies have been used for the evaluation of the weighting coefficients
for signals measured by an array of sensors. They can be divided into three groups: target modes output match,
optimization techniques, and frequency response function (FRF) matrix inversion. Whenever the target mode shapes
are known/predicted and their reading in terms of output amplitude in each sensor of the array can be identified, a
technique, proposed by Meirovitch and Baruh [7] and based on the orthogonality of normal modes, considers that the
weighting coefficients should match the output of each sensor for the target mode. This technique may be strongly
affected by spatial aliasing. The weighting coefficients may also be evaluated using an optimization algorithm to
minimize the difference between the weighted response and a desired modal response. Shelley [14] proposed an on-
line adaptation algorithm to estimate the desired modal response and update the weighting coefficients. The third
group of methods is based on the inversion of the FRF matrix, which can be either predicted by a numerical model
[12] or experimentally measured [14], in order to shape the target filtered response.

These techniques may lead to high-performance modal filters, but generally within a limited frequency range.
Preumont et al. [10] have suggested that the frequency range of high-performance filtering depends on the relation
between the number of vibration modes to be filtered, in that frequency range, and the number of sensors in the array.
They concluded that the number of sensors in the array should be larger than the number of vibration modes to be
filtered. Although this is true for an arbitrarily distributed array of sensors, it is possible to show that the location of
the sensors, that is, the array spatial distribution, has a significant effect on the observability of the vibration modes
and, thus, on the filtering performance of modal filters derived from it. Previous works [15] have indicated that it is
possible to increase the number of vibration modes filtered by a modal filter, and thus the frequency range, using a
fixed number of sensors provided the spatial distribution of the sensors array is optimized. It has been shown that
the effective frequency range can be enlarged by 25%–50%. However, this optimization may also lead to a higher
sensitivity of modal filters performance on sensors positioning. Weighted-sum discrete modal filters may also be
sensitive to a proper tuning of the weighting coefficients.

Therefore, this work presents a robustness analysis of modal filters using a spatial distribution optimized array de-
sign with a reduced number of sensors subjected to uncertainties in the weighting coefficients and sensors positioning.
For the weighting coefficients uncertainties, this is done using stochastic modeling tools to build a probabilistic model
of the uncertain parameters and the Monte Carlo method to evaluate the realizations of modal filters performance
indices using experimental measurements from the piezoelectric sensors. For the sensors positioning uncertainties,
a sampling-based sensitivity analysis is performed. The Latin hypercube sampling technique is used to reduce the
number of samples and alleviate the computational cost of analyzing multiple array spatial distributions. In addition,
another strategy using response surface methods is considered to improve the number of samples and to provide
approximations for smaller positioning uncertainties.

2. DESIGN OF MODAL FILTERS

The design of a modal filter from an array of sensors requires the output signals of each sensor to be weighted and
summed such that (i) the responses of the target vibration modes are maximized, and (ii) the responses of the undesired
vibration modes are minimized. Therefore, it is possible to consider the FRF of an equivalent single degree of freedom
system with natural frequencyωi and damping factorζi, corresponding to the targetith vibration mode, as the desired
FRF of the weighted signal of the modal filter, which can be written as
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gi (ω) =
2ζiω
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Whenever the vibration modes are weakly damped and relatively well spaced, the resonance peaks are well defined
and, thus, (1) represents a realistic objective for the filtered FRF signal. LetY be a matrix with columns that represent
the FRFs of then selected sensors in the array and discretized in a frequency domain[ω1, . . . , ωm]. Let Gi =
[gi (ω1) , . . . , gi (ωm)] be the vector representing (1) in the discrete frequency domain. The vector of coefficientsαi

which equates the filtered output (weighted sum of sensors outputs) to the one defined byGi is the solution of
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In general, the linear system defined by (2) admits only approximate solutions, which will be denotedα
†
i . The

vector of weighting coefficientsα†i represents the best solution, in a least squares-sense, for the design of a modal
filter which isolates theith vibration mode response. If several vibration modes are to be considered simultaneously as
target modes for the filter design, it is necessary to defineG as the matrix of target FRFs with dimensionm×p, where
p denotes the number of target modes. Consequently, the approximate solution of (2),α†, is a matrix of dimension
n× p, that is one column vector of weighting coefficients for each one of the target modes. This may be written in a
compact form as

Yα† = G. (3)

Actually, Yα† approximatesG†, a matrix with columns that are the orthogonal projection of the columns ofG
onto the space spanned by the columns ofY. The traditional Moore-Penrose pseudo-inverse solution of (3) for a full
column rankY matrix (with columns that are linearly independent) may be obtained by pre-multiplying (3) byYH,
the Hermitian ofY, such that

YHYα† = YHG, such thatα† =
(
YHY

)−1
YHG. (4)

On the other hand, for a full column rank matrix, the inversion ofYHY is unnecessary and computationally
inefficient, sinceY may be decomposed through QR decomposition, whereQ is an orthonormal matrix andR is
upper triangular, such thatY = QR and (4) can be rewritten, after expansion and accounting forQHQ = I, as

α† = R−1QHG. (5)

Notice that the inverse ofR does not need to be evaluated; instead the upper triangular linear system,Rα† =
QHG, is solved through back substitution, which is computationally more efficient. For all the cases studied in the
present work, the solution through QR decomposition was always convenient, since the FRF matrix has had full
column rank. If at least two columns of the FRF matrix are linearly dependent, the singular value decomposition
(SVD) is the suitable method to approximate the least-squares solution. In practice, the truncation of matrixY over a
given frequency range will affect its QR decomposition and, thus, the approximate solution of the linear system (3).
Recent works have shown that there is a value for truncation frequency such that all vibration modes inside a given
frequency range are perfectly filtered, except the target ones, whereas resonances larger than the truncation frequency
are not filtered [10].

3. PREDICTED PERFORMANCE OF OPTIMAL SPATIAL MODAL FILTERS

In a previous work, the modal filter design technique presented in the previous section was applied to a plate with
bonded piezoceramic patches acting as sensors [15]. A free rectangular aluminum plate, of dimensions 320×280×3
mm, was considered as the host vibrating structure. A transversal point force applied near the upper-right corner of
the plate was considered for the evaluation of frequency response functions in all cases. The study aimed at finding
a spatial distribution of twelve piezoceramic patches to optimize the performance of two modal filters, designed to
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isolate the first and second vibration modes up to 1000 Hz. Using a genetic algorithm optimization strategy, the twelve
piezoceramic patches were chosen between a regular array of 36 identical thickness-poled piezoceramic patches, with
dimensions 25×25×0.5 mm, bonded to the upper surface of the plate. More details can be found in [15].

Figure 1 presents the normalized filter output, such that the amplitude at target resonances is unitary, and the
corresponding optimal spatial distribution, in which the 12 selected sensors are highlighted from the original array
of 36 sensors. The spatial distribution was optimized so that two selected modal filters, one designed to isolate the
first vibration mode and the other designed to isolate the second vibration mode, could be effective up to 1000 Hz.
Figure 1 shows that effective filtering could be obtained up to 1100 Hz (with unfiltered noise below 1% of the resonant
response). This means that four additional resonances could be filtered compared to an arbitrary spatial distribution
of 12 sensors. For an arbitrary FRF matrixY, (5) may yield complex weighting coefficients vectorsαj . Since, in
practice, it could be much more difficult to implement complex weighting coefficients to the FRF measured by each
sensor, the response of the corresponding modal filters evaluated using only the real part of vectorsαj were also
considered. Figure 1 shows that the modal filters’ outputs are not significantly altered by neglecting the imaginary
part of the weighting coefficients. This indicates that a simple voltage divider circuit (potentiometer) could serve as
an analogic weighting of the sensors’ outputs.

4. ANALYSIS OF POSITIONING UNCERTAINTIES

This section presents an analysis of the effect of random uncertainties on the positioning of the twelve sensors of
the optimal spatial distribution presented previously. As discussed previously, spatial distribution optimization allows
as to use fewer sensors than would be necessary otherwise for the design of modal filters. However, modal filters
based on such optimal arrays of sensors become sensitive to the positioning of the sensors. Therefore, it is important
to quantify the sensitiveness of a given optimal spatial distribution to perturbations on the positioning of its sensors.
Instead of using local methods, such as gradient-based methods, to perform a sensitivity analysis, here a sampling-
based analysis is used [16]. This may be quite difficult since, for each perturbation in a given sensor positioning, the
dynamic stiffness of the structure is modified and, thus, a new structural model should be constructed and used to
evaluate the voltage frequency responses of all sensors in the array. This fact not only leads to higher computational
cost, due to multiple evaluations of the structural harmonic response, but also requires special attention to whether the
changes in output are due to perturbations in sensor positioning or to the reconstruction of the structural model.
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FIG. 1: Normalized outputs of first (a) and second (b) modal filters using complex (dashed) and real (solid) weighting
coefficients.
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The methodology used in this work to prevent variability due to structural modeling was to consider a fixed finite
element mesh over which the piezoelectric sensors can be repositioned. Two finite element models were built with
mesh refinements of 5 and 2.5 mm and thus allow positioning perturbations in steps of 5 and 2.5 mm, respectively.
In the case of the finer mesh, 14336 (128× 112) SHELL99 elements were used for the plate, while 200 SOLID226
elements were considered for each piezoceramic patch. To ensure a perfect bonding between piezoceramic patches
and plate, the nodes on the bottom surface of the patches were coupled to the ones on the top surface of the plate. To
this end, the nodes of the SHELL99 elements were offset to the contact surface with the SOLID226 elements. It is
unnecessary to state that the finer mesh increases heavily the computational cost of one harmonic analysis in ANSYS,
as compared to a coarser mesh model. A transversal point force applied near the upper-right corner of the plate (with
position independent of mesh refinement) is considered for the evaluation of frequency response functions in all cases.
Figure 2 shows the optimal spatial distribution together with the finite element mesh considered and three of the one
hundred perturbed spatial distributions used in the present analysis.

4.1 Uncertainty Quantification Using LHS

As a first strategy for the uncertainty quantification, 100 random perturbed spatial distributions were obtained using
Latin hypercube sampling (LHS), which is an interesting method when the number of samples is relatively small
and consists of maximizing the distance between the samples. Since the positioning perturbation must be performed
in steps of 2.5 mm, two vectors of normalized displacements inx andy directions relative to the optimal position,
∆x̄ ∈ {−1, 0, 1} and∆ȳ ∈ {−1, 0, 1}, were constructed for each piezoelectric sensor. This leads to a vector of 24
elements with values in{−1, 0, 1} defining the perturbed spatial distribution described by the displacements alongx
andy directions of each piezoelectric sensor relative to its optimal position (∆x = 2.5∆x̄ mm and∆y = 2.5∆ȳ mm).
Then, the LHS technique was used to construct 100 samples of the 24-elements vector.

For each perturbed spatial distribution, the FRF was evaluated for each one of the 12 piezoelectric sensors and,
then, used to evaluate the modal filters output responses through multiplication by the real part of the optimal (unper-
turbed) vector of weighting coefficients,ᾱ. The results for the first and second modes modal filters output are shown
in Fig. 3 for all perturbed spatial distributions. A large variation of the filter output response can be noted inside the
frequency range of interest in which the response should be filtered.

To save computational effort, the same analysis was performed for higher (5-mm) displacement steps using the
finite element model with coarser mesh (5-mm mesh refinement). The results are presented in Fig. 4. Although not
presented here, a comparison between the unperturbed responses using the 2.5-mm and 5-mm spaced meshes was
made and found to have no significant effect on the evaluation of the modal filters output responses. Therefore, the
unperturbed response using the finer mesh (2.5 mm) can be used as reference to the perturbed responses with 5-mm
displacement steps.

Then, two methodologies were considered to quantify the filtering quality decrease due to the spatial distribution
perturbations. First, the realizations of filter output amplitudes, for each frequency point, were used to evaluate the
mean values and the 95% confidence interval of the realizations, using the 2.5% and 97.5% percentiles.

The results for both first and second modes modal filters and for smaller (2.5-mm) and larger (5-mm) displacement
steps are presented in Fig. 5. It can be noticed that the responses differ mainly inside the frequency range of interest.
As expected, smaller values for the perturbation (displacement) steps lead to better filtering quality. It can also be

FIG. 2: Optimal spatial distribution for the isolation of the first two vibration modes and three of its arbitrary pertur-
bations.
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(a)

(b)

FIG. 3: Normalized outputs for first (a) and second (b) modal filters using perturbed spatial distributions with 2.5-mm
displacement steps.

(a)

(b)

FIG. 4: Normalized outputs for first (a) and second (b) modal filters using perturbed spatial distributions with 5-mm
displacement steps.

observed that the perturbation yields a mean output for which the amplitude of the filtered ressonances are set to the
same order of magnitude. This suggests that the perturbation decreases the filtering quality more for the resonances
that are better filtered.

From the 95% confidence interval, the maximum error for the first mode modal filter is approximately 21%, for a
5-mm perturbation, and 11%, for a 2.5-mm perturbation (Fig. 5). For the second mode modal filter, these maximum
errors are, respectively, 26% and 13%. The maximum error is located at the third resonance for all cases. Although it
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FIG. 5: Mean and 95% confidence interval (percentiles) of the normalized first (a) and second (b) modes filter outputs
compared to the unperturbed (black) output for 2.5-mm (red) and 5-mm (blue) displacement steps.

is not advisable to interpolate these results to estimate the confidence interval for other perturbation magnitudes, it is
reasonable to guess that perturbations smaller than 2.5 mm should lead to errors smaller than 10%.

Considering the mean outputs, the maximum errors for the first and second modes modal filters are, respectively,
6.7% and 10% for larger perturbation and 3.5% and 5.5% for smaller perturbation. The average filtering errors for
the first and second modes modal filters over the frequency range of interest (200–1000 Hz) are, respectively, 2% and
2.5% for larger perturbation and 1% and 1.3% for smaller perturbation.

Since there is no guarantee that the probability distribution of filter output amplitudes is well represented by the
relatively small sample size considered here, a second methodology was considered to quantify the loss of filtering
quality due to the spatial distribution perturbation. Figure 6 shows the limiting intervals evaluated using the minimum
and maximum values for each frequency. It can be noticed that Figs. 5 and 6 are similar, apart from a less smooth
lower interval and wider intervals for the latter. In terms of maximum filtering errors (Fig. 6), worst-case results are
27% (first mode) and 34% (second mode) for larger perturbation and 14% (first mode) and 17% (second mode) for
smaller perturbation.

4.2 Uncertainty Quantification Using RSM

The analysis performed in the previous section is useful in providing a first estimation on how sensitive the modal
filter output is to positioning perturbations. However, it has limited application since it does not account for a realistic
probability distribution of the positioning uncertainties. Moreover, the cost of increasing the number of samples is
too high since one modal analysis and one frequency response needs to be performed for each spatial distribution.
Besides, in order to account for smaller positioning perturbations, it would be necessary to refine even further the
finite element mesh which would increase even more the computational cost of the procedure.

Aiming primarily at the reduction of computational cost and better estimation of the confidence intervals of the
modal filter output, a second strategy for uncertainty quantification using a response surface method (RSM) is pro-
posed in this section. The goal of the RSM is to replace the frequency response functions evaluated using the finite
element model for each perturbed array of sensors by a response surface approximation. Hence, a much smaller num-
ber of finite element calculations are needed. The main hypothesis considered in this method is that perturbations on
the position of a given piezoelectric patch only affect significantly the output of this patch. Therefore, four individual
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FIG. 6: Limiting intervals (minimum-maximum) of the normalized first (a) and second (b) modes filter outputs com-
pared to the unperturbed (black) output for 2.5-mm (red) and 5-mm (blue) displacement steps.

perturbations were performed in each of the 12 piezoceramic patches, namely one mesh step (2.5 mm) to the left, right,
up, and down. A schematic representation of these individual perturbations is shown in Fig. 7, where the perturbation
on the position of one of the 12 patches is illustrated. Since four individual perturbations are considered for each one
of the twelve patches, this leads to 48 perturbed spatial distributions.

These perturbed spatial distributions were then used to evaluate the FRF for each one of the 12 piezoelectric
sensors and, then, used to evaluate the modal filters output responses through multiplication by the real part of the
optimal (unperturbed) vector of weighting coefficients,ᾱ. The differences between the perturbed modal filters output
responses and the nominal one yield the sensitivity functions∆G+

j (for right, x+, and up,y+, displacements) and
∆G−

j (for left, x−, and down,y−, displacements). Figures 8 and 9 show the behavior of the sensitivity functions
∆G+

j and∆G−
j (solid lines) compared to the nominal filter output (dashed line). It is noticeable that the positioning

perturbations may indeed affect the filtering quality along the frequency range of interest (200–1000 Hz).
Based on the evaluated sensitivity functions, response surfaces were constructed for the first and second modal

filter outputs using the following quadratic interpolation function for perturbations inx andy directions:

Gint = GN +
∑

j

{[0.5βj(βj + 1)]∆G+
j + [0.5βj(βj − 1)]∆G−

j }, (6)

x

y

FIG. 7: Schematic representation of individual perturbations for the evaluation of the sensitivity functions.
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FIG. 8: Sensitivity∆G+/−
j (solid) of first modal filter output to individual perturbations in patches position.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

−80

−60

−40

−20

0

Frequency (Hz)

N
o
rm
a
liz
e
d
 "
lt
e
r 
o
u
tp
u
t 
(d
B
)

FIG. 9: Sensitivity∆G+/−
j (solid) of second modal filter output to individual perturbations in patches position.

whereGN is the vector of nominal filter outputs for each frequency point, and∆G+
j and∆G−

j are, respectively, the
vectors of filter output variations for positive (right or up) and negative (left or down) perturbations in patch positions
for each frequency point.βj are the normalized displacements from the nominal position; that, isβj = 1 andβj = −1
lead to the displacement of a patch by one mesh step in the positive and negativex andy directions, respectively. The
resulting interpolation functions are represented in Fig. 10.

Using these interpolation functions combined to a probabilistic model for the normalized displacementsβj , sev-
eral realizations for the filter outputs can be constructed. In order to verify the interpolation and, thus the essential
hypothesis used in this section, the filter outputs obtained in the previous section were reconstructed using (6). Fig-
ure 11 shows the average interpolation errors, compared to nominal values, of the first and second modal filter outputs.
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FIG. 10: Interpolation functions0.5βj(βj + 1) and0.5βj(βj − 1) used to construct the response surfaces.
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FIG. 11: Nominal (solid) and average interpolation error (dashed) values for normalized modal filter outputs; (a) first
mode, (b) second mode.

These results validate the main hypothesis and, thus, the patches can be displaced individually without significant mis-
representation of the corresponding effect on the filter outputs.

Therefore, an analysis of the effect of positioning uncertainties on the modal filters outputs was performed by
varying the 24 normalized displacementsβj (one displacement inx direction and one displacement iny direction
for each of the 12 piezoelectric patches). A Gaussian probability density function is assumed for each normalized
displacementβj , with zero mean andσβ = 1/3 standard deviation. This means that 99.73% of displacements should
be smaller than one mesh step (that is 2.5 mm). Then,

p(βj) =
1√

2πσβ

exp

{
− β2

j

2σ2
β

}
. (7)

Based on these assumptions,N random realizations were generated for each normalized displacement with MAT-
LAB function normrndand, then, combined to evaluateN random realizations of the filter output frequency response
function Gint, according to (6). In the analysis presented in this work,N = 3000 Monte Carlo simulations were
performed. The convergence of the Monte Carlo simulation was evaluated using

conv(N) =
1
N

N∑

i=1

‖Gint(θi)−GM‖2, (8)

whereGM is the mean value of the filter output frequency response function. Figure 12 shows the mean-square
convergence analysis. It is possible to observe that 500 simulations are enough to assure convergence. Despite that,
the statistical analyses presented in the following sections consider allN = 3000 simulations performed.

Statistical analyses of the first and second modal filter output frequency response functions were performed using
the percentiles to evaluate their mean and 95% confidence intervals (Fig. 13). As expected, the confidence intervals
shown in Fig. 13 are smaller than the ones presented in the previous section (Figs. 5 and 6) since the present analysis
allows smaller disturbances and accounts for a more realistic probability distribution of the perturbations. From the
present analysis, the maximum filtering errors (within the filtering region up to 1000 Hz), considering the upper
limit of the confidence intervals for the first and second modal filters, should be 5% (–25 dB) and 7% (–24 dB),
respectively. Considering the mean filter outputs, the maximum filter output errors should be 2% (–34 dB) and 3%
(–30 dB), respectively.
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FIG. 12: Mean square convergence of Monte Carlo simulation.
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FIG. 13: Mean (dashed) and 95% confidence interval (filled) of normalized first (a) and second (b) filters outputs
compared to nominal values (solid).

5. ANALYSIS OF WEIGHTING COEFFICIENTS UNCERTAINTIES

This section presents preliminary results of modal filters experimental implementation using optimal sensor array
spatial distributions and its use for the analysis of the effect of weighting coefficients uncertainties on the modal filters
effectiveness.

5.1 Experimental Implementation of Modal Filters

Experimental tests were designed to validate the proposed methodology for designing discrete modal filters using QR
decomposition of FRF matrices, on one hand, and the optimal spatial distribution of 12 sensors obtained from numer-
ical optimization, on the other hand. To this end, 12 transversely poled PIC151 piezoceramic patches (PI Ceramic)
were bonded to one surface of a rectangular aluminum plate using an epoxy-based glue (Araldite) cured at 60oC. The
12 piezoceramic patches are identical, with dimensions 25×25×0.5 mm. Small copper electrode layers were bonded
on the top and bottom surfaces of each piezoceramic patch to enable independent measurement of the electric voltages
induced on each patch.

Volume 3, Number 6, 2013



534 Trindade et al.

The experimental setup considered for the validation of the modal filters performance predicted by the numerical
analysis presented in [15] is presented in Fig. 14. An impact hammer (PCB model 086C03) was considered as the
single force excitation applied at the upper-right corner of the rectangular plate, for the evaluation of the FRF mea-
sured by each one of the piezoelectric patches, used for the evaluation of the weighting coefficients, and also for the
evaluation of the filtered FRF measured by the modal filter. A spectral analyzer (LMS SCADAS Mobile running on
LMS Test.Lab software) was used for the acquisition of the voltage outputs at each piezoceramic patch and the force
input measured at the impact hammer and for the evaluation of the FRF between them.

Then, the optimal weighting coefficients vectorαj for a modal filter designed to isolate the response of thejth
vibration mode is evaluated using the QR decomposition of the experimental FRF measured by the 12 piezoelec-
tric patches according to (5). The practical implementation of the weighted sum is obtained using the electric circuit
shown in Fig. 15, composed of one voltage divider for each sensor and a summing amplifier to sum the weighted
sensor signals. For that, the real part of the weighting coefficients, normalized to the maximum weight of 0.35 al-
lowed by the designed voltage divider circuit, is evaluated and implemented in the weighted sum circuit board by
adjusting the potentiometers. In this preliminary setup, a digital weighted sum was considered alternatively for some
piezoelectric patches and when the weighting coefficients were too small and, thus, difficult to implement using the
voltage divider circuit. In this case, the digital weighted sum was obtained with the help of a dSPACE control board
(dSPACE DS1104).

After adjustment of the weighting coefficients, the filtered output signal, corresponding to the weighted sum of
the 12 FRF measurements, is then fed back to the spectral analyzer. Hence, it should be possible to evaluate the
FRF between the impact force and the weighted voltage sum. Since the evaluated optimal weighting coefficients
are renormalized to the maximum weight of 0.35 allowed by the designed voltage divider circuit, the resulting filter
outputs do not have unitary amplitude at target resonances. Hence, the filter outputs were renormalized by dividing
the frequency response amplitude by its value at target resonance so that the amplitude at target resonance is uni-
tary. Notice that there is no information loss, since the filtering performance is measured by the frequency response
amplitudes relative to the one at target resonance. Figures 16–18 show the FRFs evaluated for a set of modal fil-
ters. These modal filters and, thus, their corresponding weighting coefficients vectors, were designed to isolate the
responses of the first, second, and third vibration modes, respectively. Notice that the proposed spatial distribution
of piezoelectric patches was designed to optimize the performance of the modal filters that isolate the response of
the first and second vibration modes. Therefore, satisfactory results should only be expected for the first and second
filters outputs. Indeed, both Figs. 16 and 17 present quite satisfactory results for the isolation of the first and sec-
ond vibration modes responses, although it can be noticed that the modal filters using real (implemented) weighting
coefficients (red curve) lead to higher error levels than the ones numerically evaluated using the ideal weighting coef-
ficients (black curve). In particular for the first modal filter (Fig. 16), while the maximum amplitude in the frequency
range of interest could be around 3% (at the fifth resonance) of the first resonance amplitude for ideal weighting

FIG. 14: Experimental setup: plate with 12 bonded piezoceramic patches.
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FIG. 15: Electric circuit designed for weighting and summing sensor signals.
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FIG. 16: Experimental normalized output of the modal filter designed for the isolation of the first vibration mode
using ideal (black solid) and implemented (red dashed) weighting coefficients.
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FIG. 17: Experimental normalized output of the modal filter designed for the isolation of the second vibration mode
using ideal (black solid) and implemented (red dashed) weighting coefficients.
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FIG. 18: Experimental normalized output of the modal filter designed for the isolation of the third vibration mode
using ideal (black solid) and implemented (red dashed) weighting coefficients.

coefficients, the maximum amplitude of implemented modal filter reaches 15% of the first resonance amplitude (at the
fourth resonance). For the second modal filter (Fig. 17), the maximum amplitude reaches 5% of the second resonance
amplitude.

On the other hand, the output of the modal filter designed to isolate the response of the third vibration mode was
not satisfactory (Fig. 18). This could be due to both inadequate design of the spatial distribution and implementation of
weighting coefficients. However, since the maximum amplitude of the modal filter using ideal weighting coefficients
is around 7% of the third resonance amplitude, it could be guessed that better performances should be obtained for
this modal filter although the spatial distribution was not designed with that objective.

Another interesting result is obtained by combining the first and second modal filters to design a modal filter that
isolates simultaneously the responses of the first and second vibration modes. This can be obtained using the sum of
the corresponding weighting coefficients vectors. The resulting weighting coefficients vector was rescaled between
0 and 0.35 and implemented in the weighted sum circuit board. The output of this modal filter can be observed in
Fig. 19. The filtering quality is satisfactory with maximum amplitude around 8% of the second resonance amplitude
(while the ideal one should be around 3%).

5.2 Uncertainty Quantification Using Experimental/Numerical Analysis

From the observations of the previous section, it seems that the difficulty in implementing the weighting coefficients
with the weighted sum circuit board is the main reason responsible for the differences between the ideal and real
filter outputs. Therefore, this section presents an approach for analyzing the effect of random uncertainties in the
weighting coefficients on the filters outputs. To build a stochastic model for the weighting coefficients, a Gaussian
probability density function is assumed for each weighting coefficientαjk (k = 1, . . . , 12), with mean values based
on the optimal ones designed to isolate thejth vibration mode response, and standard deviations are estimated from
experiments, such that
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FIG. 19: Experimental normalized output of the modal filter designed for the isolation of the first and second vibration
modes simultaneously using ideal (black solid) and implemented (red dashed) weighting coefficients.
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p(αjk) =
1√

2πσα

exp
{
− 1

2σ2
α

(αjk − ᾱjk)2
}

, (9)

and wherēαjk are the real part of the weighting coefficients, normalized to the maximum weight of 0.35 allowed
by the voltage divider circuit used for the measurements.σα is an estimation of the standard deviation based on
experiments. Since the level of precision in the manual setup is much more dependent on the sensitivity of each
potentiometer, the measurement technique for setup verification, and the user’s experience, than on the nominal value
of the weighting coefficient, the standard deviationσα was considered to be constant for all weighting coefficients.
Based on laboratory experiments, the value ofσα was set to 0.01.

Based on these assumptions,N random realizations were generated for each weighting coefficient with MATLAB
functionnormrndand, then, combined to formN random realizations of the vector of weighting coefficientsαj(θi).
Each realizationαj(θi) was then used to evaluate a realization of the filter outputG̃j(θi) = Yαj(θi), whereY are
the experimental frequency response functions measured by the piezoelectric patches. The mean-square convergence
analysis with respect to the independent realizationsG̃j(θi) was carried out considering the function

conv(N) =
1
N

N∑

i=1

‖G̃j(θi)− G̃N
j ‖2, (10)

whereN is the number of simulations, or the number of sets of weighting coefficients considered, andG̃N
j is the

response calculated using the corresponding nominal (ideal) model. It was observed that around 2000 simulations
were enough to assure convergence. Despite that, the statistical analyses presented in the following sections consider
all N = 4000 simulations performed.

The statistical analyses of FRF amplitudes were performed using their 4000 realizations at each frequency to
calculate the corresponding mean values and 95% confidence intervals. The 95% confidence intervals were evaluated
using the 2.5% and 97.5% percentiles of the realizations of FRF amplitudes at each frequency. More details on the
stochastic modeling methodology used here can be found in [17–19].

The experimental (real) normalized outputs of the modal filters compared to ideal ones and their 95% confidence
intervals are presented in Figs. 20–22. They correspond, respectively, to the modal filters designed to isolate the first,
second, third, and first and second vibration modes simultaneously. From Figs. 20 and 21, it could be concluded that
the variability of the weighting coefficients almost completely explains the experimental filter outputs (since they are
inside the confidence intervals). A similar result is observed for the modal filter designed to isolate the first and second
vibration modes response simultaneously (Fig. 22). On the other hand, this is not true for the modal filter designed
to isolate the response of the third vibration mode, for which the output is presented in Fig. 23. In this case, the filter
output does not coincide with the 95% confidence interval and, thus, the difference between real and ideal modal filter
output could be mainly due to another reason (besides weighting coefficients variability).
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FIG. 20: Experimental normalized output of the first mode modal filter using ideal (solid) and implemented (dashed)
weighting coefficients and its confidence interval for uncertain weighting coefficients withσα = 0.01 (filled).
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FIG. 21: Experimental normalized output of the second mode modal filter using ideal (solid) and implemented
(dashed) weighting coefficients and its confidence interval for uncertain weighting coefficients withσα = 0.01
(filled).
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FIG. 22: Experimental normalized output of the first and second modes modal filter using ideal (solid) and imple-
mented (dashed) weighting coefficients and its confidence interval for uncertain weighting coefficients withσα = 0.01
(filled).
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FIG. 23: Experimental normalized output of the third mode modal filter using ideal (solid) and implemented (dashed)
weighting coefficients and the confidence interval for uncertain weighting coefficients withσα = 0.01 (filled).

6. CONCLUSIONS AND FUTURE WORKS

This work has presented some recent numerical and experimental results about the effect of uncertainties of the sensor
array spatial distribution and of the weighting coefficients on the effectiveness of a series of modal filters. For the
sensors positioning uncertainties, two sampling-based sensitivity analyses were performed. In the first one, the Latin
hypercube sampling technique was used to reduce the number of samples and alleviate the computational cost of
analyzing multiple spatial distributions. It was shown that for perturbation displacements smaller than 2.5 mm, the
filtering error should be smaller than approximately 10%. In the second one, a response surface method was used to
evaluate the effect of smaller disturbances. It was shown that filtering errors below 25 dB for the first and second modal
filters, respectively, could be expected. For the weighting coefficients uncertainties, a numerical/experimental analysis
was performed using experimental FRFs measured by the piezoelectric patches and uncertain weighting coefficients,

International Journal for Uncertainty Quantification



Uncertainties on Spatial Modal Filters 539

which were varied in a Monte Carlo simulation according to a Gaussian probability density function. It was shown
that the variability considered for the weighting coefficients may increase the filtering errors by 10–20 dB. However,
these results also show that although modal filters can be sensitive to both positioning and weighting coefficients
uncertainties, the chosen array of piezoceramic sensors still yields high quality modal filters up to 1100 Hz. The main
contribution of the present work is to provide an original quantitative analysis of the effect of uncertainties of sensors
positioning and weighting coefficients on the performance of spatial modal filters. The results show that the filtering
performance is generally more sensitive to uncertainties/variations of weighting coefficients than those of sensors
positioning. This means that special care should be taken when designing the weighted-sum circuit or similar.
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