REFERENCES - Abolfadl, M., and Wallis, G.B. (1985), A mixing length model for annular two phase flow. *Physico-Chemical Hydrodynamics* vol. 6, pp 49-68. - Addison, C.C. (1945), The properties of freshly formed surfaces: Part IV the influence of chain length and structure on the static and dynamic surface tensions of aqueous alcoholic solutions. *Journal of the Chemical Society*, pp 98-106. - Adechy, D., and Issa, R.I. (2004), Modelling annular flow through pipes and T-junctions. *Computers and Fluids* vol. 33, pp 289-313. - Adorni, N., Casagrande, I., Cravarolo, L., Hassid, A., and Silvestri, M. (1961)' Experimental data on two-phase flow: liquid film thickness, phase and velocity distribution, pressure drops in vertical gas-liquid flow. C.I.S.E. report no. R 35. - Adorni, N., Peterlongo, G., Ravetta, R., Tacconi, F.A. (1964) Large scale experiments on heat transfer and hydrodynamics with steam-water mixtures: phase and velocity distribution measurements in a round vertical tube. C.I.S.E. report no. R 91. - Agrawal, S.S., Gregory, G.A., and Govier, G.W. (1973), An analysis of horizontal stratified two-phase flow in pipes. *Canadian Journal of Chemical Engineering* vol. 51, pp 280-286. - Ahmed, W.H., Ching, C.Y., and Shoukri, M. (2004), A new model for the pressure recovery of air-oil two-phase flow across sudden expansions. 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa, 22-24 September. - Akbar, M.K., and Ghiaasiaan, S.M. (2003), Stability of stratified gas-liquid flow in horizontal annular channels. *Experimental Thermal and Fluid Science*, vol. 28, pp 17-21. - Akelseev, V.P., Poberezkin, A.E., and Gerasimov, P.V. (1972), Determination of flooding rates in regular packings. *Heat Transfer Soviet Research* vol.4, pp 159-163. - Aloui, F. (1994), Etude des écoulements monophasique et diphasique dans the énlargissements brusques axisymétriques et bidimensionnels. PhD Thesis, INPL, Nancy. - Aloui, F., Doubliez, L., Legrand, J., and Souhar, M. (1999), Bubbly flow in an axisymmetric sudden expansion: pressure drop, void fraction, wall shear stress, bubble velocities and sizes. *Experimental Thermal and Fluid Science*, vol. 19, pp 118-130. - Al-Sarkhi, A., and Hanratty, T.J. (2002), Effect of pipe diameter on the drop size in a horizontal annular gas-liquid flow. *International Journal of Multiphase Flow* vol. 28, pp 1617-1629. - Alves, G.E. (1974), Experience with industrial co-current liquid-gas pipelines. *Institution of Chemical Engineers Symposium Series*. No.38, Paper F1. - Aly, A.M.M. (1981), Flow regime boundaries for an interior subchannel of a horizontal 37-element bundle. *Canandian Journal of Chemical Engineering* vol. 59, pp 158-163. - Ambrosini, W., Andreussi, P., and Azzopardi, B.J. (1991), A physically based correlation for drop size in annular flow. *International Journal of Multiphase Flow* vol. 17, pp 497-507. - Andeen, G.B., and Griffiths, P. (1968), Momentum flux in two-phase flow. *Journal of Heat Transfer* vol. 90, pp 211-222. - Andersen, P.S., and Wurtz, J. (1981), Adiabatic steam water annular flow in an annular geometry. *International Journal of Multiphase Flow* vol. 7, pp 235-239. - Anderson, G.H., and Hills, P.D. (1974), Two-phase annular flow in tube bends. *Symposium on. Multiphase Flow Systems*, University of Strathclyde, paper J1, published in *Instution of Chemical Engineers Symposium Series* No. 38. - Andeen, G.B., and Griffiths, P. (1968), Momentum flux in two-phase flow. *Journal of Heat Transfer* vol. 90, pp 211-222. - Andreussi, P., and Zanelli, S. (1976), Liquid phase mass transfer in annular two-phase flow. *Ingeneria Chimica* vol. 12, pp 132-136. - Andreussi, P., Romano, G., and Zanelli, S. (1978), Drop size distribution in annular mist flow. *First Conf. on Liquid Atomisation in Spray Systems, Tokyo, 27-31 August.* - Andreussi, P. (1980), The onset of droplet entrainment in annular downflow. *Canadian Journal of Chemical Engineering* vol. 50, pp 267-270. - Andreussi, P., and Azzopardi, B.J. (1983), Droplet deposition and interchange in annular gas-liquid flow. *International Journal of Multiphase Flow* vol. 9, pp 681-695. - Andreussi, P., Asali, J.C., and Hanratty, T.J. (1985), Initiation of roll waves in gas-liquid flows. *American Institute of Chemical Engineers Journal* vol. 31, pp 119-126. - Andreussi, P. (1990), Annular flow. Notes of a course on Physical Modelling of Gas Liquid Flows, Pisa. Andreussi, P., Bendiksen, K.H., and Nydal, O.J. (1993), Void distribution in slug flow. *International Journal of Multiphase Flow* vol. 19, pp 817-828. - Andritsos, N. (1986), Effect of pipe diameter and liquid viscosity on horizontal stratified flow. PhD thesis, Univ. Illinois, Urbana. - Andritsos, N., and Hanratty, T.J. (1987), Influence of interfacial waves in stratified gas-liquid flows. *American Institute of Chemical Engineers Journal* vol. 33, pp 444-454. - Andritsos, N., Williams, L., and Hanratty, T.J. (1989), Effect of liquid viscosity on the stratified-slug transitions in horizontal pipe flow. *International Journal of Multiphase Flow* vol. 15, pp 877-892 - Anglesea, W.T., Chambers, D.J.B., and Jeffrey, R.C. (1974), Measurement of water steam pressure drop in helical coils at 179 bar. *Symposium on. Multiphase Flow Systems*, University of Strathclyde, paper I2J1, published in *Institution of Chemical Engineers Symposium Series* No. 38. - Armand, A.A. (1946), The resistance during the movement of a two-phase system in horizontal pipes *Izv. Vsesoyuznogo Tepl. Inst.* Vol. 1, pp 16-23. - Armand, A.A., and Treschev, G.G. (1947), Investigation of resistance during the movement of steamwater mixtures in heated boiler pipes at high pressures. *Izv. Vsesoyuznogo Tepl. Inst* vol. 4, pp 1-5. - Armand, A.A., and Nevstrueva, E.I. (1950), Investigation of mechanism of two-phase mixture transport in a vertical tube. *Izv. VTI* vol. 2, pp 1-8. - Arnold, C.R., and Hewitt, G.F. (1967), Further developments in the photography of two-phase gasliquid flow. *Journal of Photographic Science* vol. 15, pp 97-114. - Arosio, S., Guglielmini, G., Lorenzi, A., Muzzio, A., and Sotgia, G. (1990), Two-phase pressure drop through sudden area contractions in horizontal flow. *Heat Transfer 1990* (Proceedings of the 9th International Heat Transfer Conference, Jerusalem, 19-24 Aug. 1990), Hemisphere Publishing Corperation vol. 6, pp 59-64. - Asali, J.C. (1984), Entrainment in vertical gas-liquid annular flows. PhD Thesis, University of Illinois, Urbana. USA. - Asali, J.C., Hanratty, T.J., and Andreussi, P. (1985), Interfacial drag and film height for vertical annular flow. *American Institute of Chemical Engineers Journal* vol. 31, pp 895-902. - Assad, A., Jan, C., Lopez de Bertodano, M., and Beus, S. (1998), Scaled entrainment measurements in ripple-annular flow in a small tube. *Nuclear Engineering and Design* vol. 184, pp 437-447. - Attou, A., and Bolle, L. (1997a), Integral formulation of balance equations for two-phase flow through a sudden enlargement part 1: basic approach. *Proceedings of the Institution of Mechanical Engineers* vol. 211C, pp 387-397. - Attou, A., and Bolle, L. (1997b), Integral formulation of balance equations for two-phase flow through a sudden enlargement part 2: a new interlocked volumes semi-empirical model. *Proceedings of the Institution of Mechanical Engineers* vol. 211C, pp 399-408. - Azzi, A., Friedel, L., and Belaadi, S. (2000), Two-phase gas/liquid flow pressure loss in bends. *Forschung im Ingenieurwesen* vol. 65, pp 309-319. - Azzi, A., Friedel, L., Kibboua, R., and Shannak, B. (2002), Reproductive accuracy of two-phase flow pressure loss correlations for vertical 90° bends. *Forschung im Ingenieurwesen* vol. 67, pp 109-116 - Azzi, A., and Friedel, L. (2005), Two-phase upward flow 90° bend pressure losses. *Forschung im Ingenieurwesen* vol. 69, pp 121-130. - Azzopardi, B.J. (1977), The interaction of a falling film and a gas stream. PhD Thesis, University of Exeter. - Azzopardi, B.J. (1978), Consideration of the fluorescence film thickness technique. Oxford University Engineering Laboratory Report 1229/78. - Azzopardi, B.J. (1979), Measurements of drop sizes. *International Journal of Heat and Mass Transfer* vol. 22, pp 1245-1279. - Azzopardi, B.J. (1983), Mechanisms of entrainment in annular two-phase flow. UKAEA Report AERE-R 11068. - Azzopardi, B.J. (1984a), A diffraction drop sizing technique: its testing and application to confined sprays. *Filtration and Separation* vol. 21, pp 415-419. - Azzopardi, B.J. (1984b), Annular two phase flow in constricted tubes. *Proceedings of the 1st U K National Heat Transfer Conference*, *Institution of Chemical Engineers Symposium Series No 86.*, vol. 1, pp 211-220. - Azzopardi, B.J. (1984c), The effect of side arm diameter on two phase flow split at a T junction. *International Journal of Multiphase Flow* vol. 10, pp 509-512. - Azzopardi, B.J. (1985), Drop-sizes in annular two-phase flow. Experiments in Fluids vol.3, pp 53-59. - Azzopardi, B.J. (1986), Disturbance wave frequencies, velocities and spacing in vertical annular two-phase flow. *Nuclear Engineering and Design* vol. 92, pp 121-133. - Azzopardi, B.J. (1987), Observations of drop motion in horizontal annular flow. *Chemical Engineering Science* vol. 42, pp 2059-2062. - Azzopardi, B.J. (1988), Measurements and observations of the split of annular flow at a vertical T junction. *International Journal of Multiphase Flow* vol. 14, pp 701-710. - Azzopardi, B.J. (1989), The split of annular-mist flows at vertical and horizontal Ts. *Proceedings of the Eighth International Conference on Offshore Mechanics and Arctic Engineering*, The Hague, Netherlands, 19-23 March, ASME - Azzopardi, B.J. (1992a), Instrumentation for particle size analysis by far field diffraction: accuracy, limitations and future. in **Particle Size Analysis**, Ed N.G. Stanley-Wood and R.W. Lines, Royal Society of Chemistry, Cambridge. - Azzopardi, B.J. (1992b), Gas-liquid flows in cylindrical venturi scrubbers: boundary layer separation in the diffuser section. *Chemical Engineering Journal* vol. 49, pp 55-64. - Azzopardi, B.J. (1994), The split of vertical annular flow at a large diameter T junction. *International Journal of Multiphase Flow* vol. 20, pp 1071-1083. - Azzopardi, B.J. (1996), Prediction of dryout and post-burnout heat transfer with axially non-uniform heat input by means of an annular flow model. *Nuclear Engineering and Design* vol. 163, pp 51-57. - Azzopardi, B.J. (1997), Drops in annular Two-phase flow. *International Journal of Multiphase Flow* vol. 23, pp S1-S53. - Azzopardi, B.J. (1999a), Turbulence modification in annular gas/liquid flow. *International Journal of M International Journal of Multiphase Flow* vol. 25, pp 431-452. - Azzopardi, B.J. (1999b), Phase split at T-junctions. *Multiphase Science and Technology* vol. 11, pp 223-329. - Azzopardi, B.J., Freeman, G., and Whalley, P.B. (1978), Drop sizes in annular two-phase flow. *ASME Winter Annual Meeting, Pub. in Topics in Two-phase Flow and Heat Transfer*, pp 165-173. - Azzopardi, B.J., and Williams, N.M. (1979), The calculation of two-phase pressure drop by means of an annular flow model. 2nd Multiphase Flow and Heat Transfer Symposium/Workshop, Miami, April. - Azzopardi, B.J., Freeman, G., and King, D.J. (1980), Drop sizes and deposition in annular two-phase flow. UKAEA Report AERE R9634. - Azzopardi, B.J., and Whalley, P.B. (1980), Artificial waves in annular two-phase flow. ASME Winter Annual Meeting, Chicago. *Published in Basic Mechanisms in Two-Phase Flow and Heat-Transfer*, pp 1-8. - Azzopardi, B.J., and Whalley, P.B. (1982), The effect of flow pattern on two phase flow in a T junction. *International Journal of Multiphase Flow* vol. 8, pp 481-507. - Azzopardi, B.J., Taylor, S., and Gibbons, D.B. (1983), Annular two-phase flow in large diameter pipes. *Proceedings of the International Conference on Physical Modelling of Multi-Phase Flow,* 19-21 April, Coventry, England, pp 256-267. - Azzopardi, B.J., and Govan, A.H. (1984), The modelling of venturi scrubbers. *Filtration and Separation*, vol. 21,, pp 196-200. - Azzopardi, B.J., and Govan A.H. (1985), Annular two phase flow in venturis. *European Two Phase Flow Group Meeting, Southampton*. - Azzopardi, B.J., Govan, A.H., and Hewitt, G.F. (1985), Slug flow in horizontal pipes. *Symposium on Pipelines*, Utrecht, I.Chem.E., European Branch Symposium Series No 4, vol. 2, pp 213-225. - Azzopardi, B.J., Purvis, A., Govan, A.H. (1987), Annular two-phase flow split at an impacting T. *International Journal of Multiphase Flow* vol. 13, pp 605-614. - Azzopardi, B.J., Wagstaff, D., Patrick, L., Memory, S.B., and Dowling, J. (1988a), The split of two-phase flow at a horizontal T annular and stratified flow. UKAEA Report AERE R13059. - Azzopardi, B.J., Purvis, A., and Govan, A.H. (1988b), Flow split of churn flow at a vertical impacting T. *International Journal of Engineering Fluid Mechanics*, vol. 1, pp 320-329. - Azzopardi B.J., and Memory, S.B. (1989) The split of two-phase flow at a horizontal T annular and stratified flow. *4th International Conference on Multi-phase Flow*, Nice, France, 19-21 June (Pub. BHRA) - Azzopardi, B.J., Teixeira, J.C.F., and Jepson, D.M. (1989), Drop sizes and velocities in vertical annular two-phase flow. *Proceedings of the International Conference on Mechanics of Two-phase Flows, Taipei, Tiawan*, pp 261-266. - Azzopardi, B.J., Piearcey, A., and Jepson, D.M. (1991a), drop size measurements for annular two-phase flow in a 20 mm diameter vertical tube. *Experiments in Fluids* vol. 11, pp 191-197. - Azzopardi, B.J., Teixeira, S.F.C.F., Govan A.H., and Bott T.R. (1991b), An improved model for pressure drop in venturi scrubbers, *Process Safety and Environmental Protection* vol. 69, pp 237-245. - Azzopardi, B.J., and Smith, P.A. (1992), Flow split at a T junction: effect of side arm orientation and downstream geometry. *International Journal of Multiphase Flow* vol. 18, pp 861-875. - Azzopardi, B.J. and Hervieu, E. (1994), Phase separation at junctions. *Multiphase Science and Technology*, vol. 8, pp 645-714. - Azzopardi, B.J., and Hibberd, S. (1994), Determination of maximum drop sizes in annular gas/liquid flow. *Proceedings of the 6th International Conference on Liquid Atomization and Spray Systems*, pp 962-969. - Azzopardi, B.J., and Teixeira, J.C.F. (1994), Detailed measurements of vertical annular two-phase flow Part I: drop velocities and sizes. *Journal of Fluids Engineering*. Vol. 116, pp 792-795; Detailed measurements of vertical annular two-phase flow Part II: gas core turbulence. *Journal of Fluids Engineering*. Vol. 116, pp 796-800. - Azzopardi, B.J., Zaidi, S.H., and Sudlow, C.A. (1996), The effect of inclination on drop sizes in annular gas-liquid flow. *European Two Phase Flow Group Meeting*, Grenoble, 2-5 June. - Azzopardi, B.J., and Hewitt, G.F. (1997), Maximum drop sizes in gas-liquid flows. *Multiphase Science and Technology* vol. 9, pp 109-204. - Azzopardi, B.J., and Zaidi, S.H. (1997), The effect of inclination on drop sizes in annular gas-liquid flow. Experimental Heat Transfer, Fluid Mechanics and Thermodynamics (Ed. M. Giot, F. Mayinger and G.-P. Celata) Edizione ETS., vol. 2, pp 1167-1174. - Azzopardi, B.J., Zaidi, S.H. and Jepson, D.M. (1997), Entrained fraction in inclined annular gas/liquid flow. *Proc. ASME Fluids Eng. Division*, vol. FED 244, pp 69-76. - Azzopardi, B.J., and Zaidi, S.H. (1998), Drop sizes and velocities in annular two-phase flow. *Proceedings of ILASS'98*, pp 153-158. - Azzopardi, B.J., and Rea, S. (1999), Modelling the split of horizontal annular flow at a T-junction. *Chemical Engineering Research and Design* vol. 77, pp 713-720. - Azzopardi, B.J., and Zaidi, S.H. (2000), Determination of entrained fraction in vertical annular flow. *Journal of Fluids Engineering* vol. 122, pp 146-150. - Azzopardi, B.J., and Sanaullah, K.S., (2001), Re-entrainment in wave plate mist eliminators. *Chemical Engineering Science* vol. 57, pp 3557-3563. - Azzopardi, B.J., Colman, D.A., and Nicholson, D. (2002), Plant application of a T-junction as a partial phase separator. *Chemical Engineering Research and Design* vol. 80, pp 87-96. - Azzopardi, B.J., and Wren, E. (2004), What is entrainment in vertical two-phase churn flow? *International Journal of Multiphase Flow*, vol. 30, pp 89-103. - Azzopardi, B.J., Belghazi, A., Fossa M., and Guglielmini, P. (2004), Features of two-phase gas/liquid flow at combining T junction hold up profiles around the junction. 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa, 22-24 September. - Badie, S. (2000), Horizontal stratifying/annular gas-liquid flow. PhD Thesis, Imperial College London. - Badie, S., Hale, C.P., Lawrence, C.J., and Hewitt, G.F. (2000), Pressure gradient and holdup in horizontal two-phase gas-liquid flows with low liquid loading. *International Journal of Multiphase Flow* vol. 26, pp 1525-1543. - Baker, O. (1954), Simultaneous flow of oil and gas. Oil and Gas Journal vol. 53, p 185-195. - Baker, G., Azzopardi, B.J., Clark, W.W., and Dyakowski, T. (2003), Transients in stratified/slug flow observations using electrical capacitance tomography. *Proceedings of the 11th International Conference on Multiphase Flow*, San Remo, Italy, pp 457-472. - Balfour, J.D., and Pearce, D.L. (1978), Annular flows in horizontal 180° bends: measurements of water flow rate distributions in the film and vapour core. CEGB Report No. CERL/RD/L/N 96/78. - Ballyk, J.D., Shoukri, M., and Chan, A.M.C. (1988), Steam-water annular flow in a horizontal dividing T-junction. *International Journal of Multiphase Flow* vol. 14, pp 265-285. - Ballyk, J.D., and Shoukri, M. (1990), On the development of a model for predicting phase separation phenomena in dividing two-phase flow. *Nuclear Engineering and Design* vol. 123, pp 67-75. - Banerjee, S., Rhodes, E., and Scott, D.S. (1969), Studies on cocurrent gas-liquid flow in helical coiled tubes: I. Flow patterns, pressure drop and holdup. *Canadian Journal of Chemical Engineering* vol. 47, pp 445-453. - Bankoff, S.G. (1960), A variable density single-fluid model for two-phase flow with particular reference to steam-water flow. *Journal of Heat Transfer* vol. 82, pp 265-272. - Bao, Z.Y., Bosnich, M.G., and Haynes, B.S. (1994), Estimation of void fraction and pressure drop for two-phase flow in fine passages. *Chemical Engineering Research and Design* vol. 72, pp 625-632. - Bardina, J.G., Lyrio, A.A., Kline, S.J., Ferziger, J.H., Johnston, J.P. (1981), A prediction method for planer diffuser flows. *Journal of Fluids Engineering* vol. 103, pp 315-321. - Barbosa, J., Richardson, S., and Hewitt, G.F. (2001a), Churn flow: myth, magic and mystery. 39th European Two-Phase Flow Group Meeting, Aveiro, Portugal, 18-20, June. - Barbosa, J., and Hewitt, G.F. (2001b), Forced convective boiling of binary mixtures in annular flow. Part I: liquid phase mass transport. *International Journal of Heat and Mass Transfer* vol. 44, pp 1465-1474; Part II: heat and mass transfer. *International Journal of Heat and Mass Transfer* vol. 44, pp 1475-1484. - Barbosa, J., Hewitt, G.F., König, G., and Richardson, S.M. (2002), Liquid entrainment, droplet concentration and pressure gradient at the onset of annular flow in a vertical pipe. *International Journal of Multiphase Flow* vol. 28, pp 943-961. - Barbosa, J., Richardson, S.M., and Hewitt, G.F. (2003), A note on the influence of droplet interchange on evaporation and condensation of multicomponent mixtures in annular flow. *International Journal of Heat and Mass Transfer* vol. 46, pp 2503-2509 - Barnea, D., Shoham, O., and Taitel, Y. (1982), Flow pattern transition for downward inclined two-phase flow: Horizontal to vertical. *Chemical Engineering Science* vol. 37, pp 735-740. - Barnea, D., and Brauner, N. (1985), Holdup of the liquid slug in two-phase intermittent flow. *International Journal of Multiphase Flow* vol. 11, pp 43-49. - Barnea, D., and Taitel, Y. (1985), Flow pattern transition in two-phase gas-liquid flows. In *Encyclopedia of Fluid Mechanics*, Volume 3 (ed. N. Cheremisinoff), Gulf Publishing Co. - Barnea, D. (1986), Transition from annular flow and from dispersed bubble flow unified models for the whole range of pipe inclinations. *International Journal of Multiphase Flow* vol. 12, pp 733-744. - Baroczy, C.J. (1963), Correlation of liquid fraction in two-phase flow with application to liquid metals. 6th National Heat Transfer Conference American Institute of Chemical Engineers, Preprint No 26. - Baroczy, C.J. (1966), A systematic correlation for two-phase pressure drop. *Chemical Engineering Progress, Symposium Series*, vol. 62, pp 232-249. - Beattie, D.R.H., and Whalley, P.B. (1982), A simple two-phase frictional pressure drop calculation method. *International Journal of Multiphase Flow* vol. 8, pp 83-87. - Beattie, D.R.H., and Suguwara, S. (1986), Steam-water void fraction for vertical upflow in a 73.9 mm pipe. *International Journal of Multiphase Flow* vol. 12, pp 641-653. - Beggs, H.D., and Brill, J.P. (1973), A study of two-phase flow in inclined pipes. *Journal of Petroleum Technology*, vol. 25, pp 607-617. - Belghazi, A., Azzopardi, B.J., Fossa M., and Jones, T.F., (2002), Features of two-phase gas/liquid flow at a combining T junction. *Proceedings of the 3rd North American Conference on Multiphase Technology*, Banff, Canada. - Bell, K.J., Taborek, J., and Fenoglio, F. (1970), Interpretation of horizontal in-tube condensation heat transfer correlations with a two-phase flow regime map. *American Institute of Chemical Engineers Symposium Series* No. 102, vol. 66, pp 150-163. - Bendiksen, K. (1984), An experimental investigation of the motion of long bubbles in inclined tubes. *International Journal of Multiphase Flow* vol. 6, pp 467-483. - Benedict, R.P. (1980), Fundamentals of pipeflow. Wiley-Interscience, New York. - Benjamin, T.B. (1957), Wave formation in laminar flow down an inclined plane. *Journal of Fluid Mechanics* vol. 2, pp 554-574 - Benjamin, T.B. (1959), Shearing flow over a wavy boundary. *Journal of Fluid Mechanics* vol. 62, pp 161-205. - Bennett, A.W., Hewitt, G.F., Kearsey, H.A., Keeys, R.K.F., and Lacey, P.M.C. (1965), Flow visualisation studies of flow boiling at high pressures. *Proceedings of the Institution of Mechanical Engineers* 180: Paper no 5. - Bergles, A.E. (1969), Two-phase flow structure observations for high pressure water in a rod bundle. *ASME Winter Annual Meeting, Los Angeles*, Two Phase Flow in Rod Bundles, pp 47-55. - Beyerlein, S.W., Cossmann, R.K., and Richter, H.J. (1985), Prediction of bubble concentration profiles in vertical turbulent two-phase flow. *International Journal of Multiphase Flow* vol. 11, pp 629-641. - Bhaga, D., and Weber, M.E., (1972), Holdup in vertical two- and three-phase flow. *Canadian Journal of Chemical Engineering* vol. 50, pp 323-328. - Binder, J.L., and Hanratty, T.J. (1991), A diffusion model for droplet dispersion in gas/liquid annular flow. *International Journal of Multiphase Flow* vol. 17, pp 1-11. - Birchenough, P.N., Azzopardi, B.J., and Smith, P.A. (1990), Visualisation in the diffuser of a venturi using the laser sheet method. UKAEA Report AERE R13618. - Boll, R.H. (1973), Particle collection and pressure drop in venturi scrubbers. *Industrial and Engineering Chemistry Fundamentals* vol. 12, pp 40-50. - Bonnecaze, R.H., Erskine, W., and Greskovich, E.J. (1971), Holdup and pressure drop for two-phase slug flow in inclined pipelines. *American Institute of Chemical Engineers Journal* vol. 17, pp 1109-1113. - Bowen, I.G., and Davies, G.P. (1951), Particle size distribution and the estimation of Sauter mean diameter. Shell Technical Report No. ICT/28. - Boyce, B.E., Collier, J.G., and Levy, J. (1969), Hold-up and pressure drop measurements in the two-phase flow of air-water mixtures in helical coils. *Co-current Gas-Liquid Flow*, Pergamon Press, pp 203-234. - Brauner, N., and Barnea, D. (1986), Slug/churn transition in upward gas-liquid flow. *Chemical Engineering Science* vol. 40, pp 159-163. - Brauner, N. (2001), The prediction of dispersed flow boundaries in liquid-liquid and gas-liquid systems. *International Journal of Multiphase Flow* vol. 27, pp 885-910. - Brauner, N., and Ullman, A. (2004), Modelling of gas entrainment from Taylor bubbles. Part A: Slug flow. *International Journal of Multiphase Flow* vol. 30, pp 239-272. Part B: A stationary bubble. *International Journal of Multiphase Flow* vol. 30, pp 273-290. - Brazier K., Gillespie R. F., Dalzell W., and Livesley D. M. (1988), Bias corrections to size distribution and concentrations in phase-Doppler particle measurement. UKAEA Report AERE R13270. - Brodkey, R.S. (1967), The Phenomena of Fluid Motion, Addison-Wesley Press. - Brown, D.J., Jensen, A., and Whalley, P.B. (1975), Non-equilibrium effects in heated and unheated annular two-phase flow. ASME Paper 75-WA/HT/7. - Brown, D.J. (1978), Disequilibrium annular flow. DPhil Thesis, University of Oxford. - Buckles, J., Hanratty, T.J., and Adrian, R.J. (1984), Turbulent flow over large amplitude wavy surfaces. *Journal of Fluid Mechanics* vol. 140, pp 27-44. - Burkholz, A. (1989), Droplet Separation. VCH, Weinheim, Germany. - Butterworth, D. (1967), A visual study of mechanisms in horizontal air water flow. UKAEA Report, AERE M 2556. - Butterworth, D. (1972), Air-water annular flow in a horizontal tube. *Progress in Heat and Mass Transfer* vol. 6, pp 235-251. - Butterworth, D., and Pulling, D.J., (1972), A visual study of mechanisms in horizontal annular, airwater flow. UKAEA Report AERE M2556. - Butterworth, D. (1973), An analysis of film flow for horizontal flow and condensation in a horizontal tube. UKAEA Report AERE R7575. - Butterworth, D., and Pulling, D.J. (1973), Film flow and film thickness measurements for horizontal annular air-water flow. UKAEA Report AERE R7576. - Caetano, E.F. (1989), Upward vertical two-phase flow through an annulus. PhD Thesis, University of Tulsa. - Caetano, E.F., Shoham, O., and Brill, J.P. (1992), Upward vertical two-phase floe through an annulus Part I: Single-phase friction factor, Taylor bubble rise velocity and flow pattern prediction. Journal of Energy Resources Engineering vol. 114, pp 1-13. Part II: modeling bubble, slug and annular flow. Journal of Energy Resources Technology, vol. 114, pp. 14-30. - Calderbank, P.H. (1958), Physical rate processes in industrial fermentation. Part I: The interfacial area in gas-liquid contacting with mechanical agitation. *Transactions of the Institution of Chemical Engineers* vol. 36, pp 443-463. - Campanile, F., and Azzopardi, B. J. (2003), Atomisation of very viscous liquids, *ICLASS*, Sarrento. - Campos, J.B.L.M., and Guedes de Carvalho, J.R.F. (1988), Mixing induced by air slugs rising in narrow columns of water. *Chemical Engineering Science* vol. 43, pp 1569-1582. - Cao, J., Brown, D.J., and Rennie, A.G. (1991), Laser diffraction particle sizing in dense suspensions and sprays with correction for multiple scattering. *Journal of the Institute of Energy* vol. 64, pp 26-30. - Cebici, T., and Bradshaw, P. (1977), Momentum Transfer in Bondary-Layers. Hemisphere Publishing Co. - Celata, G.P., D'Annibale, F., Di Marco, P., Grassi, W., Memoli, G., and Tomiyama, A. (2003), bubble rising velocity in two-component systems. 3rd European-Japanese Two-Phase Flow Group Meeting, Certosa di Pontignano, 21-27 September. - Cemak, J.O., Jicha, J.J., and Lightner, R.G. (1963), Two-phase pressure drop across vertically mounted thick plate restrictions. *ASME paper* 63-HT-11. - Chakbratai, P. (1976), Some aspects of annular two-phase flow in a horizontal tube PhD Thesis, Imperial College, London. - Charron, Y., and Whalley, P.B. (1995), Gas-liquid annular flow at a vertical tee junction part I. Flow separation. *International Journal of Multiphase Flow* vol. 21, pp 569-589. - Chaudry, A.B. (1967), A study of the flow of air and water in vertical tubes. PhD Thesis, University of Edinburgh. - Chawla, J.M. (1967), Waermeubergang und druckabfall in waagerechten rohren fur der stromung von verdampfenden. *VDI Forschungs Heft* 523. - Chen, X.T., Cai, X.A., and Brill, J.P. (1997a), A general model for transition to dispersed bubble flow. *Chemical Engineering Science* vol. 52, pp 4373-4380. - Chen, X.T., Cai, X.A., and Brill, J.P. (1997b), Gas-liquid stratified-wavy flow in horizontal pipelines. *Journal of Energy Resources Technology* vol. 119, pp 209-216. - Cheng, H., Hills, J.H., and Azzopardi, B.J. (1998), A study of the bubble-to-slug transition in vertical gas-liquid flow in columns of different diameter. *International Journal of Multiphase Flow* vol. 24, pp 431-452. - Cheng, H., Hills, J.H., and Azzopardi, B.J. (2002), Effects of initial bubble size on flow pattern transition in a 28.9 mm diameter column. *International Journal of Multiphase Flow* vol. 28, pp 1047-1062. - Cheremisinoff, N.P., and Davis, E.J. (1979), Stratified turbulent-turbulent gas-liquid flow. *American Institute of Chemical Engineers Journal* vol. 25, pp 48-56. - Chien, S.F., and Rubel, M.T. (1992), Phase splitting of wet steam in annular flow through a horizontal impacting tee. *SPE Production Engineering*, Nov, pp 368-374. - Chisholm, D. (1967), A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow. *International Journal of Heat and Mass Transfer* vol. 10, pp 1767-1778. - Chisholm, D. (1972), An equation for velocity ratio in two-phase flow. N.E.L., Report No 535. - Chisholm, D. (1983), Two-phase flow in pipelines and heat exchangers Pitman Press Ltd., Bath, England - Chong, L.Y., Azzopardi, B.J., and Hankins, N.P. (2001), Entrainment rate in annular two-phase flow. 7th U.K. National Heat Transfer Conference, Nottingham, September - Chong, L.Y., Azzopardi, B.J., and Bate, D.J. (2005), Calculation of conditions at which dry out occurs in the serpentine channels of fired reboilers., *Chemical Engineering Research and Design*, vol. 83, pp 412-422. - Chung, K. S., Liu, C. P., and Tien, C. L. (1980), Flooding in two-phase counter-current flows II Experimental investigation. *PhisicoChemical Hydrodynamics* vol. 1, pp 209-220. - Cicchitti, A., Lombardi, C., Silvestri, M., Soldani, G., and Zavatarelli, R. (1960), Two-phase cooling experiments pressure drop, heat transfer and burnout experiments. *Energia Nucleare* vol. 7, pp 407-425. - Clark, N.N., and Flemmer, R.L. (1985), Predicting the holdup in two-phase bubble upflow and downflow using the Zuber and Findlay drift-flux model. *American Institute of Chemical Engineers Journal* vol. 31, pp 500-503. - Clark, N.N., and Flemmer, R.(1986), The effect of varying gas voidage distributions on average holdup in vertical bubble flow. *International Journal of Multiphase Flow* vol. 12, pp 299–302. - Clark, W.W., Hills, J.H., and Azzopardi, B.J. (1999), Spatial film thickness measurements in falling films in a co-current airflow using a novel adaptation of the light absorption technique. *Two-Phase Flow Modelling and Experimentation 1999* (Ed. G.P. Celata, P. Di Marco, and R. Shah) Editzioi ETS, Pisa, vol. 1, pp. - Clark, W.W. (2001), Liquid film thickness measurement. *Multiphase Science and Technology* vol. 14, pp 1-74. - Collier, J.G. (1976), Single-phase and two-phase behaviour in primary circuit components. N.A.T.O. Advanced Study Institute on Two-phase Flow and heat Transfer, Istanbul, Turkey. - Coney, M.W.E. (1974), The analysis of a mechanism of liquid replenishment and draining in horizontal two-phase flow. *International Journal of Multiphase Flow* vol. 1, pp 647-670. - Conte, G., and Azzopardi, B. J. (2003), Film thickness variation about a T-junction, *International Journal of Multiphase Flow*, vol. 29, pp 305-328. - Cooper, K.D., Hewitt, G.F., and Pinchin, B. (1963), Photography of two-phase flow. UKAEA Report AERE R4301. - Corino, E.R., and Brodkey, R.S. (1969), A visual investigation of the wall region in turbulent flow. *Journal of Fluid Mechanics* vol. 37, pp 1-30. - Costigan, G., and Whalley, P.B. (1997), Slug flow regime identification from dynamic void fraction measurements in vertical air-water flows. *International Journal of Multiphase Flow* vol. 23, pp 263–282. - Cousins, L.B., Denton, W.H., and Hewitt, G.F. (1965), Liquid mass transfer in annular two-phase flow. *Proceeding of the Symposium on Two-phase Flow, Exeter*, vol 2, paper C4. - Cousins, L.B., and Hewitt, G.F. (1968), Liquid phase mass transfer in annular two-phase flow: droplet deposition and liquid entrainment. UKAEA Report AERE-R5657. - Crane, R.I., Farwagi, S., and Williams, A.J.E. (1983), Numerical modelling of droplet deposition from vertical turbulent gas flow. *Proceedings of the International Conference on Physical Modelling of Multi-phase Flow*, Coventry. - Crawley, C.J. (1989), Scaling of multiphase flow at large pipe size and gas density. *Proceedings of the* 4th *International Conference on Multi-Phase Flow* (BHRA Pub.), Nice, 19-21 June, Paper F2. - Dallman, J.C., Laurinat, J.E., and Hanratty, T.J. (1984), Entrainment for horizontal annular gas-liquid flow. *International Journal of Multiphase Flow* vol. 10, pp 677-689. - Das, G, Das, P.K., Purohit, N.K., and Mitra, A.K. (1998), Rise velocity of a Taylor bubble through a concentric annulus. *Chemical Engineering Science* vol. 53, pp 977-993. - Das, G, Das, P.K., Purohit, N.K., and Mitra, A.K. (1999), Flow pattern transition during gas liquid upflow through vertical concentric annuli Part I: experimental investigations *Journal Fluids Engineering*, vol. 121, pp 895-901; Part II: mechanistic models. *Journal Fluids Engineering*, vol. 121, pp 902-907. - Das, G, Purohit, N.K., Mitra, A.K., and Das, P.K. (2002), Geometry of Taylor bubbles rising through liquid-filled annuli. *American Institute of Chemical Engineers Journal* vol/48, pp 411-416. - Das, G., Das, P.K., and Azzopardi, B.J. (2005), The split of stratified gas-liquid flow at a small diameter T-junction. *International Journal of Multiphase Flow* vol. 31, pp 514-528. - Davis, M.R., and Fungtamasan, B. (1990), Two-phase flow through pipe junctions. *International Journal of Multiphase Flow* vol. 16, pp 799-817. - Davis, M.R. (1991), Compressible gas-liquid mixture flow at abrupt pipe enlargements. *Experimental Thermal and Fluid Science*, vol. 6, pp 684-697. - de Cachard, F., and Delhaye, J.M. (1996), A slug-churn model for small-diameter airlift pumps. *International Journal of Multiphase Flow* vol. 22, pp 627-649. - Delfos, R., Wisse, C.J., Oliemans, R.V.A. (2001a), Measurement of air entrainment from a stationary bubble in a vertical tube. *International Journal of Multiphase Flow* vol. 27, pp 1769-1787. - Delfos, R., Rops, C.M., Kockx, and Nieuwstadt, T.M (2001b), Measurement of recoalescence flux into the rear of a Taylor bubble. Physics of Fluid Flow vol. 13, pp 1141-1150. - Delhaye, J.M. (1981), Singular pressure drops. In *Two-phase flow and heat transfer in the power and process industries*. A.E. Bergles (Ed), Hemisphere Pub. Corp. - de Jong, P. and Gabriel, K.S. (2003), A preliminary study of two-phase annular flow at microgravity: experimental data on film thickness. *International Journal of Multiphase Flow* vol. 29, pp 1203-1220. - Dodge, L.G. (1984), Calibration of the Malvern particle sizer. *Applied Optics* vol. 23, pp 2415; Change of calibration of diffraction-based particle sizes in dense sprays. *Optical Engineering* vol. 23, pp 626-630. - Dressler, R.F. (1949), Mathematical solution of the problem of roll-waves in inclined open channels. *Communications on Pure and Applied Mathematics* vol. 2, pp 149-194. - Dukler, A.E., Moye Wicks III, and Cleveland, R.G. (1965), Frictional pressure drop in two-phase flow B: an approach through similarity analysis. *American Institute of Chemical Engineers Journal* vol. 10, pp 44-51. - Dukler, A.E., and Hubbard, M.G. (1975), A model for gas-liquid slug flow in horizontal and near horizontal tubes. *Industrial and Engineering Chemistry Fundamentals* vol. 14, pp 337-347. - Dukler, A.E., and Smith, L. (1979), Two-phase interactions in counter-current flow: studies of the flooding mechanism. USNRC Report NUREG/CR- 0617. - Dukler, A.E., and Taitel, Y. (1984), Flow pattern transitions in gas-liquid systems: Measurement and modelling, In *Multiphase Science and Technology*, Volume 2, Hemisphere Pub. Corp. - Duns Jr, H., and Ros, N.C.J. (1963), Vertical flow of gas and liquid mixtures in wells. 6th World Petroleum Congress, paper 22. - Eck, B. (1973), Technische Stromungslehre. Springer, New York. - El-Shaboury, A.M.F., Soliman, H,M., and Sims, G.E. (2001), Current state of knowledge on two-phase flow in horizontal impacting tee junctions. *Multiphase Science and Technology* vol. 13, pp 139-178. - Ekberg, N.P., Ghiaasiaan, S.M., Abdel-Khalik, S.I., Yoda, M., and Jeter, S.M. (1999), Gas-liquid two-phase flow in narrow horizontal annuli. *Nuclear Engineering and Design* vol. 192, pp 59-80. - Ellis, J.E. and Lloyd Jones, E. (1965), Vertical gas-liquid problems. *Proceeding of the Symposium on Two-phase Flow, Exeter*, vol 2, pp B101-B140. - Engineering Science Data Unit (ESDU) (1989), Two-phase flow pressure losses in pipeline fittings. ESDU Item No. 89012. - Engineering Science Data Unit (ESDU) (2002), Frictional pressure gradient in adiabatic flow of gasliquid mixtures in horizontal pipes: predictions using empirical correlation and data base. ESDU Item No. 01014. - Engineering Science Data Unit (ESDU) (2004), Pressure gradient in upward adiabatic flow of gas-liquid mixtures in vertical pipes. ESDU Item No. 04006. - Fabre, J., Fernschneider, G., and Masbernat, L. (1983), Intermittent gas liquid flow in horizontal and weakly inclined pipes. *Proceedings of the International Conference on Physical Modelling of Multi-Phase Flow, 19-21 April, Coventry, England*, pp 256-267. - Fair, J.R. (1960), What you need to design thermosiphon reboilers. *Petroleum Refiner* vol 39, Issue 2, pp 105-123. - Fan, Z., Lusseyran, F., and Hanratty, T.J. (1993), Initiation of slugs in horizontal gas-liquid flow. *American Institute of Chemical Engineers Journal*, vol. 39, pp 1741-1753. - Feldhaus, G., Azzopardi, B.J., and Zeggel, W. (2002), Annular flow experiments in rod bundles with spacers. *Nuclear Engineering and Design* vol. 213, pp 199-207. - Felton, P.G., Hamidi, A.A., and Aigai, A.K. (1985), Measurement of drop size distribution in dense sprays by laser diffraction. 3rd International Conference on Liquid Atomization and Spray Systems, London, UK (Institute of Energy, Pub.). - Fernandes, R.C., Semiat, R., and Dukler, A.E. (1983), Hydrodynamic model for gas-liquid slug flow in vertical tubes. . *American Institute of Chemical Engineers Journal* vol. 29, pp 981-989. - Fernandez Alonso, D, Gonçalves, J.A.S., Azzopardi, B.J., and Coury, J.R., (2001), Drop size measurements in Venturi scrubbers. *Chemical Engineering Science* vol. 56, pp 4901-4911. - Fernschneider, G., Lagiere, M., Bourgeois, T., and Fitremann, J.M. (1985), How to calculate two-phase flow of gas and oil in pipelines. *Pipe Line Industry* vol. 63, pp 33. - Ferrell, J.K., and McGee, J.W. (1964), Two-phase flow through abrupt expansions and contractions. TID 23394. - Ferziger, J.H., Lyrio, A.A., and Bardina, J.G. (1982), New skin friction and entrainment correlation for turbulent boundary layers. *Journal of Fluids Engineering* vol. 104, pp 537-540. - Fisher, S.A., and Pearce, D.L. (1978), A theoretical model for describing horizontal annular flows. International Seminar on Momentum, Heat and Mass Transfer in Two-Phase Energy and Chemical Systems, Dubrovnik, Yugoslavia. - Fisher, S.A., and Pearce, D.L. (1993), An annular flow model for predicting liquid carryover into austenitic superheaters. *International Journal of Multiphase Flow* vol. 19, pp 295-307. - Fitzsimmons, D.E. (1964), Two-phase pressure drop in piping components. HW 80970 Rev. 1 - Flores, A.G., Crowe, K.E., and Griffith, P. (1995), Gas-phase secondary flow in horizontal stratified and annular two-phase flow. *International Journal of Multiphase Flow* vol. 21, pp 207-221. - Fore, L.B., and Dukler, A.E. (1995a), The distribution of drop size and velocity in gas-liquid annular flow. *International Journal of Multiphase Flow* vol. 21, pp 137-149. - Fore, L.B., and Dukler, A.E. (1995b), Droplet deposition and momentum transfer in annular flow. *American Institute of Chemical Engineers Journal* vol. 41, pp 2040-2046. - Fore, L.B., Ibrahim, B.B., and Beus, S.G. (2002), Visual measurements of droplet size in gas-liquid annular flow. *International Journal of Multiphase Flow* vol. 28, pp 1895-1910. - Fossa, M. (2001), Gas-liquid distribution in the developing region of horizontal intermittent flow. *Journal of Fluids Engineering*, vol.9, pp 103-109. - Fossa, M., and Guglielmini, G. (1998), Dynamic void fraction measurements in horizontal ducts with sudden area contraction. *International Journal of Heat and Mass Transfer* vol. 41, pp 3807-3815. - Fossa, M., and Guglielmini, G. (2002), Pressure drop and void fraction profiles during horizontal flow through thin and thick orifices. *Experimental Thermal and Fluid Science* vol. 26, pp 513-523. - Fossa, M., Guglielmini, G., and Marchitto, A. (2003), Intermittent flow parameters from void fraction analysis. *Flow Measurement and Instrumentation* vol. 14, pp 161-168. - Fossa, M., Guglielmini, G., and Marchitto, A. (2004), Void fraction structure close to orifice contractions during horizontal intermittent flows. *European Two-Phase Flow Group Meeting*, Genova, 23-25 June. - Fouda, A.E., and Rhodes, E. (1974), Two-phase annular flow stream division in a simple tee. *Transactions of the Institution of Chemical Engineers* vol 52, pp 354-360. - Frankum, D.P., Wadekar, V.V., and Azzopardi, B.J. (1997), Two-phase flow patterns for evaporating flow. *Experimental Thermal and Fluid Science* vol. 15, pp 183-192. - Friedel, L. (1979), Improved friction pressure drop calculations for horizontal and vertical two-phase pipe flow. *European Two-phase Flow Group Meeting*, Ispra. - Fruendt, J., Steiff, A., and Weinspach, P.-M. (1997), Pressure relief with highly viscous fluids. *Process Safety Progress* vol. 16, pp 57-59. - Fukano, T., Ousaka, A, Morimoto, T., and Sekoguchi, K. (1983), Air-water annular two-phase flow in a horizontal tube (Part II: circumferential variation of film thickness parameters). *Bulletin of the JSME* vol. 26, pp 1387-1395. - Fukano, T., and Ousaka, A. (1989), Prediction of the circumferential distribution of film thickness in horizontal and near-horizontal gas-liquid annular flow. *International Journal of Multiphase Flow* vol. 15, pp 403-419. - Fukano, T., and Inatomi, T. (2003), Analysis of liquid film formation in a horizontal annular flow by DNS. *International Journal of Multiphase Flow* vol. 29, pp 1413-1430. - Funada, T., and Joseph, D.D. (2001), Viscous potential flow analysis of interfacial instability in a channel. *Journal of Fluid Mechanics* vol. 445, pp 263-283. - Furukawa, T., and Sekoguchi, K. (1986), Phase distribution for air-water two-phase flow in annuli. Bulletin of the Japan Society of Mechanical Engineers vol. 29, pp 3007-3014. - Furukawa, T., and Fukano, T.(2001), Effects of liquid viscosity on flow patterns in vertical upward gasliquid two-phase flow. *International Journal of Multiphase Flow* vol. 27, pp 1109-1126. - Ganic, E.N., and Mastanaiah, K. (1981) Investigation of droplet deposition from turbulent gas streams. *International Journal of Multiphase Flow* vol. 7, pp 401-422. - Gardel, A. (1957), Les pertes de charge dans les ecoulementes au travers de branchements en te. *Bulletin Technique de la Suisse Romande* vol. 9, pp 122-130 and vol. 10, pp 143-148. - Gardner, G.C., and Neller, P.H. (1969), Phase distributions in flow of an air-water mixture round bends and past obstructions at the wall of a 76 mm boil tube. *Proceedings of the Institution of Mechanical Engineers* vol. 184, pp 36. - Geiger, G.E., and Rohrer, W.M. (1966), Sudden contraction losses in two-phase flow. *Journal of Heat Transfer* vol. 88, pp 1-9. - George, K.K. (1971), Two-phase flow in 180° return bends -high speed cine film. UKAEA Report AERE M2459. - Geraci, G. (2005), Gas-liquid flows in inclined pipes and venturis. PhD Thesis, University of Nottingham. - Gibbons, D.B. (1985), Drop formation in annular two-phase flow. PhD Thesis, University of Birmingham, UK. - Gibbons, D.B., Azzopardi, B.J., and Bott, T.R. (1983), Laser tomographic investigation of the entrained liquid in annular two-phase flow. *International Conference on Physical Modelling of Multiphase Flow*, pp 327-336. - Gill, L.E., Hewitt, G.F., Hitchon, J., and Lacey, P.M.C. (1963) Sampling probe studies of the gas core in annular two-phase flow: I, the effect of length on phase and velocity distributions. *Chemical Engineering Science* vol. 18, pp 525-535. - Gill, L.E., Hewitt, G.F., and Lacey, P.M.C. (1964) Sampling probe studies of the gas core in annular two-phase flow: II, studies of the effect of phase flowrates on phase and velocity distributions. *Chemical Engineering Science* vol. 19, pp 665-682. - Gill, L.E., Hewitt, G.F., and Lacey, P.M.C. (1968), Sampling probe studies of the gas core in annular two-phase flow: III, distribution of velocity and droplet flowrate after injection through a centre jet. *Chemical Engineering Science* vol. 23, pp 677-686. - Gill, L.E., Hewitt, G.F., and Roberts, D.N. (1969), Studies of the behaviour of disturbance waves in a long vertical tube. UKAEA Report AERE R6012. - Giudici, R., Nascimento, C.A.O., Tresmondi, A., Domingues, A. and Pellicciotta, R. (1999), Mathematical modelling of an industrial process of nylon-6,6 polymerization in a two-phase flow tubular reactor. *Chemical Engineering Science* vol. 54, pp 3243-3249. - Golan, L.P., and Stenning, A.H. (1969), Two-phase vertical flow maps. *Proceedings of the Institution of Mechanical Engineers* vol. 184, pp 108-114. - Gonçalves, J.A.S., Fernandez Alonso, D, Martins Costa, M.A., Azzopardi, B.J., and Coury, J.R. (2001), Evaluation of the models available for the prediction of pressure drop in a venturi scrubber. *Journal of Hazardous Materials*, vol. 81, pp 123-140. - Gore, R., and Crowe, C.T. (1989), Effects of particle size on modulating turbulence intensity. *International Journal of Multiphase Flow* vol. 15, pp 279-285. - Gould, T.L. (1972), Vertical two-phase flow in oil and gas wells. PhD Thesis, University of Michigan. - Govan, A.H. (1988), A note on statistical methods for comparing measured and calculated values. UKAEA Report AERE M3621. - Govan, A.H. (1990), Modelling of vertical annular and dispersed two-phase flows. PhD Thesis, Imperial College, London. - Govan, A. H., Hewitt, G. F., Richter, H. J., and Scott, A. (1991), Flooding and churn flow in vertical pipes. *International Journal of Multiphase Flow* vol. 17, pp 27-44. - Grant, I.D.R. (1975), Flow and pressure drop with single-phase and two-phase flow on the shell side of segmentally baffled shell-and-tube heat exchangers. NEL Report 590. - Gregory, G.A., and Scott, D.S. (1969), Correlation of liquid slug velocity and frequency in horizontal cocurrent gas-liquid slug flow. *American Institute of Chemical Engineers Journal*, vol. 15, pp 933-935. - Gregory, G.A., Nicholson, M.K., and Aziz, K. (1978), Correlation of the slug liquid volume fraction in the slug for horizontal gas-liquid slug flow. *International Journal of Multiphase Flow* vol. 4, pp 33-39. - Griffith, P., and Wallis, G.B. (1961), Two-phase slug flow. *Journal of Heat Transfer* vol. 83, pp 307-320. - Griffith, P. (1964), The prediction of low quality boiling voids. *Journal of Heat Transfer* vol. 86, pp 327-333. - Grolman, E., and Fortuin, J.M.H. (1997), Gas-liquid flows in slightly inclined pipes. *Chemical Engineering Science* vol. 52, pp 4461-4471. - Guet, S., Ooms, G., and Oliemans, R.V.A. (2002), Influence of bubble size on the transition from low-Re bubbly flow to slug flow in a vertical pipe. *Experimental Thermal and Fluid Science* vol. 26, pp 635-641. - Guevara, E., and Gotham, D.H.T. (1983), Entrainment in condensing annular flow. *International Journal of Multiphase Flow* vol. 9, pp 411-419. - Guglielmini, G., Lorenzi, A., Muzzio, A., and Sotgia, G. (1986), Two-phase pressure drops across sudden area contractions pressure and void fraction profiles. *Heat Transfer 86, (Proceedings of the 8th International Heat Transfer Conference*, San Francisco, 17-22 Aug., C.L. Tien et al. Ed.), Hemisphere vol. 5, pp 2361-2366. - Gunn, D.J., and Darling, C.W.W. (1963), Fluid flow and energy losses in non-circular conduits. *Transactions of the Institution of Chemical Engineers* vol. 41, pp 163-173. - Haaland, S.E. (1983), Simple and explicit formulas for the friction factor in turbulent pipe flow. *Journal of Fluids Engineering* vol. 105, pp 89-90. - Hale, C.P., (2000), Slug formation, growth and decay in gas-liquid flows. PhD Thesis, Imperial College London. - Hall, A.R.W., Reader-Haris, M.I., and Millington, B.C. (2000), A study of the performance of Venturi meters in multiphase flow. *Proceedings of the 2nd North American Conference on Multiphase Technology*, Banff, Canada. - Hall Taylor, N.S. (1967), Interfacial wave phenomena in vertical annular two-phase flow. PhD Thesis, University of Cambridge. - Hall Taylor, N.S., Hewitt, G.F., and Lacey, P.M.C. (1963), The motion and frequency of large disturbance waves in annular two-phase flow of air-water mixtures. *Chemical Engineering Science* vol. 18, pp 537-552. - Hall Taylor, N.S., and Nedderman, R.M. (1968), The coalescence of disturbance waves in annular two-phase flow. *Chemical Engineering Science* vol. 23, pp 551-564. - Hamidi, A.A., and Swithenbank J. (1986), Treatment of multiple scattering of light in laser diffraction measurement technique in dense sprays and particle fields. *Journal of the Institute of Energy* vol. 59, pp 101-105. - Hammond, D.C. (1980), Accuracy verification of a Malvern ST 1800 Analyser. General Motors Report GMR 3195. - Hanratty, T.J., and Engen, J.M. (1957), Interaction between a turbulent air stream and a moving water surface. *American Institute of Chemical Engineers Journal* vol. 3, pp 299-304. - Hanratty, T.J., and Hershman, A. (1961), Initiation of roll waves. *American Institute of Chemical Engineers Journal* vol. 7, pp 488-497. - Hanratty, T.J., and Dykhno, L.A. (1997) Physical issues in analyzing gas-liquid annular flows. Experimental Heat Transfer, Fluid Mechanics and Thermodynamics (Ed. M. Giot, F. Mayinger and G.-P. Celata) Edizione ETS., vol. 2, pp 1127-1136. - Hanratty, T.J., and Woods B.D. (2001), Frequency of slugging. *Fourth International Conference on Multiphase Flow*, New Orleans, May. - Harmathy, T.Z. (1960), Velocity of large drops and bubbles in media of infinite or restricted extent. *American Institute of Chemical Engineers Journal* vol. 6, pp 281-288. - Harris, D.M. (1967), Calibration of a steam-quality-meter for channel power measurement in the prototype SGHW Reactor. *European Two-Phase Flow Group Meeting*, Bournemouth. - Harshe, B., Hussain, A., and Weisman, J. (1976), Two-phase pressure drop across restrictions and other abrupt area changes. Cincinatti University Ohio, Report NUREG 0062. - Hart, J., Hamersma, P.J., and Fortuin, J.M.H. (1989), Correlations predicting frictional pressure drop and liquid holdup during horizontal gas-liquid pipe flow with a small liquid holdup", *International Journal of Multiphase Flow* vol. 15, pp 947-964. - Hart, J., Hamersma, P.J., and Fortuin, J.M.H. (1991), A model for predicting liquid route preference during gas-liquid flow through horizontal branched pipelines. *Chemical Engineering Science* vol. 46, pp 1609-1622. - Hasan, A., and Kabir, C.S. (1992), Two phase flow in vertical and inclined annuli. *International Journal of Multiphase Flow* vol. 18, pp 279-293. - Hawkes, N.J. (1996), Wispy-annular flow. PhD Thesis, Imperial College. - Hay, K.J., Liu, Z.C., and Hanratty, T.J. (1996), Relation of deposition rates to drop size at large concentrations. *International Journal of Multiphase Flow* vol. 22, pp 829-848. - Head, M.R. (1958), ARC Technical Report, R & M No. 3152. - Heidrick, T.R., Banerjee, S., and Azad, R.S. (1977), Experiments on the structure of turbulence in fully developed pipe flow. Part 2. A statistical procedure for identifying 'bursts' in the wall layer and some characteristics of flow during bursting period. *Journal of Fluid Mechanics* vol. 82, pp705-723. - Henstock, W.H., and Hanratty, T.J. (1976), The interfacial drag and height of the wall layer in annular flows. *American Institute of Chemical Engineers Journal* vol. 22, pp 990-1000. - Herringe, R.A., and Davis, M.R. (1978), Flow structure and distribution effects in gas-liquid mixture flows. *International Journal of Multiphase Flow* vol. 4, pp 461-486. - Hervieu, E. (1988), Ecoulement monophasique et diphasique a bulles dans un branchement en te: etude theorique et experimentale. These de Doctorat de l'Institut National Polytechnique de Grenoble, France. - Hetsroni, G. (1989), Particles-turbulence interaction. *Internation Journal of Multiphase Flow* vol. 15, pp 735-746. - Hewitt, G.F. (1962), Unpublished information. - Hewitt, G.F. (1978), Measurement of two -phase flow parameters. Academic Press, London - Hewitt, G.F. (1983), Detailed modelling of two phase flow and its application to system prediction. *Proc. 2nd Int. Topical Meeting on Nuclear Reactor Thermal-Hydraulics* (ANS/ASME/AIChE) vol. 1, pp 38-48. - Hewitt, G.F. (1983), Two-phase flow and its applications: past, present and future. *Heat Transfer Engineering* vol. 4, pp 67-79. - Hewitt, G.F., Lovegrove, P.C., and Nicholls, B. (1964), Film thickness measurements using a fluorescence technique UKAEA Report AERE R4478 - Hewitt, G.F., and Lovegrove, P.C. (1969), Frequency and velocity measurements of disturbance waves in annular two-phase flow. UKAEA Report AERE R4304. - Hewitt, G.F., and Nicholls, B. (1969), Film thickness measurements in annular two-phase flow using a fluorescence spectrometer technique UKAEA Report, AERE R4506. - Hewitt, G.F., and Pulling, D.J. (1969), Liquid entrainment in adiabatic steam-water flow. UKAEA Report AERE R5374. - Hewitt, G.F., and Roberts, D.N. (1969), Studies of two-phase patterns by simultaneous x-ray and flash photography. UKAEA Report AERE M2159. - Hewitt, G.F. and Hall-Taylor, N.S. (1970), Annular Two-Phase Flow, Pergamon, Oxford. - Hewitt, G.F., and Whalley, P.B. (1980), Advanced optical instrumentation methods. *International Journal of Multiphase Flow* vol. 6, pp 139-156. - Hewitt, G.F. (1983), Detailed modelling of two phase flow and its application to system prediction. *Proc. 2nd Int. Topical Meeting on Nuclear Reactor Thermal-Hydraulics* (ANS/ASME/AIChE) vol. 1, pp 38-48. - Hewitt, G.F., Martin, C.J., and Wilkes, N.S. (1985), Experiment and modeling studies of annular flow in the region between flow reversal and the pressure drop minimum. *Physico-Chemical Hydrodynamics* vol. 6, pp 69-86. - Hewitt, G.F., Gill, L.E., Roberts, D.N., and Azzopardi, B.J. (1990), The split of low inlet quality gas/liquid flow at a vertical T Experimental data. UKAEA Report AERE M3801. - Hewitt, G.F., and Govan, A.H. (1990), Phenomenological modelling of non-equilibrium flow with phase change. *International Journal of Heat and Mass Transfer* vol. 32, pp 229-242. - Hewitt, G.F., and Jayanti, S. (1993), To churn or not to churn. *International Journal of Multiphase Flow* vol. 19, pp 527-529. - Heywood, N.I., and Richardson, J.F. (1979), Slug flow of air-water mixtures in a horizontal pipe: determination of liquid holdup by gamma-ray absorption. *Chemical Engineering Science*, vol. 34, pp 17-30. - Hill, T.J., and Wood, D.G. (1990), A nw approach to the prediction of slug frequency. SPE 20629, 65th *Annual Technical Conference and Exhibition of the Society of Petroleum Engineers*, New Orleans, September 23-26, pp 141-149. - Hills, J.H. (1976), The operation of a bubble column at high throughput I Gas holdup measurements. *Chemical Engineering Journal* vol. 12, pp 89-99. - Hills, J.H. (1997), The critical liquid flow rates for wave and droplet formation in annular gas-liquid flow. Experimental Heat Transfer, Fluid Mechanics and Thermodynamics (Ed. M. Giot, F. Mayinger and G.-P. Celata) Edizione ETS., vol. 2, pp 1241-1247. - Hills, J.H., and Chéty, P. (1998), The rise velocity of a Taylor bubble in an annulus. *Chemical Engineering Research and Design* vol. 76A, pp 723-727. - Hinze, J.O. (1955), Fundamentals of the hydrodynamic mechanism of splitting of dispersion processes. *American Institute of Chemical Engineers Journal* vol. 1, pp 289-295. - Hirleman, E.D. (1989), A general solution to the inverse near-forward scattering particle sizing problem in multiple scattering environments: theory. *Proceedings of the 2nd International Congress on Optical Particle Sizing, Tempe, Arizona*, pp 159-168. - Hirleman, E.D., Oechsle, V., and Chigier, N.A. (1984), Response characteristics of laser diffraction particle size analyzers: optical sample volume extent and lens effects. *Optical Engineering*. Vol. 23, pp 610-619. - Hirleman, E.D., and Dodge, L.G. (1985), Performance comparison of Malvern instruments laser diffraction drop size analyser. 3rd Int. Conference on Liquid Atomization and Spray Systems, London, UK (Institute of Energy, Pub.). - Hoang, K., and Davis, M.R. (1984), Flow structure and pressure loss for two phase flow in return bends. *Journal of Fluids Engineering* vol. 106, pp 30-37. - Holt, A.J., Azzopardi, B.J., and Biddulph, M.W. (1995), The effect of density ratio on two-phase frictional pressure drop. *International Symposium on Two-Phase Flow Modelling and Experimentation*, Rome, 9-11 October. - Holt, A.J., Azzopardi, B.J., and Biddulph, M.W. (1997), Two-phase pressure drop and void fraction in narrow channels. 5th U.K. National Heat Transfer Conference, London. - Holt, A.J., Azzopardi, B.J., and Biddulph, M.W. (1999), Calculation of two-phase pressure drop for vertical upflow in narrow passages by means of a flow pattern specific model. *Chemical Engineering Research and Design* vol. 77, pp 7-15. - Hong, K.C. (1978), Two-phase flow splitting at a pipe tee. *Journal of Petroleum Technology*, pp290-296. - Hoogerndoorn, C.J., and Welling, W.A. (1965), Experimental studies on the character of annular-mist flow in horizontal pipes. *Symposium on Two-phase Flow*, Exeter, 21-23 June, Paper C3. - Hsu, Y.Y., and Simon, F.F. (1969), Stability of cylindrical bubbles in a vertical pipe. ASME paper 69-HT-28. - Hubbard, M.G. (1975), An analysis of horizontal gas-liquid slug flow. PhD Thesis, University of Houston. - Hughmark, G.A. (1962), Hold-up in gas-liquid flow. Chemical Engineering Progress vol. 58, pp 62-65. - Hurlburt, E.T., and Newell, T.A. (2000), Prediction of the circumferential film thickness distribution in horizontal annular gas-liquid flow. *Journal of Fluids Engineering* vol. 122, pp 1-7. - Hurlburt, E.T., and Hanratty, T.J. (2002), Prediction of the transitions from stratified to slug and plug flow for long pipes. *International Journal of Multiphase Flow* vol. 28, pp 707-729. - Hutchinson, P., Hewitt, G.F., and Dukler, A.E. (1971), Deposition of liquid or solid dispersion from turbulent gas streams: stochastic model. *Chemical Engineering Science* vol. 26, pp 419-439. - Hutchinson, P., and Whalley, P.B. (1973), A possible characterisation of entrainment in annular flow. *Chemical Engineering Science* vol. 28, pp 974-975. - Hutchinson, P., Butterworth, D., and Owen, R.G. (1974) Development of a model for horizontal annular flow. UKAEA Report AERE R7789. - Hwang, S.T., Soliman, H.M., and Lahey, R.T. (1988), Phase separation in dividing two-phase flow. *International Journal of Multiphase Flow* vol. 14, pp 439-458. - Hwang, S.T., Soliman, H.M., and Lahey, R.T. (1989), Phase separation in impacting wyes and tees. *International Journal of Multiphase Flow* vol. 15, pp 965-975. - Isbin, H.S., Moen, R.H., Wickey, R.O., Mosher, D.R., and Larson, H.C. (1958), Two-phase steam-water pressure drops. *Nuclear Science and Engineering Conference, Chicago*. - Ishii, M. (1977), One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. ANL Report ANL-77-47. - Ishii, M., and Grolmes, M.A. (1975), Inception criteria for droplet entrainment in two-phase concurrent flow. *American Institute of Chemical Engineers Journal* vol. 21, pp 308-318. - Ishii, M., and Mishima, K. (1989), Droplet entrainment correlation in annular two-phase flow. *International Journal of Heat and Mass Transfer* vol. 32, pp 1835-1846. - Issa, R.I., and Oliveira, P.J. (1994), Numerical prediction of phase separation in two-phase flow through T-junctions. *Computers Fluids* vol. 23, pp 347-372. - Ito, H. (1959), Pressure losses in smooth bends, Journal of Basic Engineering vol. 82, pp 131-143. - Jacowitz, L.A. and Brodkey, R.S. (1964), An analysyis of geometry and pressure drop for the horizontal annular two-phase flow of water and air in the entrance region of a pipe. *Chemical Engineering Science* vol. 19, pp 261-274. - Jagota, A.K., Rhodes, E., and Scott, D.S. (1974), Tracer measurements in two-phase annular flow to obtain interchange and entrainment. *Canadian Journal of Chemical Engineering* vol. 51, pp 139-148. - James, P.W. (1978), Interfacial waves in two-phase shear flow and their use in modelling roll waves. UKAEA Report AERE R9080. - James, P.W., Hewitt, G.F., and Whalley, P.B. (1980), Droplet motion in two phase flow. Proc. ANS/ASME/NRC Int. Topical Meeting on Nuclear Reactor Thermal-Hydraulics vol. 2, pp 1484-1503. - James, P.W., Wilkes, N.S. Conkie, W., and Burns A. (1987), Developments in the modelling of horizontal annular two-phase flow. *International Journal of Multiphase Flow* vol. 13, pp 173-198. - James, P.W. Azzopardi, B.J. Graham, D.I., and Sudlow, C.A. (2000), The effect of a bend on droplet size distribution in two-phase flow. 7th International Conference on Multiphase Flow in Industrial Plants, Bologna, 13-15 September. - Janssen, E., and Kervinen, J.A. (1964), Two-phase pressure losses final report. US Atomic Energy Comm., Report No. GEAP 4634. - Jayanti, S. Hewitt, G.F., and White, S.P. (1990a), Time dependent behaviour of the liquid film in horizontal annular flow. *International Journal of Multiphase Flow* vol. 16, pp 1097-1116. - Jayanti, S., Wilkes, N.S. Clarke, D.S., and Hewitt, G.F., (1990b), The prediction of turbulent flows over roughened surfaces and its application to interpretation of mechanisms of horizontal annular flow. *Proceedings of the Royal Society A* vol. 431, pp 71-88. - Jayanti, S, and Hewitt, G.F. (1992). Prediction of the slug-to-churn transition in vertical two-phase flow. *International Journal of Multiphase Flow vol.* vol. 18, pp 847-860. - Jayanti, S, Tokarz, A., and Hewitt, G.F. (1996), Theoretical investigation of the diameter effect on flooding in countercurrent flow. *International Journal of Multiphase Flow* vol. 22, pp 307-324. - Jeffreys, H. (1925), On the formation of water waves by wind. *Proceeding of the Royal Society (London)* vol. A107, pp 189-206. - Jeffreys, H. (1926), On the formation of waves by wind. *Proceeding of the Royal Society (London)* vol. A110, pp 241-247. - Jensen, A., and Mannov, G. (1974), Measurement of burnout, film flow and pressure drop in a concentric annulus 3500x26x17mm with heated rod and tube, European Two-Phase Flow Group Meeting, Harwell. - Jepsen, J.C., and Ralph, J.L. (1969), Hydrodynamic studies of two-phase upflow in vertical pipelines. *Proceedings of the Institution of Mechanical Engineers* vol. 184, pp 154-165. - Jepson, W.P. (1988), Liquid film thickness variation in horizontal annular flow in large diameter pipes. AERE Report R12991. - Jepson, W.P., Taylor, R.E., and Evans, N. (1989), Slug flow and its transitions in large diameter horizontal pipes. UKAEA Report AERE R12992. - Jepson, D.M. (1992), Vertical annular flow: the effect of physical properties. DPhil Thesis, Univ. of Oxford. - Jepson, D.M., Azzopardi, B.J., and Whalley, P.B. (1989), The effect of gas properties on drops in annular flow. *International Journal of Multiphase Flow* vol. 15, pp 327-339. - Jepson, D.M., Azzopardi, B.J., and Whalley, P.B. (1990), The effect of physical properties on drop size in annular flow. *Proceedings of the 9th International Heat Transfer Conference, Jerusalem* vol. 6, pp 95-100. - Kamei, T., and Serizawa, A. (1998), Measurement of 2-dimensional local instantaneous liquid film thickness around simulated nuclear fuel rod by ultrasonic transmission technique. *Nuclear Engineering and Design* vol. 184, pp 349-362. - Kataoka, I., and Ishii, M. (1982), Mechanism and correlation of droplet entrainment and deposition in annular two-phase flow. NUREG/CR-2885, ANL-82-44. - Kataoka, I., Ishii, M., and Mishima, K. (1983), Generation and size distribution of droplet in annular two-phase flow. *Journal of Fluids Engineering* vol. 105, pp 230-238. - Keeys, R.K.F., Ralph, J.C., and Roberts, D.N. (1970), Liquid entrainment in adaiabtic steam-water flow at 500 and 1000 psi. UKAEA Report AERE R6293. - Kelessidis, V.C., and Dukler, A.E. (1989), Modelling flow pattern transitions for upward gas-liquid flow in vertical concentric and eccentric annuli. *International Journal of Multiphase Flow* vol. 15, pp 173-191. - Kelessidis, V.C., and Dukler, A.E. (1990), Motion of large gas bubbles through liquids in vertical concentric and eccentric annuli. *International Journal of Multiphase Flow* vol. 16, pp 375-390. - Kimpland, R.H., Lahey, R.T., Azzopardi, B.J., and Soliman, H.M. (1992), A contribution to the predictions of phase separation in branching conduits., *Chemical Engineering Communications* vol. 111, pp 79-105. - Kirillov, P.L., Smogalev, I.P., Suvurov, M.Ya., Shumsky, R.V., and Stein, Yu.Yu. (1978), Investigation of steam-water flow characteristics at high pressures. *Proceedings of the 6th International Heat Transfer Conference, Toronto, Canada* vol. 1, pp 315-320. - Kirillov, P.R., Smogalev, I.P., and Doroshenko, V.A. (1982), A graphical method of predicting the losses of pressure due to friction with a rising steam-water flow in round tubes. *Thermal Engineering* vol. 29, pp 171-172 - Kline, S.J., Reynolds, W.C., Schraub, F.A., and Runstadler, P.W. (1967), The structure of turbulent boundary layers. *Journal of Fluid Mechanics* vol. 30, pp 741-773. - Kline, S.J., Bardina, J.G., and Strawn, R.C. (1983), Correlation of the detachment of two-dimensional turbulent boundary layer. American Institute of Aeronautics and Astronautics Journal, vol. 21, pp. 68-73 - Kocamustafaogullari, G., Smits, S.R., Razi, J., and Huang, W.D. (1993), Droplet size modelling in annular flow. *Proceedings of the 6th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Grenoble, October 5-8*, vol. 2, pp 1021-1030. - Kondo, Y., Mori, K., Yagishita, T., and Nabako, A. (1999), Effect of liquid viscosity on wave behaviour in gas-liquid two-phase flow. 5th ASME/JSME Joint Thermal Engineering Conference, San Diego. - Kondo, K., Yoshida, K., and Kataoka, I. (2004), Prediction of void fraction distribution for turbulent bubble flow in a vertical pipe with sudden expansion. 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa, September 22-24. - Kooijman, J.M., and Lacey, P.M.C. (1968), Unpublished experiments. University of Exeter. - Kosky, P.G., and Staub, F.W. (1971), Local condensing heat transfer coefficient in annular flow regime. *American Institute of Chemical Engineers Journal* vol. 17, pp 1037-1043. - Kowalski, J.E. (1987), Wall and interfacial shear stress in stratified flow in a horizontal pipe. *American Institute of Chemical Engineers Journal* vol. 33, pp 274-281. - Krishnan, V.S., and Kowalski, J.E. (1984), Stratified-slug flow transition in a horizontal pipe containing a rod bundle. *American Institute of Chemical Engineers Symposium Series* vol. 80 (236), pp 282-289 - Kubie, J., and Gardner, G.C. (1977), Drop sizes and drop dispersion n straight horizontal tubes and in helical coils. *Chemical Engineering Science* vol. 32, pp195-202. - Kubo, T., Ueda, T. (1973), On the characteristics of confluent flow of gas liquid mixers in headers. Bulletin of the Japan Society of Mechanical Engineers vol. 16, pp 1376-1384. - Lacey, P.M.C. (1970), Two-phase flow in curved ducts. *Annual meeting of DECHEMA*, 17-24 Jun, Frankfurt. - Laforgia, A., Lao, L., Lawrence, C.J., and Hewitt, G.F. (2004), Modelling of vertical annular and wispy-annular flow. 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa. - Lahey, R.T., Azzopardi, B.J., and Cox, M. (1985), Modelling two-phase flow division at T-junctions. 2nd International Conference on Multiphase Flows, London, 19-21 June (ed. BHRA). - Lahey, R.T. (1990), The analysis of phase separation and phase distribution phenomena using two-fluid models. *Nuclear Engineering and Design* vol. 122, pp 17-40. - Landman, M.J. (1991), Non-unique holdup and pressure drop in two-phase stratified inclined pipe flow. *International Journal of Multiphase Flow* vol. 17, pp 377-394. - Laurinat, J.E. Hanratty, T.J., and Jepson, W.P. (1985), Film thickness distribution for gas-liquid annular flow in a horizontal pipe. *PhysicoChemical Hydrodynamics* vol. 6, pp 179-195. - Lee, D.H., and Obertelli, J.D. (1963), An experimental investigation of forced convection burnout in high pressure water. Part II: Preliminary results for round tubes with and non-uniform axial heat flux distribution. UKAEA Report AEEW R309. - Lee, D.H. (1965), An experimental investigation of forced convection burnout in high pressure water. Part III: Long tubes with uniform and non-uniform axial heating. UKAEA Report AEEW R355. - Lee, S.L., and Durst, F. (1982), On the motion of particles in turbulent duct flows. *International Journal of Multiphase Flow* vol. 8, pp 125-146. - Leman, G.W. (1985), Atomization and deposition in two-phase annular flow: measurement and modelling. Ph.D. Thesis, University of Illinois, Urbana. - Leman, G.W., Agosini, M., and Andreussi, P. (1985), Tracer analysis of developing two-phase annular flow. *PhysicoChemical Hydrodynamics* vol 6, pp 223-237. - Lemonnier, H., and Hervieu, E. (1991), Theoretical modelling and experimental investigation of single-phase and two-phase division at a tee junction. *Nuclear Engineering and Design* vol. 125, pp 201-213. - Levac, M.L-J., Soliman, H. M., Azzopardi, B. J., and Sims, G. E. (2002), Systematic testing of the two-phase pressure drop equations for horizontal dividing T-junctions. *Multiphase Science and Technology*, vol.14, pp 227-266. - Levenspiel, O. (2002), Modeling in chemical engineering. *Chemical Engineering Science* vol. 57, pp 4691-4696. - Levy, S. (1960), Steam-slip theoretical prediction from momentum model. *Journal of Heat Transfer* vol. 82, pp 113-124. - Lin, P.Y., and Hanratty, T.J. (1986), Prediction of the initiation of slugs with linear stability theory. *International Journal of Multiphase Flow* vol. 12, pp 79-98. - Lin, P.Y., and Hanratty, T.J. (1987), Effect of pipe diameter on flow patterns for air-water flow in horizontal pipes. *International Journal of Multiphase Flow* vol. 13, pp 549-563. - Linstead, R.D., Evans, D.L., Cass, J., and Smith, R.V. (1978), Private communication. - Liu, T.J. (1997), Investigation of the wall shear stress in vertical bubbly flow under different bubble size conditions. *International Journal of Multiphase Flow* vol. 23, 1085-1109. - Lockhart, R.W., and Martinelli, R.C. (1949), Proposed correlation of data for isothermal, two-phase, two-component flow in pipes. *Chemical Engineering Progress* vol. 45, pp 39-48. - Lopes, J.C.B., and Dukler, A.E. (1985), Droplet sizes, dynamics and deposition in vertical annular flow. US Nucl. Regulatory Commission, Washington DC, USA, Report NUREG/CR-4424. - Lopez de Bertodano, M.A., Jan, C.-S., and Beus, S.G. (1997), Annular flow entrainment rate experiments in a small vertical pipe. *Nuclear Engineering and Design* vol. 178, pp 61-70. - Lopez de Bertodano, Assad, A., and Beus, S.G. (2001), Experiments for entrainment rate of droplets in the annular regime. *International Journal of Multiphase Flow* vol. 27, pp 685-699. - Lucas, D. (2004), Private communication. - Maddock, C., Lacey, P.M.C., and Patrick, M.A. (1974), The structure of two-phase flow in a curved pipe. *Symposium on. Multiphase Flow Systems*, University of Strathclyde, paper J2, published in *Institution of Chemical Engineers Symposium Series* No. 38. - Maeda, M., Hishida, K., and Furutani, T. (1980), Optical measurements of local gas and particle velocity in an upward flowing gas-solid suspension In *Polyphase Flow and Transport Technology*, p 211, Century 2 ETC, San Franciso, Calif. - Mao, Z.S., and Dukler, A.E. (1993), The myth of churn flow? *International Journal of Multiphase Flow* vol. 19, pp 377-383. - Machado, R.T.M. (1997), Multiphase flow in a Venturi: an experimental and theoretical study. PhD Thesis, Imperial College, London. - Mak, C.Y., Azzopardi, B.J., and Omebere-Iyari, N.K. (2006), The split of a gas/liquid flow at a small diameter T-junction with a vertical inlet pipe. In preparation. - Manolis, I.G., Mendes-Tatsis, M.A., and Hewitt, G.F. (1995), The effect of pressure on slug frequency on two-phase horizontal flow. *Proceedings of the 2nd International Conference on Multiphase Flow*, Kyoto, vol. 2, pp IF1-35-40. - Marchaterre, J.F., and Hoglund, B.M. (1962), Correlation for two-phase flow. *Nucleonics* vol. 8, pp 142- - Marie, J.L. (1987), Modelling of skin friction and heat transfer in turbulent two-component bubbly flows in pipes. *International Journal of Multiphase Flow* vol. 13, pp 309-325. - Martin, C.J. (1983), Annular two-phase flow. DPhil Thesis, Univ. of Oxford. - Martin, C.J., and Azzopardi, B.J. (1985), Waves in vertical annular flow. *Physiochemical Hydrodynamics* vol. 6, pp 257-265. - Martinelli, R.C., and Nelson, D.B. (1948), Prediction of pressure drop during forced circulation boiling of water", *Transaction of the American Society of Mechanical Engineers* vol. 70, pp 695-702. - Massena, W.A. (1960), Steam-water pressure drop. *Hanford report* H.W. 65706. - Matuszkiewicz, A., Flamand, J.C., and Bouré, J.A. (1987), The bubble-slug flow pattern transition and instabilities of void fraction waves. *International Journal of Multiphase Flow* vol. 13, pp 199-217. - Mayinger, F., and Zetzmann, K. (1976), Flow pattern of two-phase flow in inside-cooled tubes; a generalised of flow pattern map based on investigation in water and freon. *Advanced Study Institute in Two-phase Flow and Heat Transfer*, Istanbul, Turkey, 16-27 August. - McCoy, D.D., and Hanratty, T.J. (1977), Rate of deposition of droplets in annular two-phase flow. *International Journal of Multiphase Flow* vol. 3, pp 319-331. - McCreery, G.E. (1984), A correlation for phase separation in a tee. *Multi-phase Flow and Heat Transfer III. Part B*: Applications, pub. Elsevier Science Pub. B.V., Amsterdam (Ed. T.N. Veziroglu and A.E. Bergles), pp165-178. - McNown, J.S. (1954), Mechanics of manifold flow. *American Society of Civil Engineers Transactions* vol. 119, pp 1103-1142. - McNulty, J.G. (1987), Fluid property effects of freon two-phase flow in a horizontal pipeline. *Proceedings of the.* 3rd International Conference on Multiphase Flow (BHRA Pub.), pp 149-160. - McQuillan, K.W., and Whalley, P.B. (1984), The effect of orifices on the liquid distribution in annular two-phase flow. *International Journal of Multiphase Flow* vol. 10, pp 721-73. - McQuillan, K.W. (1985), Flooding in annular two-phase flow. DPhil Thesis, University of Oxford. - McQuillan, K.W., and Whalley, P.B. (1985a), Flow patterns in vertical two-phase flow. *International Journal of Multiphase Flow* vol. 11, pp 161-176. - McQuillan, K.W., and Whalley, P.B. (1985b), A comparison between flooding correlations and experimental flooding data for gas-liquid flow in vertical circular tubes. *Chemical Engineering Science* vol. 40, pp 1425-1440. - McQuillan, K.W., Whalley, P.B., and Hewitt, G.F. (1985), Flooding in vertical two-phase flow. *International Journal of Multiphase Flow* vol. 11, pp 741-760. - McVean, S.S., and Wallis, G.B. (1969), Experience with the Wicks-Dukler probe for measuring drop size distribution in sprays. Dartmouth College Report. - Meng, W., Chen, X.T., Kouba, G.T., Sarica, C., and Brill, J.P. (1999), Experimental study of low liquid loading gas-liquid flow in near-horizontal pipes. *SPE Annual Technical Conference and Exhibition*, Houston, vol., pp 209-220. - Miles, J.W. (1960), The hydrodynamic stability of a thin film of liquid in uniform shearing motion. *Journal of Fluid Mechanics* vol. 8, pp 593-607. - Mishima, K., and Ishii, M. (1984), Flow regime transition criteria for upward two-phase flow in vertical tubes. *International Journal of Heat and Mass Transfer* vol. 27, pp 723-736. - Mishima, K., And Hibiki, T. (1996), Some characteristics of air-water two-phase flow in small diameter vertical tubes. *International Journal of Multiphase Flow* vol. 22, pp 703-712. - Miya, M., Woodmansee, D.E., and Hanratty, T.J. (1971), A model for roll waves in gas-liquid flow. *American Institute of Chemical Engineers Journal* vol. 26, pp 1915-1931. - Miyagi, O. (1925), On air bubbles rising in water. *Philosophical Magasine* vol. 50, pp 112-140. - Mizushina, T., and Usui, H. (1977), Reduction of eddy diffusion for momentum and heat in viscoelastic flow in a circular tube. *Physics of Fluids* vol. 20, pp S100-S. - Moalem Maron, D., Brauner, N., and Dukler, A.E. (1985), Interfacial structure of thin falling films: piecewise modeling of the waves. PhysicoChemical Hydrodynamics vol. 6, pp 87-113. - Moeck, E.O. (1970), AECL-3656. - Mols, B., and Oliemans, R.V.A. (1998), A turbulent diffusion model for particle dispersion and deposition in horizontal tube flow *International Journal of Multiphase Flow* vol. 24, pp 77-92. - Mori, K., Kaji, M., Miwa, M., and Sekoguchi, K. (1999), Interfacial structure and void fraction of slug flow for upward gas-liquid two-phase flow. *Two-Phase Flow Modelling and Experimentation 1999* (Ed. G.P. Celata, P. Di Marco, and R. Shah) Editzioi ETS, Pisa, vol. 1, pp 687-694. - Mori, K., and Nakano, K. (2001), Effects of liquid viscosity on inception of disturbance waves and droplets in gas-liquid two-phase flow. *Experimental Heat Transfer, Fluid Mechanics and Thermodynamics 2001* (Ed. G.P. Celata, P. Di Marco, A. Goulas and A. Mariani) Editzioi ETS, Pisa, vol. 2, pp 1829-1834 - Morris, S.D. (1984), A simple model for estimating two-phase momentum flux. *Institution of Chemical Engineers Symposium Series* No. 86, vol. 2, pp 773-784. - Morris, S.D. (1985), Two phase pressure drop across valves and orifice plates. *European Two Phase Flow Group Meeting, Southampton*. - Mugele, R.A., and Evans, H.D. 1951 Droplet size distribution in sprays. *Industrial and Engineering Chemistry* vol. 43, pp 1317-1324. - Muller-Steinhagen, H., and Heck, K. (1986), A Simple Friction Pressure Drop Correlation for Two-Phase Flow in Pipes. *Chemical Engineering Process* vol. 20, pp 297-308. - Namie, S., and Ueda, T. (1973), Droplet transfer in two-phase annular mist flow: Part 2, Predictions of droplet transfer rate. *Bulletin of the Japan Society of Mechanical Engineers* vol. 16, pp 752-764. - Nash, B.A. (1981), Nonlinear interfacial waves in two-phase flow. DPhil Thesis, Oxford University. - Nedderman, R.M., and Shearer, C.J. (1963), The motion and frequency of large disturbance waves in annular two-phase flow of air-water mixtures. *Chemical Engineering Science* vol. 18, pp 661-670. - Nicholson, M.K., Aziz, K., and Gregory, G.A. (1978), Intermittent two-phase flow in horizontal pipes. *Canadian Journal of Chemical Engineering* vol. 56, pp 653-663. - Nicklin, D.J., and Davidson, J.F. (1962), The onset of instability in two-phase slug flow. *Institution of Mechanical Engineers Symposium on Two-Phase Flow*, London. - Nigmatulin, B.I., Malyshenko, V.I., and Shugaev, Y.Z. (1977), Investigation of liquid distribution between the core and the film in annular dispersed flow of steam/water mixtures. *Thermal Engineering* vol. 23, pp 66-68. - Nigmatulin, R.I., Nigmatulin, B.I., Khodzhaev, Ya.D., and Kroshlin, V.E. (1996), Entrainment and deposition rates in a dispersed-film flow. *International Journal of Multiphase Flow* vol. 22, pp 19-30 - Nikuradse, J. (1932), Gesetzmassigkeiten der turbulenten Stromung in glatten Rohren. VDI-Forschungsheft 356. - Nishikawa, K., Sekoguchi, K., and Fukano, T. (1968), Characteristics of pressure pulsation in upward two-phase flow. *International Symposium on Research in Cocurrent Gas-Liquid Flow*, Univ. of Waterloo, paper A2 - Noghrehkar, G.R., Kawaji, M., and Chan, A.M.C. (1999) Investigation of two-phase flow regimes in tube bundles under cross-flow conditions. *International Journal of Multiphase Flow* vol. 25, pp 857-874. - Nusselt, W. (1915), Die oberflachenkondensation des wasserdampfes. *VDI Zeitschrift* vol. 60, pp 541-546 and pp 569-575. - Nunner, W. (1956), Waermeubergang und Druckfall in rauhen Rohren. VDI-Forschungsheft 455. - Ohba, K., and Nagae, K., (1993), Characteristics and behaviour of the interfacial wave on the liquid film in a vertically upward air-water two-phase annular flow. *Nuclear Engineering and Design* vol. 141, pp 17-25. - Ohnuki, A., and Akimoto, H. (2000). Experimental study on transition of flow pattern and phase distribution in upward air-water two-phase flow along a large vertical pipe. *International Journal of Multiphase Flow* vol. 26, pp 367 386 - Okada, O., Fujimatsu, T., Fujita, H., and Homma, K. (1994), Some problems on droplet size measurement by immersion liquid method. *Proceedings of the 6th International Conference on Liquid Atomization and Spray Systems*, pp 406-413. - Okada, O., Fujimatsu, T., Fujita, H., and Nakajima, Y. (1995), Measurement of droplet size distribution in an annular mist flow in a vertical pipe by immersion liquid method. *Proceeding of the 2nd International Conference on Multiphase Flow, Kyoto, Japan* vol. 1, pp IP2/11-IP2/18. - Okawa, T., Kitihara, T., Yoshida, K., Matsumoto, T., and Kataoka, I. (2002), New entrainment rate correlation in annular two-phase flow applicable to wide range of flow condition. *International Journal of Heat and Mass Transfer* vol. 45, pp 87098. - Oliemans, R.V.A., Pots, B.F.M., and Trompe, N. (1986), Modelling of annular dispersed two-phase flow in vertical pipes. *International Journal of Multiphase Flow* vol. 12, pp 711-732. - Omebere-Iyari, N.K., Azzopardi, B.J., and Akinmade, A.A. (2005), Flow patterns for gas/liquid flow in small diameter tubes. *UK National Heat Transfer Conference*, Manchester. - Oranje, L. (1973), Condensate behaviour in gas pipelines is predictable. *Oil & Gas Journal* vol. 71, pp 39-44. - Osmasali, S.I., and Chang, J.S. (1988), Two-phase flow regime transition in a horizontal pipe and annular flow under gas-liquid two-phase flow *ASME FED* vol. 72, pp 63-69 - Oshinowo, T., and Charles, M.E. (1974), Vertical two-phase flow. *Canadian Journal of Chemical Engineering* vol. 52, pp 25-35, 438-448. - Ottens, M., de Swart, A., Hoefsloot, H.C.J., and Hammersma, P.J. (1995), Gas-liquid flow splitting in regular, reduced and impacting T-junctions. *Impiantistica Italiana* vol. 8, pp 23-33. - Ottens, M. (1998), Gas-liquid flow through pipes and T-junctions. PhD Thesis, University of Amsterdam. - Owen, D.G., and Hewitt, G.F. (1984), A proposed entrainment correlation. UKAEA Report AERE R12279. - Owen, D.G. (1986), An equilibrium and theoretical analysis of equilibrium annular flows. Ph.D. thesis, University of Birmingham, UK. - Owens, W.L. (1961), Two-phase pressure gradient. *International Heat Transfer Conference*, Boulder, Colorado. - Pan, L., and Hanratty, T.J. (2002), Crrelation of entraiment for annular flow in vertical pipes. *International Journal of Multiphase Flow* vol. 28, pp 363-384. - Paleev, I.I., and Filippovich, B.S. (1966), Phenomena of liquid transfer in two-phase dispersed annular flow. *International Journal of Heat and Mass Transfer* vol. 9, pp 1089-1093. - Papavergos, P.G., and Hedley, A.B. (1984), Particle deposition behaviour from turbulent flows. *Chemical Engineering Research and Design* vol. 62A, pp 275-295. - Paras, S.V., and Karabelas, A.J. (1991), Properties of the liquid layer in horizontal annular flow. *International Journal of Multiphase Flow* vol. 17, pp 439-454. - Paras, S.V., Vlachos, N.A., and Karabelas, A.J. (1994), Liquid layer characteristics in stratified-atomization flow. *International Journal of Multiphase Flow* vol. 20, pp 939-956. - Pashniak, D.W. (1969), An investigation of the interfacial disturbances in vertical two phase flow. PhD Thesis, University of Washington. - Pearce, D.L. (1979a), Film waves in horizontal annular flow: space-time correlator experiments. CEGB Report No. CERL/RD/L/N 193/75. - Pearce, D.L. (1979b), Air-water annular flow in helices. CEGB Report No. CERL/RD/L/N 166/78. - Pearce, D.L. (1982), An experimental investigation of flow regimes in R12. *European Two-phase Flow Group Meeting*, Paris, 2-4 June, paper A24. - Peng, F., Shoukri, M., and Chan, A.M.C. (1996), The effect of branch orientation on annular two-phase flow. *Journal of Fluids Engineering* vol. 118, pp 166-171. - Peng, F., and Shoukri, M. (1997), Modelling the phase redistribution of horizontal annular flow divided in T-junctions. *Canadian Journal of Chemical Engineering* vol. 75, pp 264-270. - Penmatcha, R., Ashton, P.J.N., and Shoham, O. (1996), Two-phase flow splitting at a tee junction with an inclined branch. *International Journal of Multiphase Flow* vol. 22, pp 1105-1122. - Petrick, M., and Swanson, B.S. (1959), Expansion and contraction of an air-water mixture in vertical flow. *American Institute of Chemical Engineers* vol. 5, pp 440-445. - Pogson, J.T., Roberts, J.H., and Waibler, P.J. (1970), An investigation of the liquid disintegration in annular mist flow. *Journal of Heat Transfer* vol. 92, p 651-658. - Pols, R.M., Azzopardi, B.J., and Hibberd, S. (1998), Discontinuous wave solutions in stratified and annular two-phase flows. *3rd International Conference on Multiphase Flow*, Lyon. - Popp, M., and Sallet, D.W. (1983), Experimental investigation of one and two-phase flow through a tee-junction. Paper B3, *International Conference on the Physical Modelling of Multiphase Flows*, Coventry, England, April 19-21. - Portalski, S., and Clegg, A.J. (1971), Interfacial area increase in rippled film flow on wetted wall columns. *Chemical Engineering Science* vol. 26, pp 773-784. - Poulson, B. (1991), Measuring and modelling mass transfer at bends in annular two-phase flow. *Chemical Engineering Science* vol. 46, p. 1069-1082. - Prasser, H.-M., Krepper, E., and Lucas, D. (2000), Fast wire mesh sensors for gas-liquid flows and decomposition of gas fraction profiles according to bubble size classes. *2nd Japanese-European Two-Phase Flow Group Meeting*, Tsukuba, Japan, September 25-29. - Prasser, H.-M., Krepper, E., and Lucas, D. (2001), Fast wire-mesh sensors for gas-liquid flows and decomposition of fraction profiles according to bubble size classes. *Proceedings of the 5th International Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics*, Thessaloniki, 23-28 September, vol. II, pp 1135-1140. - Premoli, A., Francesco, D., and Prina, A. (1970), An empirical correlation for evaluating two-phase mixture density under adiabatic conditions. *European Two-Phase Flow Group Meeting*. - Pushkina, O.L., and Sorokin, Y.L. (1969), Breakdown of liquid film motion in vertical tubes. *Heat Transfer Soviet Research* vol. 1, pp 56-64. - Quandt, E.R. (1965), Measurements of some basic parameters in two-phase annular flow. *American Institute of Chemical Engineers Journal* vol. 11, pp 311-318. - Radovcich, N.A., and Moissis, R. (1962), The transition from two-phase bubble flow to slug flow. MIT Report No. 7-7673-22. - Rae, J. (1975), A model for interface waves in two-phase flow. UKAEA Report AERE-TP611. - Rea, S. (1998), Stratified flow at T-junctions. PhD Thesis, University of Nottingham. - Reeks, M.W. (1977), On the dispersion of small particles suspended in an isentropic turbulence. *Journal of Fluid Mechanics* vol. 83, pp 529-546. - Reimann, J., John. G., and Seeger, W. (1981), Transition to slug and annular flow in horizontal airwater and steam-water flow. Report No. KfK3189. - Ribeiro, A.M. (1993), Studied of gas-liquid flows in bends. PhD Thesis, University of Birmingham. - Ribeiro, A.M., Bott, T.R., and Jepson, D.M. (2001) The influence of a bend on drop sizes horizontal annular two-phase flow. *International Journal of Multiphase Flow* vol. 27, pp 721-728. - Richardson, B.E. (1959), Some problems in horizontal two-phase two component flows. ANL 5949. - Rippel, G.R., Eidt, C.M., and Jordan jr, H.B. (1966), Two-phase flow in a coiled tube. Indistrial and Engineering chemistry Process Design and Development vol. 5, pp 3239. - Roberts, D.C., and Hartley, D.E. (1961), A correlation of pressure drop data for two phase annular flows in vertical channels. Queen Mary College, Nuclear Research Memorandum Q6. - Roberts, P.A., Azzopardi, B.J., and Hibberd, S. (1995), The split of horizontal semi-annular flow at a large diameter T-junction. *International Journal of Multiphase Flow* vol. 21, pp 455-466. - Roberts, P.A., Azzopardi, B.J., and Hibberd, S. (1997), The split of horizontal annular at a T-junction. *Chemical Engineering Science* vol. 52, pp 3441-3453. - Romie, F. (1958) Unpublished information. - Rooney, D.H. (1968), Void fraction prediction under saturated conditions. N.E.L. Report No 386. - Rose, S. (1964), Some hydrodynamic characteristics of bubbly mixtures flowing vertically upwards in tubes. ScD Thesis, Massachusetts Institute of Technology. - Rosin, P., and Rammler, E. (1933), Laws governing the fineness of powdered coal. *Journal of the Institute of Fuel* vol. 7, pp 29-36. - Saba, N., and Lahey, R.T. (1984), The analysis of phase separation phenomena in branched conduits. *International Journal of Multiphase Flow* vol. 10, pp 1-20. - Sadatomi, M., Sato, Y., and Suruwatari, S. (1982), Two-phase flow in vertical noncircular channels. *International Journal of Multiphase Flow* vol. 8, pp 641-655. - Saito, T., Hughes, E.D., and Carbon, M.W. (1978), Multi-fluid modeling of annular two-phase flow. *Nuclear Engineering and Design* vol. 50, pp. 225-271. - Sakaguchi, T., Akagawa, K., Hamaguchi, H., Imoto, M., and Ishida, S. (1979), Flow regime maps for developing steady air-water two-phase flow in horizontal tubes. *Memoirs of the Faculty of Engineering of Kobe University* vol. 25, pp 191-202. - Sakamoto, G., Doi, T., Murakami, Y., and Usui, K. (2004), Profiles of liquid film thickness and drop flow rate in U-bend annular mist flow. 5th International Conference on Multiphase Flow, Yokahama, May 30-June 4, paper Mo. 317. - Sardesai, R.G., Owen, R.G., and Pulling, D.J. (1981), Flow regimes for condensation of a vapour in a horizontal tube. *Chemical Engineering Science* vol. 36, pp 1173-1180. - Sarimeseli, A., and Azzopardi, B.J. (2004), Correlating drop sizes in annular gas/liquid flows in vertical and horizontal pipes. *Proceedings of ILASS (Europe)* 2004, pp 248-253. - Sauter, J. (1926), Die Groessenbestimmung der im Gemischnebel von Verbrennungskraftmaschinen Vorhandenen Brennstoffteilchen. *VDI Forschungsarbeiten*, 279. - Sawai, T., Yamauchi, S., and Nakanishi, S. (1989), Behaviour of disturbance waves under hydrodynamic non-equilibrium conditions. *International Journal of Multiphase Flow* vol. 15, pp 341-356. - Sawai, T., and Kaji, M. (2001), Flow structure and pressure gradient in churn flow. *Experimental Heat Transfer, Fluid Mechanics and Thermodynamics 2001* (Ed. G.P. Celata, P. Di Marco, A. Goulas and A. Mariani) Editzioi ETS, Pisa, vol. 2, pp 1791-1796. - Sawai, T., Kaji, M., Kasugai, T., Nakashima, H., and Mori, T. (2004), Gas-liquid interfacial structure and pressure drop characteristics of churn flow. *Experimental Thermal and Fluid Science*, vol. 28, pp 597-606. - Schadel, S.A. (1988), Atomisation and deposition rates in vertical annular two-phase flow. Ph.D Thesis, Univ. Illinois, Urbana-Campaign. - Schadel, S.A., Leman, G.W., Binder, J.L., and Hanratty, T.J. (1990), Rates of atomisation and deposition in vertical annular flow. *International Journal of Multiphase Flow* vol. 16, pp 363-374. - Schmidt, H., and Loth, R. (1993), Predictive methods for two-phase flow pressure loss in tee junctions with combing flows. *International Journal of Multiphase Flow* vol.20, pp 703-720. - Schmidt, J., and Friedel, L. (1996), Two-phase pressure drop across sudden expansions in duct area. *Chemical Engineering Communications* vol. 141-142, pp 175-190. - Schmidt, J., and Friedel, L. (1997), Two-phase pressure drop across sudden contractions in duct area. *International Journal of Multiphase Flow* vol. 23, pp 283-299. - Sekoguchi, K., Nishikawa, K., Nakasatomi, M., Nishi, H., and Kaneugi, A. (1973), A study of liquid films in gas-liquid annular two-phase flow. *Transaction of the Japanese Society of Mechanical Engineers* vol. 39, pp 313-323. - Sekoguchi, K., Kawakari, Y., Fukano, T., and Shimizu, H. (1978a), Film thickness in gas-liquid two phase flow (1st report, effect of ring type obstacle inserted into tube). *Bulletin of the Japan Society of Mechanical Engineers* vol. 21, pp 869-876. - Sekoguchi, K., Kawakari, Y., Fukano, T., and Shimizu, H. (1978b), Film thickness in gas liquid two phase flow (2nd report, Effect of four rectangular obstacles inserted into tube). *Bulletin of the Japan Society of Mechanical Engineers* vol. 21, pp 877-887. - Sekoguchi, K., Takeishi, M., and Ishimatsu, T. (1985a), Interfacial structure in vertical upward annular flow. *PhysicoChemical Hydrodynamics* vol 6, pp 239-255. - Sekoguchi, K., Tanaka, O., and Ueno, T. (1985b), On the determination method of entrained droplet flow in the disturbance wave region of annular flow. *Bulletin of the Japan Society of Mechanical Engineers* vol. 28, pp 1105-1112. - Sekoguchi, K., and Takeishi, M. (1989), Interfacial structures in upwards huge wave flows and annular flow regimes. *International Journal of Multiphase Flow* vol. 15, pp 295-305. - Sekoguchi, K., Mori, K., Tsujino, H., Ikeshita, M. And Kaji, M. (1994), Wave venation in gas-liquid two-phase flow (1st Report, time-spatial map of wave behaviour and its characterisation). *Transaction of the Japanese Society of Mechanical Engineers* vol. 60, pp 1716-1723. - Sekoguchi, K., and Mori, K. (1997), New development of experimental study on interfacial structure in gas-liquid two-phase flow. *Experimental Heat Transfer, Fluid Mechanics and Thermodynamics* (Ed. M. Giot, F. Mayinger and G.-P. Celata) Edizione ETS, vol. 2, pp 1177-1188. - Semiat, R., and Dukler, A.E. (1981), Simultaneous measurement of size and velocity of bubbles and drops: a new optical technique. *American Institute of Chemical Engineers Journal* vol. 27, pp 148-159. - Serizawa, A., and Kataoka, I. (1988), in *Transient Phenomena in Multi-phase flow*, Afghan, N.H. (ed), Hemisphere, New York, pp179-224. - Sevik, M., and Park, S.H. (1973), The splitting of drops and bubbles by turbulent fluid flow. *Journal of Fluids Engineering* vol. 95, pp 53-60. - Shah, M.M. (1976), A new correlation for heat transfer during flow boiling in pipes. *ASHRAE Transactions* vol. 82, pp 60-86. - Shearer, C.J. (1964), Interfacial wave phenomena in two-phase flow. PhD Thesis, University of Cambridge. - Shearer, C.J., and Davidson, J.F. (1965), The investigation of a standing wave due to gas blowing upwards over a liquid film; its relation to flooding in wetted wall columns. *Journal of Fluid Mechanics* vol. 22, pp 321-336. - Shen, X., Mishima, K., and Nakamura, H. (2004), Two-phase phase distribution effect on drift flux parameters in a vertical large diameter pipe. 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa, 22-24 September. - Shires, G.L., and Khanna, R.D. (1971), Two-phase flow and heat transfer in helical coils. UKAEA Report AEEW R1023. - Shoham, O. (1982), Flow pattern transitions and characterization in gas-liquid flow in inclined pipes. PhD Thesis, Tel-Aviv University, Israel. - Shoham, O., Brill, J.P., and Taitel, Y. (1987), Two-phase flow splitting in a Tee junction experiment and modelling. *Chemical Engineering Science* vol. 42, pp 2667-2676. - Shoham, O., Arirachakaran, S. and Brill J. P. (1989), Two phase flow splitting in a horizontal reduced pipe tee. *Chemical Engineering Science* vol. 44, pp 2388-2391. - Simmons, M.J.H., and Hanratty, T.J. (2001), Transition from stratified to intermittent flows in small angle upflows. *International Journal of Multiphase Flow* vol. 27, pp 599-616. - Simmons, M.J.H., and Hanratty, T.J. (2001), Droplet size measurements in horizontal annular gasliquid flow. *Int. J. Multiphase Flow* vol. 27, pp 861-883. - Simon, M (1998), On the effects of inclination on non-adiabatic gas/liquid two-phase flow. 3rd International Conference on Multiphase Flow, Lyon, 8-12 June. - Simpson, H.C., Rooney, D.H., and Callender, T.M. (1985), Pressure loss through gate valves with liquid-vapour flows. *2nd International Conference on Multiphase Flows*, London, 19-21 June (ed. BHRA), pp 67-80. - Singh, K., St Pierre, C.C., Crago, W.A., and Moeck, E.O. (1969), Liquid film flow-rates in two-phase flow of steam and water at 1000 lb./sq. in. abs.. *American Institute of Chemical Engineers Journal* vol. 15, pp 51-56. - Sliwicki, E., and Mikieliwicz, J. (1988), Analysis of an annular-mist flow model in a T-junction. *International Journal of Multiphase Flow* vol. 14, pp 321-331. - Smith, S.L. (1971), Void fraction in two-phase flow a correlation based upon equal velocity head model. *Heat and Fluid Flow* vol. 1, pp 22-39 - Soldati, A., and Andreussi, P. (1996), The influence of coalescence on droplet transfer in vertical annular flow. *Chemical Engineering Science* vol. 51, pp 353-363. - Soliman, H.M. (1985), Flow pattern transitions during horizontal intube condensation. In *Encyclopedia of Fluid Mechanics* (ed. N. Cheremisinoff), Gulf Publishing Co, Houston. - Song, C.H., No, H.C., and Chung, M.K (1995), Investigation of bubble flow developments and its translation based on the instability of void fraction waves. *International Journal of Multiphase Flow* vol. 21, pp 381-404. - Spedding, P.L., and Nguyen, V.T. (1980), Regime maps for air-water two-phase flow. *Chemical Engineering Science* vol. 35, pp 779-793. - Spedding, P.L., and Hand, N.P. (1997), Prediction in stratified gas-liquid co-current flow in horizontal pipelines. *International Journal of Heat and Mass Transfer* vol. 40, pp 1923-1935. - Srinivasan, P.S., Nandapurkar, S.S., and Holland, F.A. (1970), Friction factors for coils. *Transactions of the Institution of Chemical Engineers* vol. 48, pp 156-161. - Stacey, T., Azzopardi, B.J., and Conte, G. (2000), The split of annular two-phase flow at a small diameter T-junction. *International Journal of Multiphase Flow* vol. 26, pp 845-856. - Sterling, V.C. (1985), Two-phase flow theory and engineering decision. Lecture Presented at AIChE Annual Meeting. - Strakey, P.A. (2003), Assessment of multiple scattering errorsof laser diffraction instruments. 9th *International Conference on Liquid Atomisation and Spray Systems*, Sorrento, July. - Subbotin, V.I., Kirillov, P.L., Smogalev, I.P., Suvorov, M. Ya., Stein, Yu.Yu., and Shumsky, R.V. (1975), Measurement of some characteristics of a steam-water flow in a round tube at pressures of 70 and 100 atm. A.S.M.E. paper No. 75-WA/HT-21. - Sun, K.H. (1979), Flooding correlations for BWR bundle upper tieplates and bottom side-entry orifices. in Veziroglu T.N. (ed) Proceedings of Multiphase Flow and Heat Transfer Symposium Workshop, Miami Beach, Florida, pp 1615 1635. - Sun, H. (2003), Hydrodynamics and mass transfer in Venturi scrubbers. PhD Thesis, University of Nottingham. - Sun, H., and Azzopardi, B.J. (2003), Modelling gas-liquid flow in venturi scrubbers at high pressure. *Process Safety and Environmental Protection*, vol. 81, pp 250-256. - Sutharshan, B., Kawaji, M., and Ousaka, A. (1995), Measurement of circumferential and axial film velocities in horizontal annular flow. *International Journal of Multiphase Flow* vol. 21, pp 193-206. - Suu, T. (1992), Air-water two-phase flow through a pipe junction: effect of the Reynolds number on the local void fraction distribution. *Japan Society of Mechanical Engineers International Journal Series II* vol. 35, pp 76-81. - Swithenbank, J., Beer, J.M., Taylor, D.S., Abbot, D., and McCreath, G.C. (1976), A laser diagnostic for the measurement of droplet and particle size distributions. *Progress in Astronautics and Aeronautics*, vol. 1, pp 421-447. - Sylvester, N.D. (1987), A mechanistic model for two-phase vertical slug flow in pipes. *Journal of Energy Resources Technology* vol. 109, pp 206-213. - Taitel, Y., and Dukler, A.E. (1976), A model for predicting flow regime transitions in horizontal and near-horizontal gas-liquid flow. American Institute of Chemical Engineers Journal vol. 22, pp 47-55 - Taitel, Y., Barnea, D., and Dukler, A.E. (1980), Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. *American Institute of Chemical Engineers Journal* vol. 6, pp 345-354 - Takemura, T., Roko, K., Shiraha, M. and, Midoriyama, S. (1986), Dryout characteristics and flow behaviour of gas-water two-phase flow through U-shaped and inverted U-shaped bends. *Nuclear Engineering and Design* vol. 95, pp 365-373. - Tatterson, D.F., Dallman, J.C., and Hanratty, T.J. (1977), Drop sizes in annular gas-liquid flows. *American Institute of Chemical Engineers Journal* vol. 23, pp 68-76. - Tayali, N.E., and Bates, C.J. (1990) Particle sizing techniques in multiphase flow: a review. *Flow Measurement and Instrumentation* vol. 1, pp 77-105. - Tayali, N.E., Bates, C.J., and Yeoman, M.L. (1990), Drop size and velocity measurements in vertical developing annular two-phase flow. *Proceedings of the 3rd International Conference on Laser Anemometry Advances and Applications, Pub. Springer Verlag*, pp 431-440. - Taylor, G.I. (1940), Generation of ripples by wind blowing over a viscous liquid. Reprinted in *The Scientific Papers of Sir Geoffrey Ingram Taylor*, vol. 3, pp 244-255. Cambridge Univ. Press, London (1963). - Taylor, R.E., and Evans, N. (1989), Slug flow in a 153 mm diameter horizontal pipe. UKAEA Report AERE R13572. - Teixeira, J.C.F. (1988), Turbulence in annular two phase flow. PhD Thesis, University of Birmingham. Teixeira, S.F.C.F. (1989), A model for the hydrodynamics of venturis applicable to scrubbers. PhD Thesis, University of Birmingham. - Teixeira, J.C.F., Azzopardi, B.J., and Bott, T.R. (1988), The effect of inserts on drop size in vertical annular flow. 2nd U.K. National Heat Transfer Conference, Strathclyde University. - Thang, N.T., and Davis, M.R. (1979), The structure of bubbly flow through venturis. *International Journal of Multiphase Flow* vol. 5, pp 17-37. - Thang, N.T., and Davis, M.R. (1981), Pressure distribution in bubbly flow through venturis. *International Journal of Multiphase Flow* vol. 7, pp 191-210. - Thompson, J.G., Hacking, H., and Cuthbertson, M.G. (1966), S.G.H.W.R. steam quality meter calibration trials. British Ship Research Association, Marine Engineering Contract Report No. W.46. - Thwaites, G.R., Kulov, N.N., and Nedderman, R.M. (1976), Liquid film properties in two-phase annular flow. *Chemical Engineering Science* vol. 31, pp 481-486. - Thom, J.R.S. (1964), Prediction of pressure drop during forced circulation boiling of water. *International Journal of Heat and Mass Transfer* vol. 7, pp 709-624. - Treballier, K., Cousin, J., and Dumouchel, C. (2003), Behaviour of the Spraytec in the presence of multiple light scattering of bimodal drop size distribution. 9th International Conference on Liquid Atomisation and Spray Systems, Sorrento, July. - Tribbe, C., and Muller-Steinhagen, H.M. (2000), An evaluation of the performance of phenomenological models for predicting pressure gradient during gas-liquid flow in horizontal pipelines. *International Journal of Multiphase Flow* vol. 26, pp 1019-1036. - Troung Quang Mihn and Huyghe, J. (1965), Somehydrodynamical aspects of annular dispersed flow: entrainment and film thickness. *Proceeding of the Symposium on Two-phase Flow, Exeter*, vol 2, paper C2. - Tso, C.P., and Sugawara, S. (1990), Film thickness prediction in a horizontal annular two-phase flow. *International Journal of Multiphase Flow* vol. 16, pp 867-884. - Tso, C.P., and Sugawara, S. (1993), Corrective technique for numerical prediction of liquid flow rate in annular flow study. *Communications in Numerical Methods in Engineering* vol. 9, pp 533-542. - Tsuji, Y,. and Morikawa, Y. (1982), LDV measurements of an air-solid two phase flow in a horizontal pipe. *Journal of Fluid Mechanics* vol. 120, pp 385-409. - Tsuji, Y., Morikawa, Y., and Shiomi H. (1984), LDV measurements of an air-solid two phase flow in a vertical pipe. *Journal of Fluid Mechanics* vol. 139, pp 417-434. - Turner, R.G., Hubbard, M.G., and Dukler, A.E. (1969), Analysis and prediction of minimum flow rates for continuous removal of liquid from gas wells. *Journal of Petroleum Technology* vol. 21, pp 1475-1482. - Tyrrell, R.J. (1981), Single and two-phase pressure loss measurements for the flow of frean-12 through a helical coil containing rippled and sand type roughnesses. CEGB Report No. CERL/RD/L/2177/N81. - Ueda, T., Tanaka, H., and Koizumi, Y. (1978), Dryout of liquid film in high quality R-113 upflow in a heated tube. *Proceedings of the 6th International Heat Transfer Conference, Toronto, Canada*. - Ueda, T. (1979), Entrainment rate and size of entrained droplets in annular two-phase flow. *Bulletin of the Japan Society of Mechanical Engineers* vol. 22, pp 1258-1265. - Uijttewaal, W.J.S., and Oliemans, R.V.A. (1996), Particle dispersion and deposition in direct numerical and large eddy simulations of vertical pipe flows. *Physics of Fluids* vol. 8, pp 2590-2604 - Ulbrich, R., and Mewes, D. (1994), Vertical, upward gas-liquid two-phase flow across a tube bundle. *International Journal of Multiphase Flow* vol. 20, pp 249-272. - Usui, K., Aoki, S., and Inoue, A. (1980), Flow behaviour and pressure drop of two-phase flow through C-shaped bend in vertical plane, (I) upward flow. *Journal of Nuclear Science and Technology* vol. 17, pp 875-887. - Usui, K., Aoki, S., and Inoue, A. (1981), Flow behaviour and pressure drop of two-phase flow through C-shaped bend in vertical plane, (II) downward flow. *Journal of Nuclear Science and Technology* vol. 18, pp 179-190. - Usui, K., Aoki, S., and Inoue, A. (1983), Flow behaviour and phase distribution in two-phase flow around an inverted U-shaped bend. *Journal of Nuclear Science and Technology* vol. 20, pp 915-928. - Usui, K. (1992), Annular Two-phase flow in a C-shaped bend (liquid film flow). *Transaction of the Japan Society of Mechanical Engineers* vol. 58, pp. 200-205. - Usui, K. (1993), Annular two-phase flow in a C-shaped bend (flow of liquid drop entrained in the gas core)., *Transaction of the Japan Society of Mechanical Engineers* vol. 59, pp. 214-219. - van Hout, R., Shemer, L., and Barnea, D. (1992), Spatial distribution of void fraction within a liquid slug and some other related slug parameters. *International Journal of Multiphase Flow*, vol. 18, pp 831-845. - van Hout, R., Barnea, D., and Shemer, L. (2002), Experimental investigation of the velocity field induced by a Taylor bubble rising in stagnant water. *International Journal of Multiphase Flow* vol. 28, pp 579-596. - van Maanen, H.R.E., and Fortuin, J.M.H. (1983), Experimental determination of the random lump-age distribution in the boundary layer of the turbulent pipe flow using laser-Doppler anemometry. *Chemical Engineering Science* vol. 38, pp 399-424. - van Werven, M., van Maanen, H.R.E., Ooms, G., and Azzopardi, B.J. (2003), Modeling wet-gas annular/dispersed flow through a venture. *American Institute of Chemical Engineers Journal* vol. 49, pp 1383-1391. - Venkaseswararao, P., Semiat, R., and Dukler, A.E. (1982), Flow pattern transition for gas-liquid flow in a vertical rod bundle. *International Journal of Multiphase Flow* vol. 8, pp 509-524. - Verbeek, P.H.J., Miesen, R., and Schellenkens, C.J. (1992), Liquid entrainment in annular dispersed upflow. 8th Annual European Conf. On Liquid Atomisation and Spray Systems, Amsterdam, 30 September-2 October. - Vermeulen, L.R., and Ryan, J.T. (1971), Two-phase slug flow in horizontal and inclined tubes. *Canadian Journal of Chemical Engineering* vol. 49, pp 195-201. - Vijayan, M., Jayanti, S., and Balakrishnan, A.R. (2001), Effect of tube diameter on flooding. *International Journal of Multiphase Flow* vol. 27, pp 797-816. - Viswanathan, S., Gryp, A.W., and St Pierre, C.C. (1984), Annular flow pressure drop model for Pearce-Anthony type Venturi scrubbers. *American Institute of Chemical Engineers Journal* vol. 31, pp 1947-1958. - Wallis, G.B. (1962), The onset of entrainment in annular gas-liquid flow. General Electric Report No. 62 GL127. - Wallis, G.B. (1961), Flooding velocities for air and water in vertical tubes. UKAEA Report AEEW R123. - Wallis, G.B. (1969), One-dimensional Two-phase Flow., McGraw-Hill. - Wallis, G.B. (1968), Phenomena of liquid transfer in two-phase dispersed annular flow. *International Journal of Heat and Mass Transfer* vol. 11, pp 783-785 - Wallis, G.B. (1970), Annular two-phase flow. I Basic aspects. Journal of Basic Engineering vol. 92, pp. 59-72. - Wallis, G.B., and Dobson, J.E. (1973), The onset of slugging in horizontal stratified air-water flow. *International Journal of Multiphase Flow* vol.1, pp 173-193. - Walters, L.C., Soliman, H.M., and Sims, G.E. (1998), Two-phase pressure drop and phase distribution at reduced tee junctions. *International Journal of Multiphase Flow* vol. 24, pp 775-792. - Wang, S.F., and Shoji, M. (2002), Fluctuation characteristics of two-phase flow splitting at a vertical impacting T-junction. *International Journal of Multiphase Flow* vol. 28, pp 2007-2016. - Wang,, S.F., Ozawa, M., Shoji, M., 2003. Fluctuation of gas-liquid two-phase flow through an impacting T-junction. UK/Japan Meeting on Two-Phase Flow, Guildford, UK, April. - Watson, M. (1989), Wavy stratified and the transition to slug flow. 4th International Conference on Multiphase Flow, Nice, France, 19-21 June (BHRA pub.). - Watson, M.J., and Hewitt, G.F. (1998), Effect of diameter on the flooding initiation mechanism. 3rd International Conference on Multiphase Flow, Lyon, 8-12 June. - Watson, M.J., and Hewitt, G.F. (1999), Pressure effects on the slug to churn transition. *International Journal of Multiphase Flow* vol. 25, pp 1225-1241. - Weisman, J. (1974) Two-phase pressure drop studies. Second Water Reactor Information Meeting, Washington, October. - Weisman, J., Duncan, D., Gibson, J., and Crawford, T. (1979), Effects of fluid properties and pipe diameter on two-phase flow patterns in horizontal lines. *International Journal of Multiphase Flow* vol. 5, pp 437-462. - Weisman, J., and Kang, S.Y. (1981), Flow pattern transitions in vertically upwardly inclined lines. *International Journal of Multiphase Flow* vol. 7, pp 271-291. - Whalley, P.B., Hedley, B.D., and Davidson, J.F. (1972), Gas hold-up in bubble columns with liquid flow, *VDI Berichte* vol. 182, pp 57-61. - Whalley, P.B., Hutchinson, P., and Hewitt, G.F. (1974a), The calculation of critical heat flux for forced convection boiling, 5th International Heat Transfer Conference Tokyo, paper B6.11. - Whalley, P.B., Hewitt, G.F., and Hutchinson, P. (1974b), Experimental wave and entrainment measurements in vertical annular two-phase flow. *Symp. on Multiphase Flow Systems*, University of Strathclyde, Paper A1, I. Chem. E. Symposium Series No. 38 - Whalley, P.B., Hutchinson, P., and Hewitt, G.F. (1975), Prediction of annular flow parameters for transient conditions and for complex geometries. *European Two-Phase Flow Group Meeting*, Haifa, June. - Whalley, P.B., and Hewitt, G.F. (1978), The correlation of liquid entrainment fraction and entrainment rate in annular two-phase flow. UKAEA Report AERE R 9187. - Whalley, P.B. (1980), Air-water two-phase flow in a helically coiled tube. *International Journal of Multiphase Flow* vol. 6, pp 345-356. - Wiafe, F.K. (1970), Two-phase flow through rough tubes. PhD Thesis, University of Strathclyde. - Wicks, M., and Dukler, A.E. (1966), In situ measurements of drop size distribution in two-phase flow: a new method for electrically conducting liquids. *Third International Heat Transfer Conf.*, *Chicago*. - Wilkes, N.S., Azzopardi, B.J., and Thompson, C.P. (1983a), Wave coalescence and entrainment in vertical annular two-phase flow. *International Journal of Multiphase Flow* vol. 9, pp 383-398. - Wilkes, N.S., Azzopardi, B.J., and Willetts, I.P. (1983b), Drop motion and deposition in annular two-phase flow. *Proc. Nuclear Reactor Thermal-Hydraulics*, ANS, pp 202-209. - Willetts, I. P. (1987), Non-aqueous annular two-phase flow. D.Phil. Thesis, University of Oxford. - Willetts, I.P., Azzopardi, B.J., and Whalley, P.B. (1987), The effect of gas and liquid properties on annular two-phase flow. *3rd International Conference on Multiphase Flow*, The Hague, The Netherlands, 18-20 May (BHRA pub.). - Williams, C.L., and Peterson, A.C. (1978), Two-phase flow patterns with high pressure water in a heated four-rod bundle. *Nuclear Science and Engineering* vol. 68, pp 155-169. - Williams, L.R., Dykhno, L.A., and Hanratty, T.J., (1996), Droplet flux distributions and entrainment in horizontal gas-liquid flows. *International Journal of Multiphase Flow* vol. 22, pp 1-18. - Wolf, A., Jayanti, S., and Hewitt, G.F. (1996), On the nature of ephemeral waves in vertical annular flow. *International Journal of Multiphase Flow* vol. 22, pp 325-333. - Wolf, A., Jayanti, S., and Hewitt, G.F. (2001), Flow development in vertical annular flow. *Chemical Engineering Science* vol. 56, pp 3221-3235. - Woodmansee, D.E., and Hanratty, T.J. (1969), Mechanism for the removal of droplets from a liquid surface by a parallel air flow. *Chemical Engineering Science* vol. 24, pp 299-307. - Wooley, D.M., and Muller-Steinhagen, H. (1989), Prediction of frictional pressure drop for two phase flow in horizontal pipes. *Proceedings of the Seventeenth Australian Chemical Engineering Conference*, pp 184-190. - Wren, E., Azzopardi, B.J., and Rea, S. (1999), Geometric effects on phase split in a large diameter T-junction. Two-Phase Flow Modelling and Experimentation 1999, (Ed. G.P. Celata, P. Di Marco, and R. Shah) Editzioni ETS, Pisa vol II, 1999, pp 811-818. - Wren, E., Kaji, R., Geary, R., Robinson, H., Cheney, E., Omebere-Iyari, N.K., and Azzopardi, B.J (2004), Further investigations into the phase split at a larger diameter T-junction. 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa, 22-24 September. - Wren, E., Baker, G., Azzopardi, B.J., and Jones, R. (2005), Slug flow in small diameter pipes and T-junctions. *Experimental Thermal and Fluid Science* vol. 29, pp 893-899. - Wu, H.L., Pots, B.F.M., Heelenberg, J.F., and Meerhoff, R. (1987), Flow pattern transitions in two-phase gas/condensate flow at high pressure in an 8-inch horizontal pipe. *3rd International Conference on Multiphase Flow*, The Hague, The Netherlands, 18-20 May (BHRA pub.). - Wurtz, J. (1978), An experimental and theoretical investigation of annular steam water in tubes and annuli at 30 and 90 bar. Riso Report 372. - Xu, G.P., Tso, C.P., and Tou, K.W. (1998), Hydrodynamics of two-phase flow in vertical up- and downflow across a horizontal tube bundle. *International Journal of Multiphase Flow* vol. 24, pp 1639-1648. - Yang, L., Azzopardi, B.J., Belghazi, A. and Nakanishi, S. (2006), Phase separation of liquid-liquid two-phase flow at a T-junction. American Institute of Chemical Engineers Journal vol. 52, pp 141-149 - Yoshida, K., Arai, S., Matsumoto, T., Okawa, T. and Katatoka, I. (2000), Experimental studies on the effect of liquid film to gas-phase turbulence modification in two-phase annular flow. 2nd Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety, Fukuoka, Japan, October 15-18. - Yoshida, K., Tanaka, H., S., Matsuura, K., and Katatoka, I. (2003), Studies on gas-phase turbulence modification in vertical upward annular flow. *Proceedings of the FEDSM'03, 4th ASME-JSME Joint Fluid Engineering Conference*, Honolulu, Hawaii, June 6-11. - Yu, Q.C., Barbier, D., and Cognet, G. (1989), Two-phase flow in horizontal and vertical C-type bends. *European Two-Phase Flow Group Meeting*, Paris, Paper G5. - Zabaras, G.J., and Dukler, A.E. (1988), Countercurrent gas-liquid annular flow including the flooding state. *American Institute of Chemical Engineers Journal* vol. 34, pp 389-396. - Zaidi, S.H., Altunbas, A., and Azzopardi, B.J. (1998), A comparative study of phase Doppler and laser diffraction techniques to investigate drop sizes in annular two-phase flow. *Chemical Engineering Journal* vol. 71, pp 135-143. - Zanelli, S., and Hanratty, T.J. (1973), Effect of entrainment on roll waves in air-water flows. *Chemical Engineering Science* vol. 28, pp 643-644. - Zapte, A., and Kroger, D. G. (1996), The influence of fluid properties and inlet geometry on flooding in vertical and inclined tubes. *International Journal of Multiphase Flow* vol. 22, pp 461-472. - Zapte, A., and Kroger, D. G. (2000), Countercurrent gas-liquid flow in inclined and vertical ducts I: Flow patterns, pressure drop characteristics and flooding. *International Journal of Multiphase Flow* vol. 26, pp 1439-1455. Countercurrent gas-liquid flow in inclined and vertical ducts II: The validity of the Froude-Ohnesorge number correlation for flooding. *International Journal of Multiphase Flow* vol. 26, pp 1457-1468. - Zetzmann, K. (1984), Phase separation of air-water flow in a vertical T-junction. *German Chemical Engineering* vol. 7, pp 305-312. - Zhang, J.-P., Grace, J.R., Epstein, N., and Lim, K.S. (1997), Flow regime identification in gas-liquid flow and three-phase fluidised beds. *Chemical Engineering Science* vol. 52, pp 3979-3992. - Zisselmar, R., and Molerus, O. (1979), Investigation of solid-liquid pipe flow with regard to turbulence modification. *Chemical Engineering Journal* vol. 18, pp 233-239. - Zivi, S.M. (1964), Estimation of steady state steam void fraction by means of the principle of minimum entropy production. *Journal of Heat Transfer* vol. 86, pp 247-252. - Zuber, N., and Findlay, J.A. (1965), Average volumetric concentration in two-phase flow systems. *Journal of Heat Transfer* vol. 87, pp 453-468. - Zuber, N., and Hench, J. (1962), Steady state and transient void fraction of bubbling systems and their operating limits, Part I: Steady state operation. General Electric Report 62GL100. - Zun, I. (2003), The principles of complexity in bubbly flows., 3rd European-Japanese Two-Phsae Flow Group Meeting, Certosa di Pontignano, 21-27 September.