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United Kingdom
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In this paper we study the instability of the developing thermal boundary layer that is induced by suddenly raising the
temperature of the lower horizontal boundary of a uniformly cold semi-infinite region of saturated porous medium. The
basic state consists of no flow, but the evolving temperature field may be described by a similarity solution involving
the complementary error function. In very recent papers, Selim and Rees (2007a) (Part 1) have sought to determine
when this evolving thermal boundary layer becomes unstable and then Selim and Rees (2007b) (Part II) followed the
subsequent evolution of horizontally periodic disturbances well into the nonlinear regime. In this paper we investigate
the secondary instability of the nonlinear cells by introducing subharmonic disturbances into the evolving flow. We
consider three different types of subharmonic disturbance, namely, the 2:1, 3:2, and 4:3 types. Cellular disturbances are
seeded into the evolving basic state, the primary mode having an amplitude that is greater than that of the subharmonic.
In general, we find that the subharmonic decays at first, while the primary mode grows, but at a time that is dependent
on the relative initial amplitudes, the subharmonic experiences an extremely rapid growth and quickly establishes itself
as the dominant flow pattern. A fairly detailed account of the 2:1 case is given, including an indication of how the time
of transition between the primary and the subharmonic varies with wave number and initial amplitudes. The other two
types of subharmonic disturbance yield a richer variety of behaviors; therefore, we present some typical cases to indicate
some of the ways in which the primary mode may be destabilized.

KEY WORDS: boundary layer, secondary instability, sub-harmonic disturbances

1. INTRODUCTION face pollutants are present, or indeed when surface evap-
oration increases the brine density near the surface of a
The study of convection generated by a heated horizorgaline lake (Wooding et al. 1997). In all of these cases the
surface underlying a fluid-saturated porous medium ha®sence of thermal or solutal instability will cause an in-
attracted much interest in recent years due to its apmlieased mixing, which is generally undesirable. In this pa-
cation to the sudden heating of porous rocks from belg@er we shall analyze situations caused by sudden heating
such as might occur in volcanically active regions. Ras the exemplar of the two different cases, although they
cently, convection induced by the sequestration o @0 are essentially identical when the Boussinesq approxima-
saturated porous rocks during oil recovery has receivedtiin applies.
tention (Riaz et al., 2006). Indeed, such convection could When a semi-infinite cold domain has the temperature
easily occur during the long-term underground storagéits lower impermeable surface raised suddenly, the tem-
of CO, gas, as described by Xu et al. (2004), Socoloperature field evolves according to the standard comple-
(2005), and Ennis-King and Paterson (2005), when sumentary error function conduction solution, as given by

1091-028X/10/$35.00 (© 2010 by Begell House, Inc. 1039



1040 Selim & Rees

NOMENCLATURE
a  related to disturbance amplitude Greek characters
A amplitude of disturbance «  thermal diffusivity
g  gravity B  expansion coefficient
k  wavenumber of disturbance n  similarity variable
K permeability 8 nondimensional temperature
L natural length scale w  dynamic viscosity
N number of modes used p  density
p  pressure T  scaledtime
q heat transfer VP  streamfunction
qn heat transfer for mode
Ra Darcy—Rayleigh number Superscripts and subscripts
t time ¢ neutral/critical
T  dimensional temperature conditions
u horizontal velocity i initiation time
v vertical velocity s subharmonic transition
x  horizontal coordinate w  wall
y  vertical coordinate oo ambient

Carslaw and Jaeger (1986). This situation is potentiallgnvection. Instead, the full linearized disturbance equa-
unstable since relatively heavy fluid lies over relativeliyons, which are parabolic in time, were solved numeri-
light fluid. A Rayleigh number may be defined using eally in order to assess when disturbance ceases to decay
length scale that is based upon the thickness of the evand begins to grow, thereby determining a critical time.
ing hot region. This value increases as time progressagter a large number of different disturbance wavelengths
and therefore a critical time for the onset of convectiomas considered, a neutral curve was constructed that re-
should be expected. Rees et al. (2008) discuss the mkatgs the critical time and the disturbance wave number. It
ways in which this criterion for the onset of convectiomwas found that the critical time also depends on the time
may be obtained. Various methods have been proposg¢dvhich the disturbance is introduced (unless this time
such as quasistatic theory (i.e., a frozen-time theory) asdvell before the smallest achievable onset time). More
a local Rayleigh number analysis, which are approaurprisingly, it also depends on the manner in which one
mate, but which give a rough idea of the time of onsattempts to define instability (i.e., on how one defines the
and the expected critical wave number. Energy analystength of the evolving disturbance). The resulting neu-
and amplitude theory (in the sense of solving the tim&al curves were compared with the results of a quasistatic
dependent disturbance equations) yield results that shaaifrozen-time approximate theory. The earliest onset time
be expected to tally with experimental results. Howevavas the one that employed a thermal energy functional
these comparisons and the discussions surrounding thenthe measure of the disturbance amplitude. In general,
are lengthy; therefore, the reader is referred to Rees eftalvas found that convection occurs much earlier than is
(2008), and the references cited therein for further infqredicted by the approximate theories. Moreover, and to
mation. one’s initial surprise, it was found that growing cells al-
The present paper is an extension of work by Seliways eventually restabilize and decay.

and Rees (2007a, 2007b), hereafter referred to as Parts The linear theory was extended into the nonlinear re-
and Il. The former of these papers did not rely upon @me in Part Il in order to determine how finite-amplitude
approximate theory to give a critical time for the onset dfisturbances evolve. A mixed finite-difference and Fou-
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Developing Thermal Front Subharmonic Instabilities 1041

rier series method was used to follow the evolution of w= _@ (1b)
nonlinear cells. Although detailed results were given on Ox

the effects of varying the initiation time and amplitude of dp

the disturbance, the most important feature that was found v=- ay +0 (1c)
is that even nonlinear cells eventually restabilize and de-

cay. Indeed, nonlinear cells were found to restabilize ear- 09 90 00 9’0 9%

: k ; _ —du—4v— =+ — (1d)
lier than their small-amplitude counterparts. This property ot ox dy  0x%  Oy?

of restabilization is seemingly at odds with the fact tha,o appropriate boundary conditions are as follows:
the Darcy—Rayleigh number based on the thickness of the

evolving basic state continues to grow, and therefore the, — . =0, 6=1 and y —oco: v,06 =0 (le)
whole configuration becomes increasingly thermoconvec-
tively unstable with time. The aim of the present paperyghile 8 = 0 everywhere within the porous medium when
to begin the process of resolving this apparent conflict.t = 0. In Egs. (1a) and (1b} andy are the horizontal

In this paper, then, we are interested in the role playardd vertical coordinates, respectively, whileandv are
by secondary instabilities of the evolving nonlinear cellthe corresponding seepage velocities. In additids,the
That secondary instabilities should form the correct mogeessure whild is the temperature.
of disturbance may be predicted using the fact that theltis essential to mention that there is no physical length
basic thermal boundary layer thickness grows in timsgale in this semi-infinite domain, but that it is possible to
and larger wavelengths of cells (i.e., smaller wave numiefine a length scale in terms of the properties of the fluid
bers) are required to ensure that convection cells remaird porous matrix:
with roughly anO(1) aspect ratio. The shape of the neu-
tral stability curve is also such that the time interval over L= Ho 2)
which growth can occur is much longer for smaller wave PR K (Tw — Too)

numbers. Therefore, it is worth investigating Whetherse\ﬁherep g, B, K, Ty, Too, 1 and o are the reference
’ 1 ’ 1 w o<

e i eelniy, oavi, oefcientofcbicl expansion,perme:
strona convection to bgmaintained at Iéter timgs agoility, wall temperature, ambient temperature, dynamic
9 ' vjscosity, and effective thermal diffusivity, respectively.

We concentrate on th? 2.1, 3:2, and 4:3 SUbharmquﬁis definition of the length scale means that the usual
cases where the respective wave numbers of the p“mﬁré'rcy—Raerigh number takes a unit value

and subharmonic modes are in the ration.

Ra= pgBKL(Ty — Too)/pnx = 1. 3)

2. GOVERNING EQUATIONS AND BASIC

SOLUTION After eliminating pressure between Egs. (1b) and

(1c) and on introducing stream functian which is de-
We are considering the instability of a basic state thfined according to
is composed of a quiescent semi-infinite region of satu-
rated porous medium at the uniform cold temperaiure w = N and v = N (4)
in which the lower horizontal boundary has its tempera- dy Ox
ture raised suddenly to a new uniform lev&], where
T, > T.. The porous medium is considered to be h
mogeneous and isotropic, and the solid and fluid pha
are in local thermal equilibrium. We assume that the flow 2P 9 99
is governed by Darcy’s law modified by the presence of 222 T o2 = o (5a)
buoyancy and subject to the Boussinesq approximation.
Thus, the governing equations for the fluid motion and 90 owoe apae 920 9%0
temperature field for buoyancy-driven convection are ex- ot oroy yor o a2 (5b)
pressed in the following nondimensional form:

then the continuity equation is satisfied. Equations (1b)—
Eég) now reduce to the pair

which are to be solved subject to the boundary conditions
ou v

%"’aiy_o (1) y=0: V=0, =1 and y—oo: P,0—-0 (5¢C)

Volume 13, Number 12, 2010



1042 Selim & Rees

and the initial condition that 0(z,n, 1) = erfcn + %eo(n,”f)
Pp=06=0 at t=0 (5d) N (10b)
0, (1, k
Therefore, at = 0, the temperature of the lower bound- + Z (n, 7) cos nkz

=1
ary of the semi-infinite region of porous medium is raised "
suddenly from O to 1 where it remains for alt 0. wherek is the wave number an is the truncation level.
The basic conduction profile is independent:ofith  In Part | we retained only thg, and®; terms since they
no flow, and the thermal energy equation reducesto Wwere assumed to be infinitesimally small in magnitude.
Therefore, nonlinearities were neglected in order to form

@ — @ (6) a linearized stability theory. In Partip; and6, formed
ot oy? the primary mode and this mode interacted with itself to

Equation (6) admits the well-known solution, induce components with wave numbeks 3k, and so on.
o oo The term%@o yields the mean change to the basic state
0 = erfcn = —/ e % d§, (7) due to the presence of convective cells. In this paper we

VT shall refer to the paif,,, 8,,) as moden.

where the similarity variable is given by The substitution of the expansions (10) into Egs. (9a)
y and (9b) is very lengthy to present and has been omitted
n= Tﬁ (8) for the sake of brevity. The resulting system is comprised

of 2N + 1 second-order partial differential equationsjin

In this paper we choose to consider disturbances t0 §}&y |n the numerical simulations of Part I, the trunca-
basic profile given in Eq. (7) by transforming the goVo jevel was chosen to b& = 5, which was sufficient

erning equations into the new coordinate systenT), gjnce the magnitude df; was always very small com-
wheren is given above and = /% this transformation pared with unity. The full system was then solved by a
of ¢ to T avoids the explicit appearance of fractional pOWsandard Keller-box method using the numerical differen-
ers of within the governing equations. Equations (5tion methodology described by Lewis et al. (1997) to
and (5b) now become obtain the Newton—Raphson iteration matrix.

A 00 0% A 5,00 9 In the present paper we are interested in how subhar-

T onz + omz T o (98)  monic disturbances destabilize the solutions obtained in

20 20 990 5%0 Part 1l. For the 2:1 subharmonic case, mode 2 (which
2T 4 27 <8‘1’ _ ‘1’) 4T272 has wave numbek) is termed the primary mode, while

ot dzom  On dx Oz (9b) mode 1 is the potentially destabilizing subharmonic. For

020 5 00 the 3:2 case, mode 3 forms the primary mode while

+@ + ﬂ% mode 2 is the subharmonic disturbance. This naming

Given that the coefficient df on the right-hand side of Scheme follows in the obvious way for the 4:3 subhar-
Eqg. (9a) increases with time, it is clear that the strength'&nIC Case.
the buoyancy forces also increases. Physically, the thick-In general, then, thermal disturbances are introduced
ness of the region over which the temperature varies fréhthe initiation timet = ; for a given wave numbek
1 on the lower boundary to a nominal value, such as 0.@0d the disturbance profiles take the form
also increases with time, and therefore a local Rayleigh
number based on the thermal boundary layer thickness is 0, = Apne™" (11)

seen to increase. . ) )
where A,, is the amplitude of the mode disturbance.

Part Il showed that the mode shape is largely irrelevant, as
the disturbances quickly evolve to a common shape that
In Part I, we undertook a numerical investigation of this essentially independent of the initial disturbance shape
nonlinear evolution of spanwise periodic disturbances bpd time of introduction. For the nonlinear study of Part 11
taking a truncated spanwise Fourier expansion of the fowe set4d; = A and A4,, = 0 otherwise. Here, for the 2:1
N case, both4; and A, will be nonzero withA, > A,
W(a,m, 1) = le)n(n,”t) sin nka (10a) Since mode 2 is to be destabilised by mode 1. All other
n=1

3. NUMERICAL METHOD

A,, values will be set to zero. Likewise, for the 3:2 case

Journal of Porous Media



Developing Thermal Front Subharmonic Instabilities 1043

we will have A3 > A, with all other values of4,, set to Of more importance is the earliest time after which dis-

Zero. turbances grow; for the quasistatic theory this critical time
Given thatV = 5 was the smallest truncation level tha@nd its associated wave number are given by

yielded reliable results in Part Il, we need to take= 10

for the 2:1 casel = 15 for the 3:2 case, ani¥ = 20 for T =12.944356 and k. = 0.069623 (12a)
the 4:3 case. : .

A rectangular domain im andt was used where while the corresponding data for the exact theory are
ranges from 0 to 10 with the uniform step of 0.05, this T, = 89018 and k. = 0.07807 (12b)

maximum value of} being sufficient to contain the evolv-
ing disturbance, while a step length®1 was used in the Thus, disturbances always decay whes 8.9018.
T direction.

Fo_r r_eferenc_e, Fig. 1 depicts the neutral stability chaL{'- NUMERICAL RESULTS
acteristics obtained in Part I, and forms the context into
which to set the present computations. Two neutral curvgsthis section we present a detailed account of how the
are shown, namely, that obtained using a quasistatic thgesence of subharmonic disturbances affects the evolu-
ory (continuous curve) and that obtained by using an di¢n of the primary mode. In all cases we shall take- 8
ergy integral to determine the magnitude of the evolas the initiation time for both the primary and the subhar-
ing disturbance (symbols). Disturbances decay when thenic. This leaves us with a choice of the wave number,
wave number and time correspond to locations below e type of subharmonic (i.e., 2:1, 3:2, or 4:3), and the
curve, to the right of the right-hand branch and to tramplitudes of the initiating disturbances. The strength of
left of the left-hand branch, otherwise they grow. Fdhe various horizontal Fourier modes may be gauged in
the quasistatic approximate theory disturbances for whigtims of the surface rate of heat transfer of each:
k > 0.101053 (see Part I) are always destined to decay, 90
i.e., they are stable. All other disturbances decay until qn(T) = —
they first cross the curve vertically, after which point they o In=0
grow, but then they restabilize and decay upon crossifige overall evolution of the flow is also assisted by the

the upper branch of the curve. The equivalent maximufeat transfer footprint of disturbance(z, t), which is
wave number for the exact theorykis= 0.1124. defined as follows:

(13)

50

N
1
q(z,T) = 5 + E qn (T) cos nkx (14)
n=1

The expression foy is useful, in particular, for show-
ing how many convection cells are present at any point in
time, and for showing when the peak rates of heat transfer
occur.

30t
4.1 The 2:1 Subharmonic Case

In this case we specify a relatively large value of am-
plitude A, of mode 2 (the primary mode) and attempt
to destabilize it with a small disturbance in the form of
mode 1. Figure 2 represents a typical set of cases where
the wave number of the subharmoniéis- 0.035, so that
the primary mode has a wave number0di7. We have
chosend, = 107! as the initial amplitude of the primary
000 0.02 0.0¢ 0.06 0.08 0.10 0.1z  mode.Aselection of values of; have been used to show
k the influence of the amplitude of the subharmonic on how
quickly the primary mode is destabilized. Also included
FIG. 1: Neutral stability curver againstk. is the basic case witll; = 0 in order to show how the

201

10r
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1044 Selim & Rees

) q2 gl q2 (h,‘;’ ‘
0
2 qo0 2
-4
q0
-6 6
25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
(a) A1 =0 T (b) Ay =107 T
2 q1- i
a2 / a2
0
-4
q0 q0
,6 0
25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
(c) Ay =10~* T (d) Ay = 1072 T

FIG. 2: Variation witht of the surface rates of heat transfgy, corresponding to the modes= 0,1, 2---. These
simulations correspond tg = 8, £ = 0.035, andA4, = 10! and a selection of values df; .

primary mode varies without subharmonic disturbanceste of heat transfer due to the basic temperature profile.
being present. Solutions are presented in terms of the Sthierefore, strongly nonlinear effects have alteredathe
face rate of heat transfer of the different Fourier modesindependent background state from that of the solution
Concentrating first on the unrestricted evolution of tiggven in Eq. (7), and it is this that causes the premature
primary mode, for whictd; = 0, both Fig. 2 and the datarestabilization when compared with linearized theory.
it represents show that the primary mode begins to growsConcentrating now on how subharmonic disturbances
at a time that is roughly consistent with the= 0.07 alter the evolution of the primary mode, Fig. 2 also pre-
mode in Fig. 1. It is worthy of note that the neutral curveents the effect of three different subharmonic amplitudes,
shown in Fig. 1 corresponds to a thermal energy criterieh = 10~°, 10~4, and10~2, while keeping all other pa-
which gives an earlier onset time a curve which is basetineters fixed. We note that the subharmonic, for which
on the surface rate of heat of heat transfer; see Part | fdr & 0.035, has a later onset time and a much later resta-
detailed discussion of this point. The primary mode thduilization time than the primary mode, which has a wave
decays atr = 45, which is well before the stabilizationnumber 0f0.070, at least for linearized theory (see Fig. 1).
time for linear theory, which is roughly = 75. The |In all three cases the subharmonic appears very suddenly
strength of the nonlinear convection may be gauged by tlkile the primary mode is undergoing a slow decline. In
magnitude of%qo, which, at its peak, almost doubles théact, whenA; is much smaller than0—2, the primary

Journal of Porous Media



Developing Thermal Front Subharmonic Instabilities 1045

mode has already decayed substantially before the ssiaced intervals centered at zero. Therefore, the levels
harmonic begins to grow, and the late appearance of tlay from subfigure to subfigure. Four whole wavelengths
subharmonic is due entirely to how small its amplitudef the primary mode are depicted, but the subharmonic
has become since= t; and the need to be able to grovinstability reduces this to two wavelengths. The evolution
again to anO(1) magnitude. However, whed, is as of the primary mode, for whicd; = 0, shows a clear
large as10~2, the subharmonic grows well before th@eriod of growth followed by decay. The strength of the
primary modes decay greatly. Figure 2 also shows thainlinearity is indicated by the lack of symmetry between
destabilization of the primary mode occurs increasingheighboring thermal cells. The four strongest cells corre-
early asA; increases, but that the peak magnitudepf spond to situations where the fluid is moving toward the
decreases ad; increases. In Figs. 1 and 2 the behawsurface, bringing cold fluid downward and increasing the
ior of the higher modes is most easily illustrated by notate of heat transfer. The weaker cells, which interleave
ing the heights of the various maxima situated at 90 the stronger ones, correspond to outflow, and these rise up
in Fig. 2(b); here, the highest maximum corresponds ft@m the surface (see Part I1).
mode 1, the next to mode 2, and so on. When subharmonic disturbances are present, the ini-
The behavior of the mean rate of heat trangfealso tial evolution of the primary mode is unaffected until well
deserves some discussion. In Part Il we saw that the maafter they have achieved their maximum rate of heat trans-
mum magnitude of is attained at roughly the same timéer. In fact, the bottom half of each of the subfigures
as the maximum value of the heat transfer since the paith A; # 0 are almost identical to the subfigure with
mary mode is attained. The large valueggfis a con- A; = 0. However, once the subharmonic appears, the
sequence of the fact that the mean temperature field pamary cells are destroyed rapidly, as seen by the very
been altered substantially by the strongly nonlinear carlese spacing of the isotherms. In fact, the subharmonic
vection pattern. Thereafter, the magnitudegpélecreases is so strong that the alternate cells have lifted from the
rapidly, andg itself changes sign. This feature also osurface, as will be seen in Fig. 4(a). Thus, the contours
curs here. However, when the primary mode is destalni-the very top parts of the nonzerb, subfigures corre-
lized, the magnitude af, rises rapidly once more as thespond to two periods. Figure 3 also shows very clearly
subharmonic mode is established, and then it falls awlagw different values ofd; affect the time at which the
again as the subharmonic mode eventually begins to debharmonic appears.
cay. Figures 4(a) and 4(b) show the detailed isotherms and
Figure 3 shows an alternative view of the solutiorstreamlines of the evolving disturbance, respectively, at
shown in Fig. 2 by depicting the isolines of the surfacarious values of for the A; = 102 case, which is cov-
rate of heat transfer of the disturbance as a function okred in Figs. 2 and 3. In Figs. 2 and 3, two whole horizon-
andr; i.e., the heat transfer footprint given by Eq. (14}al periods of the primary mode are depicted, and this cor-
In each subfigure, contours are drawn ustigequally responds to one period of the subharmonic. In Fig. 4(a),

7 =100

HiL

A =106

FIG. 3: Isolines of the surface rate of heat transtgr;, t), for the wave numbelk = 0.035, usingt; = 8, Ay =
10—, and a selection of values of;. The horizontal coordinate varies between= 0 andx = 87t/k; i.e., four
horizontal periods, and the vertical axis varies betweent, = 8 andt = 100.
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il

FIG. 4: (a) Contours of the perturbation temperature profiles @mdtreamlines of the flow at chosen times for the
evolution of the subharmonic instability given iy = 8, k = 0.035, A; = 1072, andA; = 10~!. The horizontal
coordinate varies betwean= 0 andx = 47t/k; i.e., two horizontal periods.

7 =60
(b)
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the transition from the fully developed primary mode tthe line, as the line represents the onset criterion. Given
the fully developed subharmonic is shown. At first, thiée information represented by Fig. 2, the primary mode
two thermal cells on either side of the central cell shrirtken reaches a maximum and subsequently decays. When
compared with the others due to inflow, and it is thesee symbol representing the chosen valud ofs encoun-
cells which are responsible for the higher rates of hdated, itis at this pointin time that the surface heat transfer
transfer seen in Fig. 3. When= 50, the outer half-cells due to the growing subharmonijg is equal to that of the
have grown to such an extent that all three cells in tdecaying primary mode, as given by.
middle are smaller. Although the central cell was larger Focusing first on the cage= 0.04, for which the pri-
than its two nearest neighbors when= 35, it shrinks mary mode has a wave numbei0o§8, it is clear that for a
and does so to such an extent that these neighbors ddliesen value ofl,, the transition time increases with in-
it to extinction at the surface, whereupon they grow amdeasing value od, i.e., for decreasing amplitudes of the
merge. Att = 70 the process is complete and the rabharmonic disturbance. This happens because it takes a
of heat transfer at the heated surface is now very large lorger time for the subharmonic to grow until it reaches
deed, as is seen by the closeness of the isotherms than€}(1) magnitude. When we consider the variation in the
and by the magnitude af, in Fig. 2. Whent = 100 the transition time as a function of,, it is also clear that the
isotherm spacing has increased, thereby reducing the sw@mrsition time increases ak, decreases. This behavior
face rate of heat transfer once more. may be understood easily, for a reduction in the strength
Figure 4(b) depicts the corresponding behavior of tloé the primary mode requires a less strong subharmonic
streamlines and this shows an alternative view of the stib-destabilize it.
harmonic instability. Between = 10 andt = 35 the Whenk = 0.035 we obtain a similar pattern of tran-
momentum boundary layer decreases in thickness. T$iigon times as fok = 0.04, but they occur later because
happens because eaph function, as given in Eq. (9a),the primary mode has the wave numlfed7, which is

satisfies an equation of the form very close to the critical wave number given in Eq. (12),
and therefore it grows more strongly than that given in
P! — 4n? k), = —4nk®T?0, (15) Fig. 5(a). This trend continues &sis reduced, and be-

comes more marked because the linearized onset time for

and therefore, for a giveh, the e-folding distance de-the subharmonic now begins to grow quite rapidly com-
creases as increases. Afterr = 35 the inner two cells pared with that for the primary mode. Thus, the 2:1 sub-
gradually weaken forming a pair of recirculating regionsarmonic route to destabilization becomes less effective
which gradually diminish in size and strength. Just aftgsr these wave numbers.
T = 60 they disappear, leaving a relatively thick region A corollary of the above conclusion is that if the pri-
where the subharmonic forms the dominant solution. Theary mode is sufficiently weak, then the subharmonic
e-folding distance of the subharmonic is double that of theay even be too strong for the “primary” mode to become
primary mode, which is why the disturbance has roughdgtablished. In fact, the absence of data betow 32
doubled in thickness. At later times the thickness of the Fig. 5(a) is because the subharmonic grows in prefer-
subharmonic will begin to decrease once more. ence to the primary mode and establishes itself first. This

Figure 5 shows a summary of the situation depictedatso explains the presence of some “anomolous” transi-
Figs. 2—4 and of a much larger set of computations. Figpn points in Fig. 5(d) for smaller values af in this
ure 5 displays what we shall call the transition time ascase, the data points represent a reverse transition where
function of the initial amplitudes of the primary mode anthe mode with the smaller wave number is destabilized by
the subharmonic. The transition time is defined as be- the mode with the higher wave number.
ing that time at which the values gf andg, have exactly ~ When the wave number of the primary mode is greater
the same magnitude. The valueon the abscissa correthan0.08 (and the subharmonic has a wave number grea-
sponds to an initial subharmonic amplitudetaf = 10~¢  ter thank = 0.04), the opposite effect is true. In this case,
(i.e.,a = —log,, A1), while the different symbols corre-the transition times are earlier because the onset times for
spond to different initial primary cell amplitudes; thesthe primary mode and its subharmonic are much closer,
are indicated in the caption to Fig. 5. as may be seen in Fig. 1, and there is now only a small

The interpretation of Fig. 5 is as follows. Below thénterval of time over which the primary mode can grow.
horizontal line all modes of the chosen wave number dBherefore, this primary mode is easier to destabilize using
cay, but the primary mode begins to grow upon crossisgbharmonic disturbances.
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FIG. 5: Variation in the values of the transition time,, with « = — log;, A, for different values of4, for the wave

numbergqa) 0.04, (b) 0.035, (c) 0.03, and(d) 0.02. The line near tar = 13 corresponds the onset of instability of the
primary cell. The symbols, ¢, 4, andx refertoA, = 101, 1072, 103, and10~*, respectively.

4.2 The 3:2 Subharmonic Case mode,4; = 0, and A, taking the values), 1076, 1074,
and10~2. Figure 6 represents the variation of the surface
We now turn to the 3:2 subharmonic route to destabilizeate of heat transfey,, with .
tion. Here, we consider the primary mode to have wave When A, = 0, bothgs, the surface rate of heat trans-
number3k while the disturbance has wave numi2ér fer of the primary mode, ang)), the mean change of heat
We shall consider two cases in detail, namely, those teansfer, follow precisely the same evolutionary path as
which the primary mode has wave numbei¥ and0.09. shown in Fig. 2 when neglecting the influence of the sub-
These cases represent the typical behavior found duriragmonic disturbance, as the wave number of the primary
our various simulations. mode is the same in both cases. The other three subfigures
We consider first the case whe3g = 0.07. We take show how the primary mode is affected by the presence
As = 0.1 as the disturbance amplitude of the primamyf three different subharmonic disturbances. In all three

Journal of Porous Media



Developing Thermal Front Subharmonic Instabilities 1049

75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
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FIG. 6: Variation witht of the surface rate of heat transfer, corresponding to the modes,= 0, 1, 2, and3. The
simulations correspond tg = 8, 3k = 0.07, andA4; = 0; A; = 10~!; and a selection of values df,. Short dashes:
q1; medium dashesjs; long dashesy,; unbroken curvesy, ¢, and all other modes—this convention also applies
to Figs. 9 and 12.

of these casesy; and ¢, begin to grow at roughly thein Fig. 6. As before, contours are drawn using 20 equally
same rate, although with different signs. However, modefaced intervals in each subfigure with the middle con-
eventually grows faster, takes over as the dominant motir corresponding to a zero value @fThe growth and
with mode 2 following the growth of mode 1 as the lattatecay of the primary mode, i.e., whel3 = 0, is shown
is the first superharmonic of the former. for reference. The chief difference between these isolines
On comparing Fig. 6 with Fig. 2, we see that modednd those in Fig. 3 is that the peak rate of heat transfer
also grows very rapidly here, although it is not the suler the present case is maintained at a roughly constant
harmonic mode that was introduced. Of interest is the fdevel after mode 1 has become established, whereas, for
that destabilization occurs earlier for the 3:2 case than fbe 2:1 case, the heat transfer begins to decay steadily just
the 2:1 case, and the largest absolute mean change tcafter the peak is reached. In fact, this feature is more ev-
surface heat transfey, achieves larger values. Thus, itdent when comparing the curves in Fig. 6 with those
would appear that the 3:2 destabilization is stronger in itsFig. 3.
effect than the 2:1 case. Figures 8(a) and 8(b) represent the detailed isotherms
Isolines of the surface rate of heat transfer of distuend streamlines of the evolving disturbance, respectively,
bances;(z, ) are shown in Fig. 7 for the cases displayeat different chosen times for thé, = 10~2 case. Three
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FIG. 7: Isolines of the surface rate of heat transtér;, t), for 3k = 0.07, usingt; = 8, A; =0, A3 = 107!, and a
selection of values afl;. The horizontal coordinate varies betwees:- 0 andx = 127t/k; i.e., six horizontal periods,
and the vertical axis varies between- t; = 8 andt = 100.

periods of the primary mode are shown and these redst@ws that the mode has become nonlinear, although not
to one period of mode 1. The evolution of the thermatrongly so.
cells with time is fairly complex and centers around the Figure 9(b), for whichd, = 1075, gives an evolution-
fact that next-but-one neighbors are not equal in strengtiny behavior that is identical qualitatively to those shown
Nonlinear competition then serves to inhibit some thermial Fig. 6, in that while mode 2 destabilizes the primary
cells and to enhance others. If, in the top row of Fig. 8(ajode (mode 3), it is mode 1 that appears. On the other
we were to label the cells from O to 6, then cells 0 andhand, when the initial amplitude of mode 2 is increased to
combine first, thereby eliminating cell 1. The same hap, = 104, there is a clear, but short, interval in which
pens between cells 4 and 6 where cell 5 is eliminated.rhode 2 is dominant before it, too, is overtaken by mode 1.
the meantime, the middle cell grows and we are left witthis may be seen in Fig. 10(c) at the point marked by
just one period of a cellular pattern. During the transitioan asterisk where there are now four periods showing, as
then, two cells disappear while two pairs merge; thereempared with the original six periods. At larger values
fore, at no time do we see a pattern which is at all likef T there are only two periods of the mode 1 cell.
a mode 2 pattern with two periods being evident. A simi- However, wherds = 102, the successive transitions
lar process happens with the streamlines in Fig. 8(b). Bdtbm mode 3 to mode 2 and from mode 2 to mode 1 takes
sets of figures yield a rapidly expanding region of activitglace in a very clear way with long intervals of time dur-
one that is much larger than is depicted in Fig. 4, and thigy which each mode is dominant. Interestingly, Fig. 9(d)
is because the e-folding distance according to Eq. (15klsows that the transition from mode 2 to mode 1 yields
larger due td: being smaller here than for the cases shovamegative value of;, which means that this final transi-
in Fig. 4. tion, a 2:1 subharmonic in effect, yields a pattern that is
Essentially the same figures are now reproduced 1i80° out of phase with those shown in Fig. 3. Figure 10(d)
Figs. 9-11 for the case where the primary mode hagjiges an exceptionally clear representation of both transi-
wave number 00.09. We show these because qualitaions.
tively different behavior may be found for this choice of Some instantaneous isotherms and streamlines of the
wave number. evolving disturbance corresponding to the previous two
Figure 1 shows that the expected interval of growth &fures are shown in Figs. 11(a) and 11(b) for the cases
a mode with a wave number 6f09 is relatively short, A; =0, A, = 10~2, andA43 = 10~!. In Figs. 11(a) and
although significant growth can happen. Thge= 0 sub- 11(b) we see that six cells at= 10 transform into four
figure of Fig. 9 appears to show little activity, but this isells att = 50 by cell merging and removal, and then
simply scaled in the same way as for the remaining subfigto two cells atr = 100. Of particular interest is the very
ures. On the other hand, th, = 0 subframe of Fig. 10 rapid evolution between = 90 andt = 100, where the
shows clearly the period of time over which growth oczells that are placed close to the heated surface strengthen
curs, and the mismatch between neighboring thermal celigidenly.
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FIG. 8: (a) Contours of the perturbation temperature profiles,@)dtreamlines of the evolving flow, at chosen times
for the evolution of the subharmonic instability giventy= 8, 3k = 0.07, A; = 0, A, = 1072, and A3 = 1071,
The horizontal coordinate varies betweer- 0 andz = 67t/k; i.e., three horizontal periods.
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FIG. 9: Variation witht of the surface rate of heat transfeg, corresponding to the modes= 0, 1, 2, and3. The
simulations correspond tg = 8, 3k = 0.09 andA; = 0, A3 = 10!, and a selection of values dff;.
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wv\/
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FIG. 10: Isolines of the surface rate of heat transfgs;, t), for the wave numbeBk = 0.09, usingt; = 8, A; =0,
Az = 1071, and a selection of values df,. The horizontal coordinate varies betweer 0 andxr = 127t/k; i.e., Six
horizontal periods, and the vertical axis varies betweent; = 8 andt = 100.
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7 =100

(b)

FIG. 11: (a) Contours of the perturbation temperature profiles, @mdtreamlines of the evolving flow, at chosen
times for the evolution of the subharmonic instability givenfy= 8, 3k = 0.09, 4; = 0, 4, = 1072, and
Az = 1071, The horizontal coordinate varies betwees- 0 andx = 67t/k; i.e., three horizontal periods.
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4.3 The 4:3 Subharmonic Case Figure 12 shows the evolution of the variogs val-
ues witht, and we find that the ultimate fate of flow de-

Now we will concentrate on the 4:3 subharmonic casgends on the magnitude of the subharmonic disturbance.
where modes 3 and 4 in the Fourier expansion repres@ffien A; = 10~ the primary mode has decayed almost
the subharmonic and primary modes, respectively.  to nothing before mode 2 makes a brief appearance prior

Figure 12 represents the variation of the surface rdtethe establishment of mode 1 as the dominant mode.
of heat transfer,, with t. The wave number of the pri-When A3 takes larger values, the modal exchanges that
mary mode is given byltk = 0.07, and therefore the take place favor mode 2 as the final convecting state, at
subharmonic has wave numbi# = 0.0525. The initial least fort < 200. We suspect that mode 1 will destabilize
amplitudes of modes 1 and 2 are set to zero, and for the evolving mode 2 pattern at later times, although we
primary disturbance we takd, = 10~!. As above, we have not tested this hypothesis.
have used the following amplitudes for subharmonic dis- Of interest is the fact that the mean change to the sur-
turbance:A; = 0, 1075, 1074, and10~2, whereA; = 0 face rate of heat transfey is substantially larger when
is equivalent to having no subharmonic disturbance. Wg = 10~° than when4; takes the two larger values de-
note that we have again chosen the primary mode to hgieted in Fig. 12. Thus, the magnitude of the response is
wave number0.07, so that all three subharmonic case®ot necessarily in proportion to the magnitude of the dis-
(namely, 2:1, 3:2, and 4:3) may be compared. turbance, but depends on complicated modal exchanges.

50 175 200 0 25 50 75 100 125 150 175

(c) A3 =10"" T (d) Az = 1072 T

FIG. 12: Variation witht of the surface rate of heat transfeg, corresponding to the modes—= 0, 1, 2, and3. The
simulations correspond tg = 8, 4k = 0.07 andA; = 0, 4, = 0, A, = 107!, and a selection of values df;.
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The surface rates of heat transfer corresponding to 1eDISCUSSION AND CONCLUSIONS
four subfigures in Fig. 12 are depicted in Fig. 13. Here,
we see that the initial destabilization of the primary moda this paper we have investigated various types of subhar-
is indeed later for the smaller disturbance amplitudes, msnic instability of an evolving cellular pattern in an un-
one might expect intuitively. steady thermal boundary layer in a porous medium. This

Figure 14 shows instantaneous isotherms and streasnan extension of the nonlinear simulations presented in
lines for theA; = 10~2 case, for which mode 2 emerge®art Il where it was found that, contrary to expectations,
as the dominant mode. We have chosen this case the nonlinearly developing cells are always eventually
ticularly because the surface heat transfer data showndatabilized. In the present paper we have paid particular
Fig. 13 do not give a full picture of the complicated evolwattention to the 2:1, 3:2, and 4:3 subharmonic cases, and
tion that takes place. Concentrating first on the isothertihese have all been found to destabilize the primary mode
shown in Fig. 14(a), by the time = 45, the thermal cells of convection. For the 2:1 case we have provided a com-
have either risen or fallen depending on whether they gmehensive set of information on how the transition time
located where there is outflow or inflow. Moreover, thietween the primary and the subharmonic depends on the
amount by which the rising cells have risen varies and thmitial amplitudes of each disturbance. For the 3:2 case
pattern is reminiscent of the Eckhaus (or sideband) instee have found two different routes to destabilization: one
bility, which is a well-known destabilization mechanismvhere mode 3 evolves directly into mode 1 and the other
for Bénard-like problems. When= 55, the disturbance where there is a double transition with mode 3 giving way
pattern has modified rapidly into a form that looks supeie mode 2 and then to mode 1. We have also shown some
ficially like a mode 1 pattern. However, the central cell afimulations for the 4:3 case, where we have obtained an
this pattern has a detailed three-cell structure close to thmisual pattern that consists of one mode near the heated
surface, and it is this structure that caugg$o dominate surface and another further away. We have also found that
in Figs. 12 and 13, and that grows stronglyw@acreases the strength of the response to subharmonic disturbance
further. In fact, wherr = 100 the disturbance pattern is gin terms of the change in mean rate of heat transfer) is
rather unusual mixture of mode 2 near the heated surfa a smooth function of the amplitude of the disturbance
and mode 1 further away. because the identity of the dominant mode also depends

Similar comments may be made about the evolutiam that amplitude.
of the streamlines in Fig. 14(b). The Eckhaus amplitude Given that the passage of time may be interpreted as an
modulation is very clear when = 10, and so is the dual increasing Darcy—Rayleigh number, Ra, it is worth mak-
modal structure whem = 100. ing some comparisons with the classical Darcir8rd

T

FIG. 13: Isolines of the surface rate of heat transfgs;, t), for the wave numberdk = 0.07, usingt; = 8, A; =0,
Ay =0, A, = 107, and a selection of values df;. The horizontal coordinate varies betwees 0 andx = 167/k;
i.e., eight horizontal periods, and the vertical axis varies betweern; = 8 andt = 100.
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FIG. 14: (a) Contours of the perturbation temperature profiles, @dtreamlines of the evolving flow, at chosen
times for the evolution of the subharmonic instability giventoy: t; = 8, 4k = 0.07, A; = Ay = 0, A3 = 1072,
andA4 = 101, The horizontal coordinate varies betwees- 0 andx = 87t/k; i.e., four horizontal periods.
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problem. The first comprehensive study of the stability We certainly intend to investigate how isolated distur-
of large-amplitude convection in a uniform layer heatdzhnces propagate, and preliminary work seems to suggest
from below was undertaken by Straus (1974), who dénat the convection cells that are induced tend to have a
termined the region in wave number/Ra space in whiglavelength that increases with time (Selim 2009). Riaz
steady two-dimensional convection is stable. Generakgy, al. (2006) also provides much information on chaotic
as Ra increases, the range of wave numbers for whaghlular development in two dimensions, but as yet no
convection is stable moves toward higher wave numbettsree-dimensional simulations have been undertaken; it
This is consistent with the computations of Georgiadis hoped that this issue also will be addressed in the near
and Catton (1986), who found the wave number that cdwture.
responds to the largest rate of heat transfer at any cho-
sen v_alue of Ra also increases as Ra increases. TheA@kNOWLEDGEMENTS
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Mixed convection flow in a two-dimensional square cavity filled with a Darcian fluid-saturated uniform porous medium
is considered. The cold vertical wall at the left is moving up whereas the hot wall in the right is moving down. The fixed
top and the bottom walls are thermally insulated. The normalized governing equations are solved numerically with
appropriate boundary conditions by finite volume approach. The code has been validated with previously published
work and the results are found to be in excellent agreement. The study is conducted by varying the Richardson number
Ri = (Gr/Re®)[Ri = (Gr/Re*)], Darcy number (Da = x/H?«, Grashof number Gr = (gBATH?/v*)[Gr =
(gBATH? /v?)]. The Prandtl number is fixed at 0.71. A parametric study is conducted and a set of streamlines and
isotherm plots are presented. A heat transfer correlation is also presented.

KEY WORDS: lid-driven cavity, mixed convection, porous medium, numerical simulation

1. INTRODUCTION Reynolds number9)(< Re < 3000). The computed re-
sults indicate the effect of the Richardson number on the
Heat and fluid flow studies in porous medium have be#law field. The study of mixed convection in a square en-
done on many occasions on geothermal systems (Charigsure with side walls moving was done by Oztop and
1978), drying of porous solids, solar collectors (IderiaDagtekin (2004). They considered the range of Richard-
1980), furnaces, and many others. Moreover, mixed caon numbers.01 < Ri < 100 in which the Prandtl num-
vection problems with lid-driven flows in enclosures areer was fixed at 0.7. For Rk 1, the influence of mov-
encountered in a variety of engineering applications img walls during heat transfer is the same when the side
cluding cooling of electronic devices, lubrication techwalls move in the opposite direction regardless of the di-
nologies, chemical processing equipment, float glass preetion of the walls. For the case of opposing buoyancy
duction (Pilkington, 1969), etc. lwastu et al. (1993) reand shear forces, and for Ri 1, the heat transfer is some
ported mixed convection in a lid-driven cavity with a stawhat better due to the formation of secondary cells on the
ble vertical temperature gradient. The flow and heat trangalls. Kuhimann et al. (1997) have presented experimen-
fer study of viscous fluid contained in a square cavity hate and numerical results on the steady flow in rectangular
been done, where the top wall is moving at constant spaxdities. The flow is driven by moving two facing walls
and the remaining walls are kept fixed. The isothermiangentially in opposite directions. They concluded that
top wall is hotter than the cold bottom wall and the sidde basic two-dimensional flow was not always unique.
walls are adiabatic. Numerical experiments were reportédr low Reynolds numbers, the flow consists of two sep-
for a range of Richardson numbefs £ Ri < 10%) and arate co-rotating vortices adjacent to the moving walls.

1091-028X/10/$35.00 (© 2010 by Begell House, Inc. 1059
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NOMENCLATURE
A surface area (#) u, dimensionless resultant velocity
Da Darcy numberg/H?) U, v dimensionless velocity components
g gravitational acceleration (ntjs along ,Y) axes
Gr Grashof number [Ge (gBATH? /v?)] z*,y* dimensional Cartesian coordinates (m)
H enclosure length (m) x,y dimensionless Cartesian coordinates
i x-direction grid point
j y-direction grid point Greek Symbols
Ke effective thermal conductivity of the Xe effective thermal diffusivity of
porous medium (W/m K) porous medium {ra)
K thermal conductivity of the solid B fluid thermal expansion coefficient
(W/m K) Bs solid expansion coefficient
k thermal conductivity ratiok/k¢) 0 dimensionless temperature
Nu local Nusselt number T -17.)/(T, —T.)]
Nu average Nusselt number v effective kinematic viscosity (fis)
n time level K permeability of the porous medium ¢n
p nondimensional pressure
Pr Prandtl numbeny/ c.) Subscripts
Q constant c cold wall
Re Reynolds number of the fluidV{H /v) f fluid
Ri Richardson number [Ri- (Gr/Re?)] h hot wall
T dimensional temperaturéQ)
u*,v* dimensional velocity components along Superscripts
(xy) axes (m/s) * dimensional form

Blohm and Kuhlmann (2002) have investigated experiras used and the influence of the Richardson and Darcy
mentally the flow in a rectangular cavity driven by twaumbers on the flow was studied. Many authors have
facing side walls that move steadily in anti-parallel direported mixed convection flows with Darcian and non-
rections for Reynolds numbers up to 1200. They coBarcian effects along vertical plates embedded in porous
cluded that beyond a first threshold, robust, steady, thresedia (e.g., Lai and Kulacki, 1991; Hsieh et al., 1993) or
dimensional cells bifurcate super-critically out of the bana rectangular geometries filled with porous media (e.g.,
sic flow state. The oscillatory instability is found to bé&lithiarasu et al., 1997, 1998). Recently, Vishnuvardha-
tri-critical if both side walls move with the same velocharao and Das (2008) studied the mixed convection flow
ity (symmetrical driving). The non-Darcian effects wera a square cavity filled with porous medium, in which the
considered by Vafai and Tien (1981), where they studitft wall was moving up and was maintained at a constant
the inertia and boundary effects on flow and heat transéaid temperature—thus opposing the buoyancy force. The
in porous media. Lauriat and Prasad (1989) studied tfight wall also was moving up with the same velocity and
relative importance of inertia and viscous forces on natwas maintained at a constant hot temperature—thus aid-
ral convection in porous media via the Darcy—Brinkmarirg the buoyancy. These effects have been reported and an
Forchheimer solutions for a differentially heated vertempirical correlation has been presented. In the present
cal cavity. Khanafer and Chamkha (1999) investigatstldy, the mixed convection flow in a square cavity filled
a mixed convection flow in a lid-driven cavity enclowith porous media is considered. The left wall is mov-
sure filled with a fluid-saturated porous medium. In theing up and is maintained at a constant cold temperature,
work, the Brinkman-extended Darcy equation of motiowhereas the right is moving down and maintained at a
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constant hot temperature. The objective of the preseguations can be written using the following dimension-
work is to consider the Brinkman-extended Darcy equiess variables:
tion of motion with the convective terms included, as was

used by Khanafer and Chamkha (1999). The governing +=2, y=2 =2 =2
parameters are Richardson numbers (Ri) and Darcy num- H H Vi Vi 1)
bers (Da) for a range of Grashof humbers (Gr). p= P 0_ T-T,

poV2’ Ty — T
2. PROBLEM DESCRIPTION The resulting dimensionless equations are
The physical model considered is shown schematically ou o
in Fig. 1. A two-dimensional square cavity of height +—=0 (2)

is filled with fluid-saturated uniform porous medium and dr 9y

permeability. The top and the bottom surfaces of the cav- 5, 9y,  9p 1 (8%u 9%u w
ity are thermally insulated. The left and the right walls %5 H}aiy:i%JrRie <3x2+6y2> “Dare ©®
are maintained at temperaturé€s and T,,, respectively,
as shown. The left wall is moving up and the right wall ~ dv, v _ dp 1 (9% 0%
is moving down. The velocities of the moving walls are ox Oy dy Re\dz? 09y? )
equal and the directions are as shown. The direction of Gr v
the gravitatipnal for_ce and they coordinate system are + Re  Da-Re
also shown in the Fig. 1.

u@ + U@ — 1 @ + @ (5)

Ox dy Re-Pr\0z2  0y?
3. GOVERNING EQUATIONS
where

Flow is assumed to be two-dimensional, steady, and lam- 5
inar and the fluid is assumed to be incompressible. The Re=V,H/v; Gr= 9RATH :
thermophysical properties are assumed to be constant ex- v? (6)
cept for the body force term in the momentum equation, Da=«/H?* Pr=v/x.

which has been approximated by the Boussinesq approx- , . )

imation. Radiation heat transfer is considered negligibl&'€ dimensionless boundary conditions are given as fol-
with respect to other modes of heat transfer. Inertia effel24/S:

of the porous medium are negligible, which is appropri- Léftwall: v = 0.0, v =1.0,0 = 0.0

ate when the Reynolds number is small (Khanafer andRightwall:u =0.0,v = ~1.0,8 = 1.0

Chamkha, 1999). By considering the assumptions men-10P Wall:u = 0.0, v = 0.0, (98/9y) = 0

tioned above, the nondimensional form of the governirji%l?’o'[tom wall:u = 0.0,v = 0.0, (96/0y) =0
e average Nusselt numbeNy() is calculated by inte-

grating the local Nusselt number (Nu) along the left wall

Porous Medium and is given by X

adiabatic _
vp Nu = / Nu dy (7)
& 0
Te J . Th where the local Nusslet number is defined as
00
Nu=—- —
. ox |, (8)
y mm' Vp
adiabatic 4. NUMERICAL PROCEDURE
x Governing Egs. (2)—(5) are discretized on a structured

collocated grid. The velocity components §) and the
FIG. 1: Schematic diagram and boundary conditionsscalar variables (pressure, temperature) are located at the
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center of the control volume in a nonstaggered man-
ner. The governing equations are solved numerically by
the finite-volume method. The semi-implicit method for 09
pressure-linked equation (SIMPLE) (Patankar, 1980) is o8
used to couple the momentum and the continuity equa- -
tions. In the nonstaggered grid, the momentum interpola-

tion of Rhie and Chow (1983) has been used to avoid the o

checkerboard solution. »05
The deferred quadratic upstream interpolation for con- o4
vection kinematics (QUICK) scheme is employed to min- 03

imize the numerical diffusion for the convective terms

in both the momentum and energy equations (Hayase et

al., 1992). The solution of the discretized momentum and ~ °*
pressure correction equation is obtained by the line-by- 9
line method. The pseudo-transient approach is followed
for the numerical solution as it is useful for situations
in which the governing equations give rise to stability
problems, e.g., buoyant flows (Versteeg and Malalasek-
era, 1996). The iterative procedure is initiated by the solu-
tion of the energy equation followed by momentum equa-
tions and is continued until convergence is achieved. To
get a converged solution, the Euclidean norm was used to
calculate the error (Van Doormaal and Raithby, 1984) and
its value was set to 1® for dependent the variabkgu,

v, 8 and the mass residual was set to-10 An under-
relaxation of 0.2 is used for pressure.

0.2

v-velocity
o

-0.5

5. CODE VALIDATION AND GRID
INDEPENDENCE STUDY

Validation of the developed code was done for mixed
convection flow in a lid-driven enclosure filled with a
fluid-saturated porous medium problem of Khanafer and
Chamkha (1999). Vishnuvardhanarao and Das (2008)
show comparisons of midplangvelocity, midplanev- 09
velocity, and midplane temperature in their Figs. 3(a), DA
3(b), and 3(c), respectively. The results are in very good
agreement with the benchmark solution for the range of
parameters considered. To test and assess the grid in-
dependent solutions, numerical experiments were per- 03
formed for the following grid sizes: 6461, 81x81, 04
101x101, 121x121, and 14% 141, with extreme values

of Richardson numbers (Rt 0.01 and 100) and Darcy
numbers (Da= 10~* and cc). The u-velocity in the e
horizontal midplaney-velocity in the vertical midplane, 0.1
and temperature in the horizontal midplane are shown o
in Figs. 2(a)-2(c), respectively, for all the grid sizes. It

is observed that the curves overlap with each other for
121x121 and 14%141. A grid number of 124121 is

chosen for further computations.

1

07

D&

na

0.5
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(a) Da=10"

(c) Da =102 (d) Da=10"

(e) Da=oo

FIG. 3: Streamline plots for Ri= 1072, Gr = 10% and
for various Darcy numbers (Da)

6. RESULTS AND DISCUSSION

1063

10!, without the presence of porous medium (i.e.,Da
o0) and the computations are carried out. For analyzing
the characteristics, the streamline and isotherms for one
forced convection dominated flow (Rt 10~2) and the
other natural convection dominated flow (Ri 10%) are
reported for different Darcy numbers.

In the present case, the forces generated at the slid-
ing lids are opposite to the buoyancy force. Figures 3(a)—
3(e) and 4(a)—-4(e) represent the streamline and temper-
ature contours, respectively, for Rt 1072, and Gr=
102 for different Darcy numbers. It is observed that for
Da = 10~* [Fig. 3(a)], most of the flow is attenuated
due to the effect of porous medium, convection is lim-
ited to near the sliding lids, and isotherms [Fig. 4(a)] are
nearly vertical, representing heat transfer by conduction.

In this section, the numerical results for mixed convec-
tion flow and heat transfer in a two-sided lid-driven cav-
ity in the presence of uniform porous medium are dis-
cussed. The nondimensional governing parameters are the
Richardson number that signifies the relative dominance
of buoyancy to forced convection and the Darcy num-
ber that inversely accounts for the intensity of porous
medium. To vary the Richardson number, the Grashof
number is fixed at three levels, i.e., a1a0®, and 10,

and correspondingly, the Reynolds number is varied. AIG. 4: Temperature contours for Ri ¥0~2, Gr = 102

each Ri, the Darcy number is varied betweerr4.@nd

Volume 13, Number 12, 2010
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As the Darcy number is increased, the strength of convére contours, respectively, for Ri 10~2 and Gr= 10*

tion is increased. The convection domain becomes lard@r different Darcy numbers. Since Ri is kept constant
and vortices are generated near the moving lid [Fig. 3(bdk Gr is increased to 10Re is increased (Re= 10?)
The vortices grow bigger in size and move closer togetremmpared with the previous case (Rel0?). Because of
[Fig. 3(c)] and they finally merge together and form #he high inertia force, as the Darcy number is increased,
single vortex, which is close to the center of the cavithe vortices are shifted to the corners [Fig. 5(b)] and they
[Figs. 3(d) and 3(e)]. Here, the direction of the vortefinally merge together at early Da 10~2 [Fig. 5(c)].

is clockwise. The isotherm plots also show a gradual iBy the same reason, two small vortices are observed at
crease in the strength of convection, which is observgk top-right and the bottom-left corners. The effect of
by the deviation of the shape of the constant tempethermal convection is observed even at low Bal0—*

ture lines and also the formation of the thermal bounddiig. 6(a)]. The strength increases with the increase in Da
layers on the two vertical walls. The top wall becomdEigs. 6(b)—-6(d)]. At Da= oo the shape of the isotherms
cooler and the bottom wall becomes hotter, which ref=ig. 6(e)] is similar to those in a lid-driven cavity flow
resents forced convection dominated flow. Figures 5(g)roblem. The formation of the thermal boundary layer at
5(e) and 6(a)-6(e) represent the streamline and tempéha-two moving walls is noticed.

(a) Da=10" (b) Da= 10"

©

(c) Da=10" (d)Da=10"

©
—

(e)Da=oo

g

FIG. 5: Streamline plots for Ri= 1072, Gr = 10* and FIG. 6: Temperature contours for Ri 10-2, Gr = 10*
for various Darcy numbers (Da) and for various Darcy numbers (Da)
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Figures 7(a)-7(e) and 8(a)-8(e) represent the streamerge together [Fig. 8(d)]. The direction of this vortex is
line and temperature contours, respectively, forRI0?  anti-clockwise (an effect of the natural convection phe-
and Gr= 10? for different Darcy numbers. In the presentomenon). Even for large Da [Fig. 7(e)], the situation
case, the Reynolds number is equal to 1. As the Ri is higamains same. The isotherms for all Darcy numbers are
there is a relative dominance of natural convection oveearly vertical, indicating the convection currents are very
the forced convection heat transfer. It is noted that flow [Figs. 8(a)—-8(e)].

Da = 10~* [Fig. 7(a)], the flow is confined near to the Figures 9(a)-9(e) and 10(a)-10(e) represent the
sliding lids and the vortices are also confined to the wallsreamline and temperature contours, respectively, for
As the Darcy number is increased, the vortices move awRly = 102 and Gr = 10* for different Darcy numbers.
from the sliding lids [Fig. 7(b)]. Also, new vortices areThe Reynolds number in the present case is 10. For a low
generated at the top and bottom walls of the cavity dm = 10~ [Fig. 9(a)], a vortex due to natural convection
to the natural convection [Fig. 7(c)]. As Da 10!, the is observed at the center. Due to the sliding lids, there are
size of these vortices (top and bottom) increase and they vortices near the side walls. As the Darcy number

(a) Da=10" (b) Da=103

0,25

6875

(c) Da =107 (d)pa=10"

(e)Da=°° (e)Da:oo

FIG. 7: Streamline plots for Ri= 102, Gr = 10% and for FIG. 8: Temperature contours for Gr 102 and for vari-
various Darcy numbers (Da) ous Darcy numbers (Da)
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(e) Da =0 (e) Da = oo

FIG. 9: Streamline plots for Ri= 102, Gr = 10* and for FIG. 10: Temperature contours for R 102, Gr = 10*
various Darcy numbers (Da) and for various Darcy numbers (Da)

increases, the center vortex becomes larger in size and* and Da= oo respectively. The other parameters are
two vortices near the walls are reduced to smaller regioRs = 10~2 — 102 and Gr= 10? — 10%. It is clear that
[Figs. 9(b)-9(e)]. Each one finally splits into two vortices;onvection currents for Da= 10~ are much less when
which clearly shows the dominance of natural convecti@ompared with Da= oo without porous medium). There
over forced convection. As the Darcy number is gradis a velocity reversal for Ri= 102 and Gr= 10%, which
ally increased, the effect of natural convection is observisddue to the formation of the central vortex [Figs. 9(a)
[Figs. 10(a)—-10(d)]. Finally, for Da&= oo [Fig. 10(e)], the and 9(e)]. Figures 11(c) and 11(d) show the centerline ve-
isotherms resemble the natural convection in a differeoeity profile at the center of the cavity for G 102
tially heated square cavity problem as given by de Valthd Gr= 10%. The plots reveal the dominance of natu-
Davis (1983). ral or forced convection on the flow. The parameters are
Figures 11(a) and 11(b) show the centerlireelocity Da= 10~—* andoo, and Ri= 102 and 1G. The cases of
profile at the vertical midplane of the cavity for Da Ri = 1072 and 1G are dominated by forced and natural
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convection, respectively. The opposite nature of the veldor a fixed Darcy number, as the Richardson number in-
ity profile is noticed. With the increase in Gr from?@® creasesNu asymptotically reaches a constant value and
10%, the magnitude of the velocity also reverses for theheen increases as the Grashof number is further increased
two cases. Figures 11(e) and 11(f) show the centerline {ieig. 14(b)].

locity profile at the center of the cavity for Ri 102 and
Ri = 1072, respectively, for Gr= 102 and for different
Darcy numbers. For Ri= 102, the centerline velocities
are much less compared with the case for=RiL0~2. It
is observed in Fig. 11(f), that the velocity increases wi

7. A HEAT TRANSFER CORRELATION

he numerically calculated heat transfer results were cor-
) . lated for mixed convection in a square cavity and in the
the increase in Da.

Th ture distributi | h fical .(iaresence of porous medium. The average Nusselt number
e temperature distribution along the vertical migg - re|ated as a function of the inverse Darcy number

plane is shown in Fig. 12 for various parameters. It j§ -1 _ 1/Dal], the Richardson number Ri Gr/Ré
observed that for low Ri, the bottom wall is hot and th(%nd the Grasho’f number. The equation is given by '

top wall is cold [Fig. 12(a)], and the magnitude depends
upon the Gr value. For a high Ri value, the opposite sit- __ 0.1289
uation is observed [Fig. 12(b)]. The temperature distribu- Nu=1+ . _1,0.1953
tions for two Grashof numbers are shown in Figs. 12(c) (1 +Da )
and 12(d) for various Ri and Da. Similar profile has been
observed and the temperature difference increases wthcONCLUSIONS
increase in Da. The variations of temperature at the cen-
ter of the cavity along thg-direction for Gr= 102 and In this study, numerical results of mixed convection heat
Ri = 10? [Fig. 12(e)] and Ri= 102 [Fig. 12(f)] with transfer in a two-dimensional enclosure filled with a fluid-
the Darcy number as the parameter. It is clearly dema@aturated porous medium and subjected to the left wall
strated that for Ri= 102 conduction predominates, whilemoving up and the right wall moving down have been pre-
for Ri = 10~2 convection takes place. sented. The left and the right walls were under cold and
The local Nusselt number (Nu) distribution along thieot conditions, respectively. The finite-volume method
left wall is presented in Fig. 13. Figures 13(a)—13(b) repsing the SIMPLE algorithm in a collocated grid arrange-
resent the cases for two Darcy numbers. In the case of lowent was employed for the present problem. The deferred
Ri (forced convection), Nu is high near the bottom walQUICK scheme was used to minimize the numerical dif-
whereas for high Ri, the opposite is true. For large Da, thgsion. Comparisons with previously published work on
magnitude of Nu is also high. In the cases of-Ri10? special cases of the problem were performed and found to
and Gr= 102, conduction with the Nu remains constarite in good agreement. The constant stream function and
at a value of 1. The same is presented for two Gr cases@mperature plots for various parametric conditions were
Figs. 13(c) and 13(d). It is to be observed that for smaltesented and discussed. To vary the Richardson number,
Ri and large Gr, the Reynolds number is also large. Thtlse Grashof number was fixed at three levels (i.e., &t 10
the local Nu is large in the case of large Gr [Fig. 13(d)1.0%, and 10, and correspondingly, the Reynolds number
Figures 13(e) and 13(f) represent the local Nusselt nuwas varied.
ber along the cold wall for Ri= 102 and Ri= 10~2 at In the case of Ri= 1072, a single vortex was observed
Gr = 102, respectively. It is observed that for Ri 102, for low Gr. The strength of the vortex increases when Gr
the Nusselt number variation is very small and is almdstincreased. However, in the case of-Ril0?, the vortex
unity for all Darcy numbers. For Ri 102, the Nusselt cell due to the lid-movement and natural convection were
number is very high at the bottom wall and decreasespesent. The effect of natural convection increases when
approximately unity for all Darcy numbers. Gr is increased. Also, significant suppression of the con-
Figure 14(a) shows the average Nusselt number factive currents was obtained by the presence of a porous
three Darcy numbers with Gr ¥02. It is observed, that medium. The local Nusselt number distribution along the
Nu increases as the Darcy number increases. For a fileftiwall has a large value at the bottom for low Ri, which
Grashof number, as the Richardson number increassgpposite in the case of a large Ri value. With the in-
Nu for all Darcy numbers reaches asymptotically to @ease in Ri, the average Nusselt number approaches a
same constant value and is approximately equal tovhjue of 1 asymptotically. This signifies that heat transfer
which represents strong conduction-dominated flow. Big,dominated by conduction only.

Ri70.4278Gr0.3785 (9)
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When modeling fluid flow through porous media it is necessary to know when to take inertia effects into account,
as well as when to switch to a turbulent description of the flow. From an engineering point of view, the problem is
often solved with the empirically derived Ergun equation or a recently upgraded version by Nemec and Levec [Chem.
Eng. Sci., vol. 60, pp. 6947-6957, 2005]. The drawback with this approach is, however, that the mechanisms for the
transitions between the three states of flow are not revealed and time-consuming experiments have to be performed.
In order to increase knowledge of the detailed flow, numerical studies of flow through arrays of quadratically packed
cylinders at a variety of Re values were carried out. One result is that the laminar and turbulent approaches used both
mimic experimental results for low Re, while for higher Re only the turbulent approach resembles the empirically derived
equations. The deviation from Darcy’s law for different porosities of the array can be defined by usage of Re based on
the hydraulic radius and the average interstitial velocity. However, to find a common Re when turbulence need to be
accounted for, another Re based solely on the averaged interstitial velocity and the diameter of the cylinders was used. It
was found that at low Re the laminar and turbulent setups give practically the same velocity fields, while the turbulent
dissipation at higher Re results in larger circulation zones and weaker jets.

KEY WORDS: porous media, turbulence, computation, fluid mechanics, hydrodynamics

1. INTRODUCTION dynamics (CFD)-based micromechanical investigation of
flow through porous media ranging from creeping, strictly

Flow through porous media is important in many techr@rcian, to fully turbulent. , ,

cal areas, including ground water flow, flow through em- C'€€Ping flow of a Newtonian fluid through porous
bankment dams, paper-making, composites manufacfijgdia follows Darcy’s law on a global scale according
ing, filtering and drying, and sintering of iron ore pellet§9 K-

In some of these applications the characteristics of flow vi=——2p; (1)
are unknown, while for others higher demands on the H

environment, security, and process efficiency imply thit@ general form and

the flow must be studied in more det_ail._ I_n the pre_sent KAp Q

case we want to study the forces on individual particles WL A (2)

in connection to flow through embankment dams. There-

fore we need to know when inertia effects should be a@o-one-dimensional form. In these equationss the su-
counted for and when turbulence comes into play. In thperficial velocity vectorK;; the permeability tensont
context definition of the Reynolds number (Re) becomtee dynamic viscosity of the fluigh pressureQ flow rate
important. Therefore we carried out a computational flutdrough an areA, andAp the pressure drop over a length

1091-028X/10/$35.00 (© 2010 by Begell House, Inc. 1073
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L in the streamwise direction. The permeability is set lmpordinate; hence laminar and turbulent flow may coex-
the geometry of the porous media, and many expressi@sts This certainly affects the forces on individual parti-
have been derived for this relationship. For flow perpeadles within a porous media. Another result in Seguin et
dicular to an array of cylinders, the following equation ial. (1998) is that when increasing Re the velocity gradient
strictly valid for low porositiesp and the error is less thanstarts to fluctuate at an increasing rate until a certain Re
10% for¢ = 0.65 (Gebart, 1992): where this rate is stabilized.
Returning to the global description of the flow, the Er-

1 — Qmin ) gun equation has shown best agreement with a bed of ran-
K, =C -0 1 R7, (3) domly distributed spheres and is therefore not optimal for
all geometries. Instead the following expression is pro-

where C and ¢, are determined from the geometriPosed by Nemec and Levec (2005):
cal arrangement (such as quadratic or hexagonal arrange-

5/2

* *2
ment). When the flow in the pores is fully or partly tur- Ap 1 =P = A* Re* + B* Re* , (6)
bulent, a nonlinear term is often introduced for flow of a L pg Ga Ga
Newtonian fluid to form the Forchheimer equation: where Ré and G4 are defined as
KAp @ A . _ PODU
WL A+b<A> ’ *) p(l—¢) @
whereb is a property of the porous media, amgin this and
: ) . p2g@3D3¢e3
case, is a measure of the influence of fluid turbulence Ga = 7Y Tt 8)
(Forchheimer, 1901; Papathanasiou et al., 2001). As a n2 (1—¢)?
specigl case of Eq. (4), Ergun derived the following eXiq where the material-dependent constatitsand B*
Pression. range between 180-280 and 1.9-4.6, respectively. This
0)\2 reveals that additional variables besideandD,, need to
App _150(1_¢)2 u% ) 75(1_(1)) p (z) . be introduced in order to fully describe th_e relation be-
L 97 $3 D2 T P3 D, ' () tween the detailed geometry and the resistance to flow
p

through porous media. Another common way to globally
by fittings to the experimental data (Ergun, 1952). In thiglate pressure to flow rate is by the Blake-type friction
equationpr is the pressure represented as a forpes factor, defined as
the gravitational constanD, the effective diameter of

3
particles, anch the density of the fluid. In between the 1= & Dy 5 $ ) 9)
creeping flow region and the turbulent one, laminar in- L o (%) 1-¢

ertia gives a substantial contribution to the resistance to
flow and experiments have indicated that it is possible fi§iroducing this relationship into the Ergun Eq. (5) yields
use Egs. (4) and (5) in this case as well. Hence, mea-
it 150

surements of averaged quantities have thus shown that =17+ —, (10)
the transition from laminar to turbulent flow is smooth. Ré€
In accordance with this observation, Dybbs and Edwargich resembles experimental data and where the modi-
(1984) conclude, from their experimental visualizationgq Re is defined as
of flow around cylinders arranged in an array, that there is

iti i [ DY 1
a smooth transition from an unsteady laminar flow regime Rd — POy 1 (11)
to a highly unsteady and chaotic flow regime. They also o 1—¢°

state that further investigations on the nature of these, . .
regimes are needed in order to give insight into veIoIhls definition of Re stems from Ergun (1952), with the

ity distributions and various transport phenomena insig¥draulic diameter and the real average velocity set as the

porous media. Results in Seguin et al. (1998) indicate tﬁgf’"aa?”?t'c Ie;gtrlt]l and the CharaCt?”St'C velocity, g
the local transition within porous media takes place SSPectively, and where Re, in general terms, is expresse

various global Re, since the local velocity as well as tf€ UL

characteristic length scales vary as a function of spatial Re v (12)
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wherev is the kinematic viscosity. We mainly use ‘Rerandom arrays, drag makes a transition from quadratic to
throughout this paper, but as pointed out in Comiti (200@) linear Re dependence at’Rebased on the diameter of
this is just one way of defining Re for porous media. Fdine cylinders and the average interstitial velocity between
the characteristic length, typical size of the pores, typicaland 5. Ghaddar (1995) also considers flow through a
size of the particles, and the square root of the permeabdgular array of cylinders, showing that the flow becomes
ity of the porous media were also employed, while thensteady for Regreater than 150. However, Pedras and
characteristic velocity is often set as the superficial velode Lemos (2003) present a strategy for computations of
ity. turbulent simulations in porous media using a lowiRe

The validity of the global equations presented aboweodel, which shows good agreement with published data
has been thoroughly investigated. Fand et al. (198ifjcorporating a steady flow assumption.
for instance, performed an experimental study of flow Lattice-Boltzmann simulations have also been per-
through simple and complex porous media with the coformed in order to bridge the gap between Stokes flow and
clusion that Darcy’s law is valid for Re, based on the smoderate Re simulations of flow in porous media (Hill et
perficial velocity and the diameter of the sphere’Re- al., 2001). In Beetstra et al. (2007) this technique was ap-
low 2.3. Inertia needs to be considered wien Re® < plied for a variety of solid volume fractions and Reynolds
80, and turbulence is the dominating mechanism comimbers up to R&= 1000.
tributing to loss when Reis above 120. This range was The short literature survey presented above does not
extended in an experimental study on a pore scale dgrify which Re to use when defining when inertia be-
Lesage et al. (2004), who concluded that the flow is lamemes important and the onset of turbulence. Furthermore
inar for Re” below 110 and turbulent for Reabove 280, it is not apparent how inertia and turbulent flow are com-
which is also in agreement with additional results prgosed in a porous media, although the experiments by
sented in Hlushkou and Tallarek (2006). The experimetmybbs and Edwards (1984) and Seguin et al. (1998) are
performed in Seguin et al. (1998) indicate that the flow &very good starting point. In this paper we therefore per-
laminar until Re, based on average pore space and afem a CFD-based micromechanical investigation rang-
age pore velocity RE reaches 180, and the fully turbuing from creeping, strictly Darcian flow to fully turbu-
lent region starts when Réecomes equal to 900. Hencéent, full Navier-Stokes equation flow in order to inves-
similar results to those presented above are obtained. Mgate the limitations of the equations for flow through a
Farland and Dranchuk (1976) discovered that transitignadratic array of cylinders packed at different solid frac-
to turbulent flow took place for Re from 0.241 to 4.5&jons. We perform the simulations with very fine meshes
where Re is based on the Darcy superficial velocity andragh accuracy) and with a laminar flow setup (creeping
length parameter equal to the product of the permeability turbulent Re), as well as with a two-equation turbu-
and an inertial resistance coefficient, a definition leaditence model (creeping to turbulent Re). This enables us to
to the relatively small values for the transition. Yet arstudy the flow field in detail and to do simulations at much
other way of defining Re was used by Venkataramantegher Reynolds numbers than practically possible with
al. (1998), who related Re to the square root of the perntiee Lattice-Boltzmann technique (Beetstra et al., 2007).
ability Re”. Thus there are several ways to define Re irifdae outcomes from laminar and turbulent flow setups are
porous media, and a variety of critical Re for inertia artien compared to each other and to results from the liter-
turbulence have been proposed. The latter is confirmeddatyre.
Bear (1960), who state that there is an uncertainty in the
critical Re for inertia by a factor of 750. 2. GOVERNING EQUATIONS

In order to understand porous media flow, a num-
ber of numerical methods have been applied as outlinE?l be able to capture the complete flow field as a func-
by Ziolkowska and Zblkowski (1988). The increases irtion of Re, the Navier-Stokes equations are applied. To
computer capacity in recent decades have facilitated ewéart with the equations are set up for laminar flow of a
more detailed studies, including the one presented hd¥gwtonian and incompressible fluid according to
In the numerical investigation by Koch and Ladd (1997), 1
drag is calculated for some arrays of cylinders. One result Uit + UjlUsij = ——=D,i + VUi jj (13)
is that the magnitude of drag per unit length on cylinders e
in a square array at moderate Re is strongly dependentod
the orientation of the pressure gradient. Another is that in u; ;= 0. (14)
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Then at a second stage the flow is allowed to be turbul@tGEOMETRY AND NUMERICAL VERIFICATION

by applying Reynolds averaging by decomposing the total _ )

velocity @ into a meanU and fluctuation component, The geometry_ cho_sen for th|s_ study is an array of quadrat-
i.e., @ = U +uwhereU = 4, resulting in the following ically packed infinite long cylinders for which a unit-cell
equations: approach is applied, where for each porosity two unit cells

are defined (see Fig. 1) that are divided into finite vol-
Ui + U;U; j = *lp,i +vU;j; — (ww;) ;  (15) umes with the aid of ANSYS ICEM CFD 10.0 Hexa. In
P ’ order to get a high-quality design of the numerical grid,
and a block structure is created that is projected onto the re-
U;; =0. (16) spective unit cell. The eight blocks used in this proce-
Here v is the kinematic viscosity andiw; are the dure are arranged so that the maiq flow fea‘Fures in the
Reynolds stresses. These equations represent the nyinCells can be resolved. For laminar flow it has pre-
flow characteristics where turbulent effects are modell¥pusly been shown that the quality of the grid is by
via the Reynolds stresses in order to obtain closure. SieMmeans good enough, yielding an error of less than
focus is set on flow around a number of periodically af-3 Per mille when using 370,000 nodes (Hebstrand
ranged cylinders having curved surfaces, the shear-str&4£1dstom, 2006). The flow field is solved with the com-
transport (SST) turbulence model is applied (Mentépercial software ANSYS CFX 10.0, and the computa-
1993) because of its good behavior when considering &¢nal domain is parallelized with the MeTis partition-
verse pressure gradient flows and separating flow. In {ig Method and simulated on homogenous Windows and
SST model the best ingredients from toe and thek-w LINUX clusters. For the Wmdow; pa_rt of t_he simulations
models are combined via a blending factor. This factor 48& MPICH-1.2.5 message-passing libraries (MPI) are ap-
tivates thek- model in the near-wall region and the:  Pli€d, and for the LINUX part a HP-MPI-2.1 routine is
model in the bulk, showing that the shift from tkew to chqsen (see Hellsim et al., 2006). For the turbulent sim-
the k-¢ formulation takes place in the logarithmic part oflations measures are taken to keepyipus value low
the boundary layer. The model is based on the assumpl‘?éWth' Thls_, is a d|men_S|0nIess distance from the _WaII
that the principal shear stress is proportional to the turti{ed to provide information on the near wall resolution.
lent kinetic energy, which is introduced to the definitioh® €xemplify, when Reis equal to 2000 the maximum
of the eddy viscosity, the so-called Bradshaw’s assurﬁﬁplus is 1.3. This is within the limits of the recommenda-

tion. The mathematical formulations thus develop into tions in the CFX-manual CFR (2005), stating that the
y-plus value should be lower than 2, and the requirements

D ; .
pk s %—ﬁ*pwk—&—i [(ka ) ok } (17) the European Research Community on Flow, Turbulence
Dt Ox; Ox; Ox; and Combustion (ERCOFTAC) Best practice Guidelines
and (2000), where the conditions are tlygplus should be be-
Dow v . Ou; 9 dw low 4 and close to unity.
T TSU 8—Z —Bw?+ e {(M Owhr) 0] The boundary conditions of the unit cell are defined as
T L i i follows: The top and the bottom part are symmetry planes,
+20(1-F)o L Ok Jw (18)
p 1 w?2 w ax] 8IJ 9

wherek is the turbulent kinetic energ$;; the turbulent Q Q Q
stress tensotp the turbulent frequencyr the turbulent
dynamic viscosity,vr the turbulent kinematic viscosity,
andp*, ok, v, 0w, F1, ando,, are constants (Menter, Q m @
1993). _/

The laminar and turbulent setups &@hused to cal- e .
culate the flow through a porous media at a variety ¢ Q L/\ Q
Reynolds numbers, from fractions of 1 up to values nei U
10,000. Obviously the laminar and turbulent simulations
are thus applied in areas of Reynolds numbers where tiid. 1: Schematic sketch of the computational domains.

are usually not valid. However, it will turn out that a numTo the left is the unit cell for the steady simulations and
ber of interesting results are generated by this approacto. the right the unit cell for the unsteady simulations.
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the cylinder wall is assumed to be smooth with a no-slipe Introduction. For the turbulent setup this behavior was

condition, and the left- and right-hand sides are periodiot observed, which also follows the experimental results

domain interfaces, all in all, representing the repeatalieSeguin et al. (1998) showing that the fluctuation rate

structure of the array. In order to drive the flow, a maf the velocity gradient stabilizes at a certain Re. Hence,

mentum source is defined in a subdomain. The advectalhturbulent simulations were performed with steady flow

scheme used to solve the continuity and momentum eqapproach.

tions is chosen to be strictly second-order accurate by set-

ting the spe.cmed blend factor equal to one in CFX—Prg: REYNOLDS NUMBERS FOR A QUADRATIC

The simulations are furthermore assumed to be well CON- \RRAY OE CYLINDERS

verged when the root-mean-square (RMS) residuals have

dropped 5—6 orders of magnitude and when the maximus stated in the Introduction there are several ways to de-

residuals are less than 1.5 orders of magnitude abovefihe Re, and here we will derive and compare a couple of

RMS residuals. those for a quadratic arrangement of cylinders. Compar-
For the unsteady calculations a second-order backwaehs between results from the simulations are critically

Euler scheme is applied, and the time step is selectt®pendent on which Re is used. Thus let

so that the Courant number is between 0 and 5, where

the Courant number is defined as the fluid velocity times U=10. = Q _ U (19a)
the timestep divided by the mesh size. To discern the un- A o

steady behavior of the simulations, a number of monitor

points were introduced that recorded pressure at nine O v D,

cations and logged the mass flow at the domain interfaces. L=D,= pr = 4(17[)_(1)), (19b)

Most turbulent simulations were performed with the SST

model for reasons already presented, and other turbulentereU, is the average velocity within the arrdyy the

models tested gave similar results and thus indicate g@rous media superficial velocity,, the hydraulic diam-

same behavior but they need more central processing @ of the arrayy,, the volume of the pore space within

(CPU) time. the arrayA, the surface of the solid phase within the ar-
In order to decrease the usage of CPUs, most simi@y, andD,, is the diameter of the cylinders. The resulting

lations were initially based on former runs, in particulRe then becomes

lar, when appropriate each turbulent simulation was based DU Re

on its laminar counterpart, that is, the laminar simulation RePh — ——p20 _ = (20)

with the same pressure gradient. For the laminar simula- v4(l—¢) 4

tions as well as the turbulent simulations with high Pre$he interpretation is that whepincreases, an increase of
sure gradients, there is no initial guess of the veloc ’

. . - o lttl¥e scale of the pores combined with an overall decrease
field. Initial conditions for the turbulent kinetic energ

¥n velocity results in an Re thancreaseswith ¢ keep-
and tthe Fd%y freéquency were 0.0f§/3% a;nd 300 Hz,lret_— inag the flow rate constant (see Fig. 2). Another way of
sp(;c |vety, ased on eéper;ﬁnce rpr(rj]_ 0(;mer .S'”.‘“ta 'fOH fining Re is to set the typical length scale to the diame-
and post-processing. or the pernodic domain INeraes. ¢ e cylinders while using the same definition of the
boundaries the turbulence option is set as a Conserva\tglggocity to form

the

interface flux. To ensure that the selected values of

turbulent parameters are relevant for the problem studied, Uy D
i i i iati in- ReP = =2, (21)
a perturbation analysis was carried out. The variations in v
troduced only weakly influence the results, indicating that
the solutions obtained are stable in this context. This Re is not coupled to the detailed geometry of the ar-

At higher Re the laminar simulations were performemgy and has been termed the interstitial Re (Comiti et al.,
by an unsteady approach, since the steady simulationsA600). For a given size of the cylinders it relates Re to the
dicated problems like oscillating residuals and unstatdetual averaged velocity within the array. Hencé’Rie-
values of the mass flow. This is in agreement with the rereases with porosity (see Fig. 2). A third possible way to
sults in Ghaddar (1995) and Seguin et al. (1998), who gl#fine Re is to find a typical length scale in the pore space
indications of an oscillating numerical solution and ewwithin the array. One such scale is the distance between
perimentally derived the velocity gradient as describedtime fibersd. In this gap a corresponding velocity; may
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FIG. 2: Comparison between different Reynolds number formulations for a variety of porosities

be identified. These quantities are usually not known, botpermeability at Re =~ 10 (see Fig. 3). As Rds in-

after some algebra, the following Re materializes: creased, the curve for the apparent permeability then
makes a smooth bend and seems to level out. In reality

Rel — UoDp V7 ) (22) and at the high end of this curve it is likely that large-scale

v o2yl-¢ eddies are generated that strongly affect the flow field. Be-

As for RP" Rl | ith : Fiq. 2 fore presenting results from the simulations with a turbu-
S for b ’ Increaseswit poros_|ty (see Fig. 2). lent flow assumption, let us study the flow field calculated
The typical length scale can also be linked to the PEMGt various setups with the laminar flow hypothesis.

ability of the array, hence As R€ is increased a sort of jet is formed, transport-

Uo\/F ing most of the fluid through the porous medium, which
R = — Y1 (23) is in agreement with measurements of velocity profiles
Vo in Johns et al. (2000). Also, the stagnation point on the
where left-hand side of the cylinder climbs “uphill” toward the
5/2 top of the cylinder and the corresponding recirculation
4 /4 ) zone becomes smaller and seemingly more chaotic (see
Kq= oz \\ 16 1 Dy (24) Fig. 4). At very low Ré the circulation generated acts on
a larger scale, while as Rincreases the structure splits

In this case also, Re increases with porosity; however, {0 several zones and the contribution from the circula-
magnitude of it is much lower than for the other definfion is taken as a whole, as the overall resistance to flow
tions of Re for the porosities studied (see Fig. 2). In thRgcomes more significant (see Fig. 4). The fact that the
context it is also of interest to notice that Relefined in Circulation zone becomes smaller at even higherrfey

the Introduction, is independent of porosity and equal @Plain the result that the apparent permeability levels out

1 forall ¢ > 0in Fig. 2. (cf. Figs. 3 and 4).
The laminar flow simulations may also be compared

5. RESULTS AND DISCUSSION to gxperiment ona global _scale by using thg gmpirically
derived and previously defined Blake-type friction factor,

For the simulation carried out with the full Navier—Stokeise., Egs. (9) and (10). The simulated values correspond

equations and a laminar flow assumption, there is a dnggry well to the Ergun equation and its modified version
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FIG. 3: Apparent permeability divided by true permeability for the three porosities studied here, 0.3, 0.4, and 0.6

FIG. 4: Vectors representing the velocity for the laminar configuration with differenfd®e.4 porosity:(top left)
R€ = 0.02,(top right) Re = 200, (bottom left) R€ = 1000, andbottom right) R€ = 4000

until R€ ~ 30, but as Reis allowed to increase furthercreasing Refurther implies that the turbulent simulations
the simulated results start to deviate from this equatigive lower apparent permeability values than the laminar
(see Fig. 5). To exemplify, the difference between the camges. This is expected and there is no sign of a rapid tran-
of porosity 0.6 and the Ergun equation is about 20% &t Rstion, as the one in the pipe flow which here is in con-
= 30. This indicates that mechanisms other than inerf@mity with the results of Seguin et al. (1998), although
effects such as turbulence become important wheénsRethe mechanism differs slightly. In Seguin et al. (1998) the
larger than about 30. smooth transition is attributed to the transition appear-
When comparing the results from the turbulent siming at different Reynolds numbers within different pores,
lations (denoted as white symbols in Fig. 6) with the lamvhile the simulations presented here indicate rather that
inar equivalents (denoted with black symbols in Fig. 6fhe smooth transition is a result of an interplay between
it is shown that the SST formulation captures the maimertia and turbulence within a single pore. A comparison
feature of the flow field even at very low Realues. In- of the results at three solid fractions yields that the devia-
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tion between the laminar and turbulent setups takes pldicans that turbulence needs to be considered atdrger

for R€ ranging from 100 to 600, depending on the porothan 100-600. However, this very large range can be con-

ity. This fact stresses that Reéenotes the onset of inertiasiderably reduced by plotting the results as a function of

while another Re yielding the onset of turbulence has Re” instead, which is directly related to the average ve-

be defined. locity within the porous media (see Figs. 8 and 9). The
When comparing the simulated values with the Edeviation between the laminar and turbulent simulations

gun and the modified Ergun equation, the discrepancy faw takes place at practically the sameé’R&e” = 300),

R€ > 30 is now reduced (cf. Figs. 5 and 7). This corregardless of the porosity.
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By scrutinizing the averaged turbulent velocity field iisee Figs. 12 and 13). This result is of great importance,
detail it can be seen that the large circulation zone Has instance, when considering internal erosion in em-
more or less the same position for all’Reat increases in bankment dams, as larger forces acting on the particles
strength with Re(see Fig. 10). When comparing with thereate a larger risk of forming a sinkhole and/or progres-
results from the laminar setup (Fig. 4), the jet formed hagn of the process for a dam to breach. Hence knowl-
a much weaker development as a function of, Ren- edge of the size and distribution of the forces acting inside
firming that the turbulent energy losses are more eveqgrous media is important in order to know which simu-
distributed in the bulk flow (Fig. 10). The next significankation approach to use for which flow conditions, since
flow feature after the jet for the turbulent flow appears dghe forces for high Re differ as much as 1 decade when
the right-hand side of the cylinder where a distinct sepa@mparing laminar and turbulent setups.
tion materializes as the large circulation zone increases in
strength. The point of separation climbs closer to the t%p c
of the cylinder as Rencreases (see Fig. 11). This prede=-

parture of the jet from the cylinder may cause a relativel¥terature review as well as analysis of a quadratic array
lower resistance to flow and might be one of the reasagscylinders shows that a number of different Reynolds
the simulated results deviate from the Ergun equationr@gimper values can be defined for porous media. Analysis
Re > 300 for ¢ = 0.4 (see Fig. 7). Such a deviation hagirther shows that this number can be independent of the
not been reported in the literature, to the authors kﬂOVHorosity of the porous media (ﬁ)‘:,‘ as well as increase
edge, and may be related to either the geometrical setp. Re, and R&) or decrease (R&) with it. Thus the
used in this investigation or the fact that rather hlgh R@utcome is Critica”y dependent on which Re is used.
values (higher than before) have been simulated with verycEp simulations for flow through a quadratic array of
high accuracy (better than before). As a final remark, ité§linders at three solid fractions with a turbulent as well
evident that at low Reynolds numbers the flow fields prgs |aminar setup were then performed. All simulations
duced by the laminar and turbulent setups are practicall§re in good agreement with each other and with the ex-
the same. perimental data regarding permeability and friction factor
The force per unit area acting on the cylinder increasiesm the creeping flow region up to Ref about 30. The
dramatically with Re (see Figs. 12 and 13). It is also euidrbulent simulations with the shear stress transport turbu-
dent that a turbulent flow assumption will generate largience model thus capture main flow features even at very
forces on the cylinder than a laminar one, and that the ntaw R€ flows. In conformity with the data in the litera-
mal forces are considerably larger than the shear fort¢ese, all simulations yield an Ref about 10 when inertia

ONCLUSIONS

FIG. 10: Vectors representing the velocity field for the turbulent configuration with differehtvRlees for 0.4
porosity;(top left) R€ = 1.5, (top right) R€ = 200, (bottom left) R¢ = 1000, andbottom right) R€ = 2000.
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FIG. 11: The length of the vectors represents the velocity and the velocity gradiefaty, displayed on the cylinder
wall for different Ré numbers(top left) R€ = 1.5, (top right) Re = 65, (middle left) R¢ = 120,(middle right) Re
=210, (bottom left) R€ = 1000, andbottom right) Re = 2000. When the velocity gradient turns black, the gradient
switches sign and separation occurs.
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A model approach for heat and mass transfers during gas sorption by a zeolite bed is developed. The mathematical
modeling is based on assuming the bed to be formed with three phases—solid, liquid, and gaseous. The classical finite
volume method is used to numerically solve the differential set of governing macroscopic equations. Numerical results
provide us the time—space evolutions of temperature and moisture content. A comparison between results obtained with
a three-phase model versus those obtained with a two-phase model is performed and discussed. A comprehensive analysis
of the influence of the bed porosity and the grain porosity on the average reduced moisture content and average reduced
temperature is also investigated.

KEY WORDS: zeolite, desorption, plane desorber, moisture content, numerical simulation, three-phase
model, two-phase model

1. INTRODUCTION 1995; Duval et al., 2004), the two phases are not in lo-
cal thermal equilibrium condition. Consequently, the two
Heat transfer and fluid flow in porous media with phagghases have different temperatures. In this case, two en-
change appears in many applications such as drying sstgy conservation equations, one for the fluid and the
tems, geothermal systems, heat-transfer materials desigher for the solid matrix, are needed to predict heat trans-
and nuclear analysis (Auriault and Adler, 1995; Andrefer. These two energy conservation equations are coupled
et al., 2003; Duval et al., 2004; Badruddin et al., 2008pgether by a convective term.
Modeling heat and mass transfers in porous media hasThe difficulty inherent to heat-transfer modeling in
attracted important research interest in many publish&atption phenomena is strongly subordinate to whether
books (Ingham and Pop, 1998; Nield and Bejan, 1998 local thermal equilibrium assumption is valid or not.
Vafai, 2000; Pop and Ingham, 2001). There are two diftumerous published studies related to sorption phenom-
ferent modeling approaches for heat transfer in poroeisa are based on a two-temperature model (Mhimid et
medium based on the validity or invalidity of the locahl., 1997; Wu et al., 2009; Hu et al., 2009). In the lo-
thermal equilibrium. When the local thermal equilibriuncal nonequilibrium thermal approach, the involved tem-
assumption is assumed to hold (Mhimid, 1998), only operatures are that of the gas and that of the solid, so
energy conservation equation is required to predict hetiite liquid and the solid together are supposed to form
transfer behavior. However, in the local thermal nonequire same phase. The local thermal nonequilibrium model
librium case (Berthoud and Valette, 1994; Angelini et afor two-phase flows with phase change in porous media

1091-028X/10/$35.00 (© 2010 by Begell House, Inc. 1087



1088 Zegnani et al.

NOMENCLATURE
C,  specific heat, J kg'K~! £ bed porosity
d, mean particle diameter, m €&n  grain porosity
H height of the bed, m A thermal conductivity,
h,, heat-transfer coefficient between WK 1
the bed and the heating source, W o density, kg nT3

ho heat-transfer coefficient at the bed inlet, W " viscosity, kg nr! s71
k permeability, m T volume, n¥
L length of the bed, m
m evaporation rate, kg m? s—! Subscripts
P pressure, kg m's—2 c condenser
T temperature, K eff  effective
t time, s g gas
Uy  heating gas velocity, s h heating
V,  gas velocity, ms! i initial
X moisture content, kg/kg I liquid
y transverse coordinate, m S solid
z axial coordinate, m sat  saturation

vap vapor

Greek symbols y alongy-axis

AH latent heat of vaporization, J k¢ z alongz-axis

has been studied by Duval et al. (2004). The volumigation between the particles and within the particle, re-
averaging method has been used in order to derive a thiggectively. Hu et al. (2008) have considered the compos-
temperature macroscopic model assuming a local therrit@lzeolite/foam aluminum—water mass recovery adsorp-
nonequilibrium between the three phases (gas, solid, adiwh refrigeration system driven by engine exhaust heat.
liquid). In this paper the composite zeolite/foam aluminum is pro-
Studies related to heat and mass transfer modelingppsed to enhance heat and mass transfers for adsorption
an adsorber (Mhimid, 1998; Maggio et al., 2004; El Fadesfrigeration. The effective thermal conductivity of this
etal., 2009; Demir et al., 2009) have supposed the systeemposite material is 2.89 W/mK measured by the hot
to be composed of two phases: the solid and the ligudék method with the same zeolite packed bed adsorp-
are one phase and the vapor constitutes the second phameperformance. The performance of this composite ze-
Marletta et al. (2002) have undertaken a nonuniform tewlite/foam aluminum—-water mass recovery adsorption re-
perature and a nonuniform pressure dynamic modelfaferation device driven by engine exhaust gases has also
heat and mass transfers in compact adsorbent beds cbeen calculated by the authors. Both numerical simula-
posed of three phases, solid, liquid, and vapor. Liu atidns and experimental study of a modified zeolite 13X—
Leong (2005) have numerically investigated the effeatater adsorption refrigeration model have been presented
of operating conditions on thermal performance (coeffiy Wu et al. (2009). The performance of the adsorption
cient of performance and specific cooling power) of zeoeoling module (16 mm in diameter and 1020 mm in
lite 13X/water adsorption cooling systems. Both heat- alehgth) with zeolite 13X—water as the adsorption work-
mass-transfer limitations are taken into account in the ring pair has been calculated by the authors. A dynamic
merical model. Darcy’s law and the linear driving forceeat- and mass-transfer model has been established based
(LDF) model are used to describe the mass-transfer liont the LDF model. Ferni et al. (2009) have developed
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a mathematical model for zeolite synthesized on copyer), and a gaseous phase (vapor water). The macroscopic

foam for adsorption chillers. In this study, a new adquations governing coupled heat and mass transfer are

sorbent bed for adsorption chillers is proposed. Hightierived from the volume-averaging technique (Whitaker,

porous copper foams were directly sintered on the ext&éB77).

nal surface of copper pipes. Afterward, the foam surface Figure 2 shows a skeleton of an REV. The liquid and

was coated by several layers of zeolite 4A by in situ hgas phases were in a rigid section of the porous medium.

drothermal synthesis. The performance of an adsorb&atid is denoted by s-phase, liquid by I-phase, and the

bed based on the proposed configuration was then evatpor by g-phase. The thermophysical properties of the

ated using a dynamic model. porous bed are assumed to be constant and independent
As far as we know, studies related to the three-phasietemperature in the range of pressure and temperature

model during desorption have not been performed, whicbnsidered here.

motivated the present investigation. In the current study

we aim to develop a mathematical model simulating cop2 Model with Two Phases (MOD2P)

pled heat and mass transfers within a plane adsorber dur-

ing the gas sorption by a zeolite 13X on the basis of! this model, the solid and liquid are assumed to form
scale change. Itis assumed that the representative elen‘;n'é‘?\§ame phase. Several assumptions are rr_1ade in c_erer to
tary volume (REV) is formed with three phases, gas, |i&_bta|n a closed set of governing macroscopic equations:

uid, and solid. The considered phases are supposed to be Coupled heat and mass transfers and fluid flow are
in local thermal equilibrium, and therefore a one-equation  assumed to be two-dimensional:

model is adopted to predict the heat-transfer rate. _ ) _ )
A comparison between numerical results obtained by - The solid particles are incompressible;

the proposed model with three phases (MOD3P) Versus. e |ocal thermal equilibrium assumption for the en-

Fhose obtained using a classical mode! assuming the ex- ergy conservation equation as well as the Darcy flow
istence of only two phases (MOD2P) is performed and ,5del are assumed to be valid:

discussed.
- The compression work and viscous dissipation are

2. MATHEMATICAL FORMULATION negligible;

- The gas phase is ideal from a thermodynamic point
of view, and radiative transfer is negligible regard-

The plane adsorber considered in this paper can exchange less of the other heat-transfer modes;

heat through all surfaces (Fig. 1) with hot air at con-

stant temperature and constant flow rate. The adsorber

is composed of a solid phase (zeolite), liquid phase (wa-

2.1 Problem Definition and Governing Equations

A unigue macroscopic porosity (or bed porosity) is
sed.

On the basis of the above assumptions, the macro-
scopic governing equations can be written as follows:
Mass conservation equation

7] . .
ebﬁ +div (p, v 4) = —1in, Q)
ot
wherep,, v ,, andri are the gas density, the gas velocity,
and the desorbed mass rate, respectively.

TCH Momentum equation (Darcy’s law)
k—
v, = ——grad P, (2)
' H

wherek is the permeability of the medium, given by the

Koseny-Carmen empirical relation as follows:
FIG. 1: Sketch of the physical problem and the coordi- L epd?
nates system 150 (1 — €)%
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Adsorbant
grain (s-phase)

Ts

Lo Desorbed vapor
Liquid in (e-phase)

micropores

Ty

(I-phase)

T

FIG. 2: A skeleton of a representative elementary volume of the porous bed

Energy conservation equation Aot = (€sAg + €LAL + €gAg) .
oT L, — ) After development (Annex A), the effective heat capacity
(PCp) g Tl PgCpg v ggradl’ = mAHyqy, can be written as follows:
SN 3)
+div (Aergrad?) (PCp)or = (1 — €8) (1 — £) ps (Cps + XCpy)
+ eppgCpy.

The effective heat capacity and the effective thermal con-
ductivity of the porous media are respectively given by Then the effective thermal conductivity expression beco-

mes
(pCP)cf—f = [(1 — &) ps (Cps + XCpyp) + 5bngPg}

Aot = (1 — ) (1 — €3n) As + (1 — €3) €mAL + €174
and
Aefi = €pAg + (1 — €3) A, Desorption kinetic

where), andA, denote the gas thermal conductivity angrom the continuity equation, it results that

the solid thermal conductivity, respectively, angdis the d(erpr)
bed porosity. ot -

Desorption kinetic L .
P After development (Annex B) the kinetic desorption is

. 0X iven b
= (1— ep) ps e (4) gvenDy

ot
o 0X .
whereX is the moisture content. = (1)1~ em) Psar )

Moisture Content (Dubinin Equation)

The moisture content is determined by the Dubinin’s
In this model we have adopted the same assumptiong£ggation:

in the last model (i.e., with two phases), except for the 5

definition of a new porosity (the grain porosity) besides  x — x, exp |-D {T log ( Py (T) )} ©)
the bed porosity,,. In this model two different porosities P (Te)

are considered, since the liquid itself is assumed to form )
a separate phase. where Xy = 0.269 kg of water/kg of zeolite andd =

On the basis of these assumptions, the problem is géy302 X 1077 K72 are two coefficients determined exper-
erned by macroscopic governing Egs. (1)~(3), where #fentally (Mhimid, 1998). o
effective heat capacity and the effective thermal conduc-'" the present studyiog [P (T)] is given by the fol-
tivity are now written as follows: lowing relation (Mhimid, 1998):

2.3 Model with Three Phases (MOD3P)

a
(PCp) o = (espsCps + eLprLCpr + £4p4Cpy) log [Ps (T)] = a1 — ?2, (7)
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wherea; = 20.9 anday = 5225.5 K. Thus, the Dubinin &, is the local heat-transfer coefficient in the case of
equation givingX becomes a laminar thermal boundary layer (Kays and Crawford,
1993) given by

2
-DB? (T — 1) . (8) 1/3
T Nu, = 0.332 Pr Re}/.

Due to the definition of local Nusselt number, Nu=

(hyy)/A;, it follows that

The temperature, pressure, and liquid content in the ad-

sorber are initially supposed to be constant: h. = 0.332 As %E Rel/2 (12)
Y y y

X = Xpexp

2.4 Initial and Boundary Conditions

TO.y.2)=T; PO.y:2)=Fi X(0,4.2)=X O \pere pris the Prandt number, Rie the local Reynolds

whereT;, P;, andX; are, respectively, the initial temper?umber, and is the fluid thermal conductivity.
ature, the initial pressure, and the initial moisture content
present in the medium. At the inlet face (i.e.yat0), the 3. NUMERICAL PROCEDURE

h i ition i itt
ydrodynamic boundary condition is written as The system of differential equations governing coupled

P(t,0,2) = P, (10a) heat and mass transfers during desorption is solved
numerically by the classical finite volumes method
The facesy = L), (z=0), and £=H) are impermeable to (Patankar, 1980). We have used an implicit scheme for

mass transfer, and then temporal derivative terms, the upwind scheme for the con-
op vective terms, and a centered scheme for the diffusive
— (t,L,2) =0; v, (t,L,z)=0 (10b) terms. The obtained numerical code is iterative. The nu-
dy merical iterations were advanced in time until the actual
oP error for all variables is lower than 16.
s (t,y,0)=0; v, (t,y,0)=0 (10c)  To determine the value of the minimal size of the mesh
for which the numerical code becomes independent of the
8j (t,y,H)=0; v, (t,y,H)=0. (10d) space steps, we carried out a series of numerical simula-
9z tions with different mesh sizes starting with a mesh with
At the entrance region (i.e., = 0), the thermal bound- 26x 10 grids. It was observed that the code becomes sta-
ary condition is written as ble and the computed values of the reduced average mois-
T ture content and the reduced average temperature are al-
)\Cﬁa—y (t,0,2) = ho (T —T¢). (11a) most the same with 2626 grids. Indeed, for mesh of di-

mensions 5226, 26x52, and 552, results are similar.
The adsorber is heated by a hot gas from all faces (Fig. i) the same way, we have carried out different tests on

A heat-transfer coefficiert,, is introduced and the ther-the sensibility of the numerical results to time step. It was
mal boundary conditions &= 0,z = H, andy = L are shown thatAt=1 s is a trade-off between numerical accu-

given by racy, stability, and computational time.
A uniform spatial grid of 2& 26 and uniform time step
Aega—T (t,y, H) = hyn (To — T) (11b) At =1 s were then used in all the calculations performed
9z 7 " here. The present code has been validated with the closest
oT available works and good agreement was shown (see, for
—%eﬁafy (t,L,2z) = hym (To = T) (11c) instance, Zegnani et al., 2009).
oT
Aeﬁa (t,y,0) = hy (To —T), (11d) 4. RESULTS AND DISCUSSION
whereh,,, is an average heat-transfer coefficient given th€ plane adsorber used in this study is of lerigth 50
the fo”owing expression: cm, W|dth| =50 cm, and helth =4 cm. During the
adsorption phase, the adsorber is connected to the evapo-
hm = 2h(y—r). rator where the pressure is 6 mbar and the temperature is
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273 K. However, during desorption phase, the adsorbemikich the gradient of moisture content is higher. It can
connected to the condenser with a pressure of 70 mbiso be seen that the region close to the wall is rapidly
and the temperature is 313 K. The adsorber is heatdded. As time progresses, the front of evaporation ap-
during desorption, by a flowing hot air at a temperatupgroaches the outlet of the medium and the humid region
Ty, = 180°C and cooled, during adsorption, by a flowingpecomes smaller. By the end of the desorption, the tem-
cold air at a temperaturg, = 20°C. The thermophysi- perature tends asymptotically to the heating temperature
cal properties used in all the numerical simulations pemd the moisture content tends to its equilibrium values
formed with the three-phase model (MOD3P) are listéd the whole of the medium. In addition, the mass rate is
in Table 1. diminished. After a period of time, the remaining quantity
To clearly appreciate the effects of the influencing paf moisture content in the adsorber becomes too small and
rameters on fluid flow, heat, and mass-transfer charactle evaporation phenomenon is stopped.
istics, we have defined the average reduced temperature
and the average reduced moisture content, respectivg% A Comparison Study

as follows:
L H In order to examine how accurate the new modeling ap-
—x 1 T-T; proach based on three different phases is, we performed
T = LH // To —T; dydz; a comparison between the temperature profiles obtained
0

0 (23) with the two models (i.e., MOD2P and MOD3P). As
% — l/ (X) o shown in Fig. 5, the difference between these curves is
w X; important at the lateral faces, because the heating tem-
w perature is higher than the initial medium temperature. In
addition, this difference increases as time goes on. In the
front of the desorption phenomenon, this difference be-
The numerical results obtained with the model usifggMes important. It is about 25 K after 1 hour. As times
three phases (MOD3P) and those using only two pha$ésses, this difference decreases progressively. At the end
(MOD2P) are presented as curves given the spatial dis@t-desorption itis about 5 K.
butions of temperature (Fig. 3) and the time—space evolu-In the same way we compared the moisture content
tions of moisture content (Fig. 4) for different time stepg@lculated by the two models (Fig. 6). Here also we noted
(t =60 s,t = 3600 st = 7200 st =10,800 s). a difference between these two curves. This difference
It can be seen from F|g 3 that as time goes on; tﬁ%a.CheS 0.03 kg Water/kg zeolite after 1 hour. At the end
overheating propagates inside the medium. From Figofdesorption, it does not exceed 0.01 kg water/kg zeolite.
it can be observed that the front of desorption phenom-Heat- and mass-transfer rates predicted by MOD3P are
ena moves inside the medium and separates the gra{ﬁgter than those obtained with MOD2P. This is can be ex-
lar bed in two different regions (dried region and wet rédlained by the difference in the thermophysical properties

gion). Evaporation is essentially localized in the zone f¥ch asfA«s] and [(p Cp) g] used in these two models
(Figs. 7 and 8). The difference in the effective thermal

i i conductivity value used in the two models is small (about
TABLE 1: Thermophysical property values used in nuy 169 Wm-1 K—1). However, the difference in the effec-

merical simulations performed with the three-phase Me heat capacity value used in the two models is large

4.1 General Description

del (MOD3P) (between 376.964 and 574.713 k3K 1),
Zeolite Cps =836 Jkg™ !t K71,
As=02Wm-t K™, 4.3 Comparison with Experimental Data
dp =2.5x 1073 m,
ey, = 0.34, €, = 0.32 We have made comparisons between numerical results
Water Cpr = 4180 Jkg™ ' K1 obtained with the two models (MOD2P, and MOD3P)
A Hva — 3% 105 JK-1: versus available related experimental data (Marmottant et
AL :190.6 Wm-1K-1 al., 1992). To perform this comparison, we have consid-
Yy ered a plane solar collector 4 cm in thickness filled with
Vapor of water Cpg =1840J kql K K 19 kg of zeolite grains. The upper surface of the collec-
A =0.024 Wm™" K™ tor heated by solar energy is 0.87nin this case, the
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FIG. 3: Time—space evolution of temperature field obtained by MOD3P

, as they fit the experimental

temperaturel is variable. The temperature of the correpresentative and accurate

and the pressure during desorptioralues better.

70 mbs. The temperature is measured at the mid-

=313 K,

denser isl ¢
is Pc

Parametric Study

4

r

2

point of the upper and lower surface areas of the collect
Numerical and experimental temperature variations with

time are plotted in Fig. 9. Numerical and experimentélis well known that bed porosity as well as grain poros-
values of the moisture content as a function of time aitg depend strongly on the size of zeolite grain changed.
drawn in Fig. 10. It can be concluded from theses figurgsthis section we study the sensitivity of heat and mass

that the numerical results obtained by MOD3P are maransfers to theses two porosities. Figures 11 and 12, re-
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FIG. 4: Time—space evolution of the moisture content obtained by MOD3P

spectively, show the time evolutions of the reduced aveate of desorbed water (respectively adsorbed water) de-

age temperature and the reduced average moisture coraesdses.

for different values of the bed porosity, and the grain  Table 3 and Fig. 11 show clearly thathas a strong in-

porosity ¢,,. As it is seen laterg, has less influence onfluence on the acceleration of the temporal sorption phe-

heat- and mass-transfer rates than nomena. This is evident because varying the volume be-
It can be concluded from Table 2 that increasingto tween the grains of zeolite enhances the vapor velocity.

a certain value around 0.37 has no significant effect on the

sorption phenomena. Moreover', decreagjn,gegds toa 5. CONCLUDING REMARKS

decrease in the temporal sorption kinetic. This behavior

can be explained by the fact that due to the total volurii@e problem of two-dimensional transient heat and mass

of liquid contained in the total volume of pores, the massansfer during desorption of water by a plane adsorber of
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FIG. 5: Time—space evolution of the temperature difference obtained by the two models (MOD2P and MOD3P)

zeolite 13X was the focus of the present investigation. A2. Increasing the grain porosity leads to serious acceler-

new modeling approach based on considering the porous ation of sorption phenomenon. In addition, increas-

bed formed with three different phases was developed and ing this parameter up to around 0.37 has no signifi-

validated with published experimental results. The main cant effect.

results obtained from the numerical solutions can be sum-

marized as follows: 3. Heat- and mass-transfer rates are strongly subordi-
nate to the bed porosity.

1. The new mathematical model for heat and massinex A

transfer (MOD3P) obtained is more convenient tm the new modeling approach (MOD3RY;, ¢, ande,
predict more accurately and rigorously heat arate, respectively, the solid, liquid, and gas fractions sat-
mass transfer in the adsorber than the simple classitying es + €1, + ¢, = 1. These different fractions are
model based on two different phases (MOD2P). unknown and should be expressed as functions of known
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FIG. 6: Time—space evolutions of the moisture content difference obtained by the two models (MOD2P and MOD3P)
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¢ Experimental values of heating temperature (Marmottant et al. , 1992),
— - - Numerical values of heating temperature

A Experimental values of the lower face temperature (Marmottant et al. , 1992)
Numerical values of the lower face temperature (MOD3P)

_ - - - Numerical values of the lower face temperature (MOD2P)
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FIG. 7: Temporal evolutions of the reduced average tem-
perature obtained by the two models (MOD2P and B .
MOD3P)
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time (s)
1.0 —
y 1 FIG. 9: Comparison between numerical results of tem-
AN ; Bl perature field obtained by the two models versus available
_oos\ / ] experimental data
S 07 \ ‘ _|
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FIG. 8: Temporal evolutions of the reduced average vak
ues of the moisture content obtained by the two models 0.04 ]
(MOD2P and MOD3P) i
. . 0.00
physical parameters such as the bed porasjtand the e Y

grain porositye,, .

Since the vapor is located in the total volume betwe@hG. 10: Comparison between numerical results of mois-
the solid grains, then the gas fraction can be assumedui@ content obtained by the two models versus available
the equivalent to the bed porosity. Consequently, we hassgerimental data
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TABLE 2: Time variation of absolute difference in sorp- es=(1—¢e)(1—em)
tion kinetic for different values of,,, and a real value of €5 = €.
em = 0.32
Annex B
Em 0.22 0.27 0.37 0.42 | The moisture content is defined by
t=6000 s 5.56% | 2.78% | 2.76% | 2.46% mL  TL PL
t=14,000s | 3.21% | 1.59% | 1.50% | 1.31% X = mis = g p:

Dividing this equation by the total volume- leads to

TABLE 3: Time variation of absolute difference in sorp- €L PL
tion kinetic for different values of;, = 0.34

€5 Ps
& 0.24 0.29 0.39 0.44 | Then, it follows that
t=6000 s 3.08% | 1.54% | 1.53% | 3.06% X _
t=14,000s | 1.61% | 0.78% | 0.81% | 1.65% £sPs = ELPL-
Consequently, the mass conservation equation becomes
0 (Xesps)
T ot
_ 9 __
€ = T €, As ¢5 andpg are assumed constant, the mass rate can be

. . expressed as follows:
wheret, is the gas volume andy is the total volume. P

The grain porosity,, is defined as the volume of the

micropores contained in the grains. Then we can write m= Espsﬁ'

T
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In this study we prove the existence and uniqueness of solutions for the mixed initial-boundary value problems in
the context of the elasticity of micropolar porous bodies through an equation of evolution. In the same manner, the
continuous dependence of the solutions upon initial data and supply terms is also proved.
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43A60, 74H20, 74L10

1. INTRODUCTION operators, the existence, uniqueness, and continuous de-
pendence results are derived. The proof is given for the
In the opinion of many researchers, the theory of bofirst boundary value problem, but the results are the same
ies with voids is quite sufficient for a large number ah the case when the boundary conditions are replaced
solid mechanics applications. The origin of the theoriegth those from the second problem and, also, with those
of bodies with voids dates back to Goodman and Cowfirom the third problem.
(1972). In their paper we introduce an additional degree of
freedom in order to develop a continuum theory for flon2, BASIC EQUATIONS AND CONDITIONS
ing granular materials. Previously, Nunziato and Cowin
(1983) established the theory of elastic materials wifor convenience, the notations and terminology chosen
voids, lesan (1986) established the general equationsiig almost identical to those given previously (Marin,
the context of the theory of the thermo-elasticity of mat@995, 1997). Consider that our body occupies—at time
rials with voids, and Marin (1995, 1997, 2009) obtained = 0—a properly regular regio®3 of Euclidian three-
some reasonable extensions of the previous results regdighensional spade®. Assume that domai is bounded
ing materials with voids. by the piece-wise smooth surfag®. We refer to the mo-
The present study is dedicated to the behavior of ttien of the continuum to a fixed system of rectangular
solids in which the matrix material is elastic and the inte€artesian axesQz;, i = 1,2,3 and adopt the Carte-
stices are voids of material. The intended applicationssiin tensor notation. The points B are denoted as;
these theories are to geological materials, like rocks afod «). The variablet is time and we have € [0, t].
solids, and to manufactured porous materials. We employ the usual convention of summation over re-
The plan of this paper is as follow. First, the basigeated subscripts while that the subscripts preceded by a
equations and conditions of the mixed boundary valeemma denote the partial differentiation with respect to
problem within the context of the theory of porous maté¢he respective spatial argument.
rials are given. Then, a nonhomogeneous and anisotropid\Ve also use a superposed dot to denote the partial dif-
elastic material is considered and the initial-boundafgrentiation with respect to time variableLatin indices
value problem is transformed in an abstract temporallye understood to range over the integér2, 3).
homogeneous evolutionary equation in Hilbert space. By The behavior of a micropolar body with voids is char-
using the results from the theory of semigroups of lineacterized by the following kinematic variables:
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u; = wi(x,t), & = di(x,t), o=o(x,t), body forces|G; is the component of the body couplg;
(2,t) € By x [0, 0] (1) s the extrinsic equilibrated body forcg:is the intrinsic
equilibrated forcet;; is the component of the stress ten-

If we assume that the body is free of initial and coupkor;m;; is the component of the couple stress tenser;
stresses and has zero intrinsic equilibrated body forcissthe component of the equilibrated strelsgs the equili-
then we can write the internal energy density in the forrarated inertiaj;; is the coefficient of inertiag;;, u;; are
the kinematic characteristics of the strain; ang, is the
alternating symbol;

Here, we outline the volume change of the bulk ma-
terial results from void compaction or dilatation. Previ-
ously, the physical significances of the functidns:, and

+ Qijk€ijok + Sijkhi Ok + di00 (2) & have been presented by Goodman and Cowin (1972)
Where the constitutive coefficient$;;,.,, Bijmn, ..., d; an(_T_N;Jhnmatotand C;Of\.NIIr(lj(IZIE.983).4 7 dd th
are prescribed functions and they obey the following Sym; 0 e system ot hie gs. (.)_( ), we now a e.
metry relations: oundary conditions in the following homogeneous form:

1 1
Poe= 7Aijmn5ij €mn+Bijmn£ij Hmn + Eoijmn Wij

2
1., 1
X HanriEG +§Aij0',z‘0',j+Pij£ijG+Rinij0'

Aijmn = Ajimn = Amnij> Cijmn = Cmnij 3 Ui(x7t) N 0, Cbi(x’ t) - 07 0_(37775) B 07

Aij = Ay, Pij =P, Qijm = Qjim ®) (z,) € 9B x [0, to] (8)
Taking into account the internal energy density in trfénd with the following initial conditions:
form [Eq. (2)] and symmetries [Eq. (3)], we obtain the o . s , o
basic equations of the elasticity of micropolar bodies wit _Z(x’ 0)=ai(@), @i(z,0)=bilx), bilz,0)=ci(z)
voids as follows: d)z(xao):dt('r)a G(.I‘,O):Uo(l‘), 6‘(5{7,0)20_1(I‘),

e The equations of motion V(r) € B 9)

wherea;, b;, ¢;, d;, o°, ando! are prescribed functions.
(4) Substituting the constitutive Egs. (6) and the geometric
Egs. (7) into Egs. (4) and (5), we obtain the following
e The balance of the equilibrated forces system of coupled equations:

tij,5+po ki = poti;
mij j+Eijktin+PoGi=1;; @

hi.,i +g9+ pOL = pOkG (5) potl; = [Aijmn(un,m+€nmk¢k)+Bijmnd)n,m +Pij0-
+Qijk0 k), +PoFi

e The constitutive equations i
Iij (bj = [Bijmn(un,m + Enmkd)k) +Czjmn (bn,m +R1] o

tij - Aijmnamn + Bijmnp'mn T Pijo- + Qijko-’k +Sij G,k},j+£ijk[Ajk77Ln (U7L,7n,+ ETLmsq)s)+Bjk7an¢n,m,

m;; = Bijmns'mn + Cijmnu-’rrm + RijG + Sijkg,k +Pj]€0—+ijT0— 7‘]+p0Gz

hi = Dmniemn + Emnlumn + diO' + AijO'}j poKb"Z [ani(un,m+Snms(ps>+smn1d)n,m+dio-+f4ij

9= Pyt = Rijhtyy = diog = £0 © 0,j].i—Pij(ujiteindr) —Rijdji—Eo—d;io;
+poL (20)

e The geometrical equations

Next, we shall examine the existence and uniqueness of
(7) the solution and, also, the continuous dependence of the
solution upon initial data, and we supply the terms for
the initial-boundary value problem defined by Egs. (10),
In Egs. (4)—(7), we have used the following notatioms: boundary conditions (8), and the initial conditions (9).
is the constant mass density; is the component of the

d_|splacement_f|eld<pi is the co.mp_one_nt of the.m|crorc.)ta-3_ MAIN RESULTS
tion vector;v is the volume distribution function, which
in the reference state ig); o is a measure of the volumeln all what follows we shall use the following assumptions

change of the bulk materiaF; is the component of the on the material properties:

€ij = Uji + €ijePr
Wij = ¢y
o=v—"vg
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e Assumption (i) FW = 1{[Qmm(un m + EnmsPs) + SmniPn,m
PoK ’ 7
>0, I;; >0, k>0
Po j K +dio+ A;jo ;] — Pij(uji + € 0r) — Rijdj
e Assumption (i) fo—d } (12)
— 60 — G0

+2P;;&;50 + 2R;Mij0 4 2Q455&i5Ks 4 25355MijKs Let £ be the following operator:
+2d;k;0 + E0% + Ajjrik; > o(&i5Eij + MMy

X - L= (AW,BW,CW,DW,EW,FW)  (13)
+ Kik; +0°), >0

for all arbitrary&;;, n;;, k;, ando. whereA = (4;), B=(B;), C=(C;), andD = (D;) ,i=
Assumptions (i) and (ii) are in agreement with th& 2,3- The domain of the operatdr is

usual restrictions imposed in the mechanics of solids in

order to obtain the existence and uniqueness of the solu- p = D(£) = {VVEX,

tion. For instance, assumption (ii) assures that the internal LW eX

energy density is a positive definite. _
We shall use the following vectorial notations: a=0 on OB (14)

v=0, ¥=0,

u=(uw), v=_(v), bd=(d:), =), The closure ofD(L) is obviously spaceX, and hence,
1=1,2,3 D(L)is denseinX. Also, it is easy to see that the domain
D(L) is not empty because it at least contdifig® (B)]".
Thus, we can reduce the initial-boundary value problems
(10), (8), and (9) to the temporally equation on Hilbert
X = {(u’v’cbw vcHY(B), ¢ecHi(B), spaceX

And define spac& by

ueH{(B) ’
dw—ﬁW Ft), 0<t<t 15
VeH'(B), ocH)(B), oceH°<B>} (11) o T EWHFW), o0stst (9
N with the initial condition
whereH}(B) andH°(B) are the familiar Sobolev spaces
(see Pazy, 1983). The following notations have been used: W(0) = W, (16)

Hy(B) = [Ho(B)P’, H(B) = [H°(B)] where

We want to transform our initial-boundary value problem, I

given by Egs. (10) and conditions (8) and (9) into a temj:(t):(m F,0,G,0, L) , W(]Z(a, b,c,d, o, 01)

porally homogeneous abstract equation in Hilbert space K

X defined in Eq. (11). Thus, we define the operators  F = (poF;), G = (poG;), a=(a;), b=(b),

AW = o, c=(¢), d=(d)

B;{W = i[Aijmn(Un m + Enmk®r) + Bijmn®n.m Let X* be the Hilbert space equipped with the norm in-
' ’ duced by the inner product

+ Pijo + Qijr0 k)

CiW = ‘Ll)z < W, W >*:/ [pO’Vz\_/i“i’Ii]LpﬂLz+pOK(X&+A11mn
1 B
DiW = I[Bljmn (Un,m + Enmkd)k) + Cijmnd)mm X &g Emn+0ijmnuij I:Lmn+Bijmn(£ij ﬁmn"’gz] umn)

+ Pij(sijc’r + EijO‘) + Rij(uija' + ﬁijO') + Qijk(sij()"k
+ Eijﬁyk) + Sijk(uija—,k + ﬁijo-,k) + di(0'6'1i + 6'0"1-)
+Aij6716,j + E,(Ta'] dV (17)

+ Rijcr + Sijkd,k],j + Enmk [A]kmn(unm + 8nmsd)s)
+ Bjk:mnd)n,m + ijO' + ij:ro-,’r]
EW =«
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By taking into account hypotheses (i) and (ii) imposed ¢h3 Lemma 2
the material properties, we obtain The operatol satisfies the range condition, that is

W2 =< W, W >,= / [Povivi + Lijhab; + poko® RA-L)=X, A>0 (19)
B
+Aijmn€ij€mn+2Bijmn€ijmn +Cijmn Wij Wmn +2Pi; 3.4 Proof

X €0+ 2R;i ;50 + 2Q;:1€i: 0k + 2S5k W:0 1 + 2d; ~ -
! 7t Qi . skHig 0.k Assume thatW = (ﬁ, v, ¢, ¥, G, oc) € X. Then,

2 .
x 00, + Ajjo,;0; + E0°]dV > /B[POVM' +1ij$ib; e have to show that for aW € X, the equation
+ poK(X2 + “O(Eijaij + Wi + o? + 0'71'0"1')] AW — LW = W (20)

xdV > ¢ |W\§( (18) has at least a solutioMV in D(L£). By eliminating the

functionsw;, \;, and« from Eg. (20), we obtain the fol-

On the other hand, using the first Korn inequality aqgwing system of equations in the variables ¢;, and
Eq. (17), we deduce the inequality .

o

2 2 1
|W‘* S €2 |W‘X Lin)\Qui_7[Aijmn(un,m+€nmk¢k)+Bijmn¢n,m
0

From this inequality and taking into account Eqg. (18), we
quaity g a-(18) + Pjo+ Qijkokl; = gi

obtain , , ,
€1 |W|X S |W|* S C2 |W|X Li+3w = )\2(1)1 - i[-Bijrnn(un,m"‘f’:nmsd)s)"‘Cvijmn
hence, the norm|. is equivalent to the original norm in Lij
Hilbert spaceX. X Gpom+Rij0+S5i10 k] 5 +€ijk[Ajkmn (Un,m + Enms
X d)s) +Bjkmn¢n,m+ijG +ijr0—,r] =3i+3
3.1 Lemmal 1

L7(U = 7\2 o—— [ani ('Um,,m +E€nms d)a) + Smmd)n,m
The operator is dissipative, that is PoK

1
(LW, W), < 0, for all W e D(L) +di‘”Az'j%‘M+@[Pz'j(Uj,i+5ijs¢s)+Rij¢j,i
+ &0 —dio;] = g7 (21)
3.2 Proof
where
According to relations (12), we have w=(u, ¢, 0), gi = Ay + ¥, i =1,2,3
Givs =Ap; + s, i =1,2,3, gr =AG+ & (22)
<£W, W>*:/ {’Vz’ [Aijm,n(un,,m+5m7lk¢k)+Bijm,n H_.S ' b U ! . .
B We will denote by (.,.) the conveniently weighted
X Gy 0P 04Qi550 k) Wi [ Bijmn (Un,m+enmk Pr) [LQ(B)]7 inner product and we consider the bilinear form
+Cijm'n¢n,m+RijG+Sijkc,k],k+¢i€ijk[Ajk'rrm Q [(,U, (I)} = <Lu_)7 (I)> = <(Liw7Li + 3(1)’ L7w) ,
X (Un,m+£nmsd)s)+Bjkmn¢n,m+ij:0-+ij'ro-7r]+(x o 0L I — I 5L
><[ani(um,n+£nms¢s+Smmd>n,m+di0+x4ij0,j],z‘ (Uu(PuU»—/BUi i1 Lip 3w+ pokoLrw]
— [Py (uj i teijubr)HRijbj i +E0+d; 0 i HAijmn x dV (23)
X (tn,m+Enmk PrNV),i€5is Vs HCijmnWn,m $j.it-Bijmn  Using the Green—Gauss formula and boundary conditions
X [(uj,i4€is®s ) WrnmtHVn,m+enmsWs) djiHPij (8), we obtain the following:

XMugrtessabe)otViacteuaba) O Ry (0s0tbsi0) g ) / [PoAN s+ 1A @39+ pokA* 0% dV
+Qijk ()it isPs) ot (Ve jisWs) HSijn ()i i B

+1bj,io,k)+di(ca7i+ac,i)+£coc+Aijc,z-oc,z-} av + /B [Asjmn (tn.n +Enmi @) (Ui + & jis @s) + Cijmn
Making use of the Green-Gauss formula and boundar§/< Onm @i+ 2Bijmn ()it €jis s ) O m +2Fi; (wys
condition (8), we obtain the desired result. F &jisPs)0+ 2R i0+2d;00,;+A;0,0,;]dV (24)
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foranyw = (u, ¢, o) € Y, whereY = H}(B) x Obviously, we have
H;(B) x Hg(B). 3
Due to hypotheses (i) and (ii) and the first Korn's in- k(z)] < |g|H51(B) jwly < C \g\Hgl(B) ]y

equality, it follows that and then we deduce thatis a linear bounded functional

Q[w, @] >Chlw|Z, for all w=(u, ,0)eY (25) defined over?(T") such that

. o . k| < Cr'lglg
where( is a positive, conveniently chosen, constant and = Hy " (B)

the normw|y is defined by We can extenck to whole spac&” in such a way that
extended functionak’ will have the same norm.
wly = [(u, &, )y = [ular () +[dlui(s) +olm(s) On the other hand, sinc¥ is a Hilbert space, the

Riesz—Frechet theorem shows that there exists a unique

w € Y such that

Q [wv w] < 02|w|§’7 for all w = (uv P, G) ey K((I)) = <Ll)7 d))Y, YVaoeY
K| < Cf1|g|H51(B)

In the usual way, we can prove that

_ (29)
Hence, bilinear forn®) [w, w] determines a norm equiv- jwly =

alent to the original norm on spate Since bilinear form f we choosed® = T'd, then from Egs. (26) and (29), it

Q [w, w]is continuous on spadexY’, we find that there fo|jows thatw € Y is the unique solution of the equation
exists a linear bounded transformatibrfrom Y to itself

such that Qlw,®] = (g, ),V eY (30)

Qw,w])=(w, Tw), , for any w, @ €Y (26) From the relationdu, — @; = v;, Adp; — b = U,
andAoc — ¢ = «, it follows thatv € H}(B), ¥ €

since H{(B), andx € Hj(B). Therefore, we deduce that
- - 9 = (u, v, ¢, P, o, «)isin D(L) and the proof
(w, Tw)y =Q [w, ©]=C1 |wly 27) of Lemma2is complete.

we deduce that
3.5 Theorem 1

Twl = Gilwly, wey (28) OperatorL defined by the relation (13) generate€g
Let R(T) be the range of . The linear transformatiofi 1-€- @ Sémigroup of contractions on space
is 1 to 1. For this, we have to prove that = 0 results
from Tw = 0. Indeed, if there existay, € Y such that 3.6 Proof
Two = 0, then Eq. (26) implies tha® [wo, wo] = . . . .
0, and then inequality (27) shows that = 0. Therefore, This result foIIow§ |mmed_|ately from the Lumer—Phillips
there exists corollary of the Hille—Yosida theorem, (see, for example,
T—l . R(T) =Y Pazy, 1983) . )
In order to study the existence and the uniqueness of

Now, we prove thati?(T) is dense in the space. We the solution for inhomogeneous Eg. (15), we shall need
assume the contrary; that is, there exists€ Y\R(T), the following resuit.

wo # 0suchthatwy, T @o), = 0.ButfromEq. (26) it
follows that@ [wg, wo] = 0. Making use of Eq. (25), 3.7 Theorem 2
we obtainw, = 0. This contradicts the initial assump- "

tions, and therefore, we find th&(T') is dense iny’". Let £ be the infinitesimal generator of; i.e., contrac-
So, we extend™~! to whole spac&’, such tha’~" :  tions semigrougl’(¢) on spaceX. If F(s) is a continu-
Y=Y, |T7Y < Ch. ously differentiable function of0, t,], then initial value
Letz be inR(T) andw be the only function irt” such problems (15) and (16) have for eveW, € D(L) the
thatz = T'w. unique solution

We define functionak by .
W(t):T(t)W0+/ T(t—s)F(s)ds, te€][0,to] (31)
0
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such that e )+ 0lwo )+ ble (5) +| bl (5) + 0] 1 (m)

W(t) e C ([0, t0]; X) N C° ([0, to]; D(L)  +|6lgom) < M{|a|H1(B)+|b|H0(B)+|C|H1(B)

On the basis of the above theorem, we obtain the follow- 0 1 K
ing results. +ldlaos) +107 [ 11 (B) HO [ Ho(B) + ; [1F(T) | 1o (B)
3.8 Theorem 3 +|G (Dm0 B) +1L(T)|mo(5)] dT} (32)

Suppose that the elastic coefficients are continuously dif-
ferentiable functions that satisfy conditions (1) and (iig.10 Proof

Moreover, we assume that . .
Ver w u On the basis of the Egs. (10) and conditions (8) and (9),

FeO! ([0,0]; Lo(B)), G € Cl([o,to]; Ly(B)), we can deduce the following identity:
LeC' ([0, to]; La(B))

/[Podiui-f-fijd)id)j-FpoKsz] dv+/[Aijmn(un,m
Also, we suppose thaW, = (a, b, ¢, d,0°, o!) P B
€ D(L). +enmi®Pr) (Ui +€5isPs) +CijmnPrmPji +2Bijmn

Then, there exists a unique solution of the problem(t; i+ €;jis®s)Gn,m+2P;j(uji+ejisbs)0 + 2R;;

given by Egs. (10), (8), and (9), such that o o
><d)j7i0'+2di0'07i+Aij0',2'0'7j}dvi/ [poOC¢OC¢+I¢jCiCj
(w11, b, b, 0,6) € [C([0, t); X) N C° ¥
X ([O,to]; D(L))]14 +pOK(do)z}dV‘i’/B[Aijmn(o‘n,m“i’snmkck)((Xj,k+£jiscs)

The following theorem establishes the continuous depéhCijTVlnCTL,ij,i+2B7;jmn(0(]‘7i+£jiscs)cn7m +2P;;
dence of solution of our initial-boundary value problenx («; ;+¢;iscs)0° +2R;j¢;,;06°+2d;0°0% + A;;0%
upon the initial data and supply terms. t

Let (u;, ¢;, o) be the difference of two solutions ofx 6] dV+2// po[Fyui+Gid;+ Lol dV dt (33)
the problem defined by Egs. (10), (8), and (9), corre- 0/ B

sponding to the difference of the initial data and the diffegy, sing the Schwarz’s inequality, hypotheses (i) and (i),
e_nce of body force, body couple,0 andlequmbrated extrigng the first Korn's inequality, from identity (33) we ob-
sic forceWy = (a, b, ¢, d, 0°, ¢'), (F, G, L), (ain a Gronwall-type inequality that proves desired esti-
respectively. mate (32).

3.9 Theorem 4 4. CONCLUSION

Suppose that the elastic coefficients are continuously dif- f the el f the th ‘ . ¢
ferentiable functions that satisfy conditions (i) and (ii >ecause of the elegance ol the theory of Semigroups o
Moreover. we assume that inear operators, we can derive the existence, unigueness,

and the continuous dependence of the solution without

F, GeL; ([0,t]; La(B)), L€ Ly recourse to supplementary restrictions.
% ([0, to] ; La(B)) A similar procedure can be used in the case when
boundary conditions (8) are replaced by other boundary

and conditions. The above results are true.

ac H(B), bc H'(B), c € H(B), d € H(B),
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We consider the fully developed flow through straight porous channels, where the flow entry profiles are Poiseulle—
Couette combinations. In particular, we use the Darcy—Forchheimer—Brinkman equation as the model governing the
plane parallel flow through the porous medium. In the past, this particular model has been solved using numerical
methods due to its nonlinear nature. We present an analytical solution of the problem employing an emerging pertur-
bation technique, which has been proven to be successful in tackling nonlinear problems. We offer various verifications
of the solution by comparing to existing, documented results and also mathematically, through reduction to simpler
problems.

KEY WORDS: Darcy—Forchheimer—Brinkman equation, analytical method, Poiseulle entry profile, Cou-
ette entry profile

1. INTRODUCTION fectively the flow through the porous matrix boils down to
the flow of a single-phase fluid. The importance of such
The study of flow through porous media has received cdlows is clear from some of the applications mentioned
siderable attention due to its many faceted practical apglbove. Solutions of the problems are of fundamental im-
cations. In irrigation processes, the movement of fertiliportance.
ers, pollutants, and nutrients into plants are all examplesin this study, we consider one such model of fully
of flow through porous media. The study of the interactiateveloped flow through a porous medium, between par-
of oil, gas, and water through porous earth layers has bdel plates, where the governing equation is the well-
come more important because of the increasing demakdewn Darcy—Forchheimer—Brinkman (DFB) equation.
for energy. It has also found applications in the biologic@he entry profiles are taken to be Poiseuille, Couette.
sciences, particularly in biomechanics. One such appliead Poiseuille—Couette type. It is well known that the
tion is in the human lungs, which are idealized as laipFB equation is nonlinear and usually solved by numeri-
ers of flocs and other types of porous materials (Hamdaal methods (Awartani and Hamdan, 2005). We note that
1994). The flow of a fluid through a porous medium ithe problem of forced convection flow in porous medium
essentially a two-phase flow that consists of the flow ofnehere the DFB equation has been employed to represent
matrix particle phase and a fluid phase. However, the ptre fluid has been solved analytically as well; however,
ticle phase is usually considered as a solid matrix thattie approach there involves using velocity profiles that
rigid, and hence, assumed to be stationary. Therefore,leve been attained using singular perturbation methods

1091-028X/10/$35.00 (© 2010 by Begell House, Inc. 1111
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NOMENCLATURE

D pressure p fluid density
U averaged velocity in the direction C,; drag coefficient
v averaged velocity in thg direction (,x binary parameters that take the values 0, 1,
k permeability respectively
u viscosity 19 Weft /1L
u.g effective viscosity of the fluid in C px/(pUs)?

the medium R pUs L/ 1, the Reynolds number

(Marafie and Vafai, 2001). We present an analytical sol2- PROBLEM FORMULATION
tion of the problem employing the homotopy perturbati(%

method (HPM) (He, 1999). This technique has been use start with the basic fact that the flow of a viscous fluid
successfully in solving many nonlinear differential equés— governed by the continuity and the Navier-Stokes equa-

tions in different fields of applied mathematics. In fluityonS that, when the fluid is incompressible and the flow

mechanics for instance, Siddiqui et al. (2006a,b, 2008a',%fteady’ take the form

used this method for solving nonlinear problems involv- V-v=0 (1)

ing Newtonian and non-Newtonian fluids. For a compre-

hensive account of the use of the HPM to successfully p(v-V)v=—Vp+uViv @)

solve problems in fluid mechanics, see He (2006a,b)ImEgs. (1) and (2)y is the velocity vectory is the vis-

is worth noting that recently the convergence of the HP&®SIty, p is the density, ang is the pressure. As our ob-

has been addressed and analyzed by Biazar and Ghaz@#five is to consider the flow through a porous structure

(2009). we need to introduce this. Of course, this in itself is not
Therefore, in essence, here we basically take an 88-€asy task; it is very difficult to describe the porous ma-

tablished worthwhile problem (Awartani and Hamdafix boundaries. This is due to the complexity of the pores

2005), and present an analytical solution to the pm@nd the matrix structures. It is the norm now to analyze

lem. We offer verification of the solution by reducing ieUch problems with respect to the mathematical descrip-

to the simpler Darcy—Lapwood—Brinkman (DLB) moddion of the macroscopic features of the flow of the fluid,

and showing that the solution reduces correctly as wé’;ﬂd discounting the micrqscopic features. The introduc-

We also compare the solutions for the three scenariosigf of the volume averaging theorems (Hamdan, 1994)

entry flows to the numerical solution of Awartani an§as helped considerably in this regard.

Hamdan (2005). In addition, we note that Kuznetsov In accordance with the above-mentioned averaging ap-

(1998) has solved a similar problem analytically with Broach, we express the conservation of mass principle as

Couette entry profile; also, Nield et al. (1996) have solvédmacroscopic continuity equation, which is similar to

a similar problem with a Poiseulle entry profile. HoweveEd- (1). The macroscopic momentum equations, depend-

in both cases the velocity profiles are computed using itg on the type of the porous medium and the flow un-

merical solutions. Furthermore, Pantokratoras (2007ad§y consideration, can be expressed through the following

has solved a similar problem with both types of entry pr@€neral equation (Hamdan, 1994):

files, but once again, numerical r_nethods for th_eir solution o (x [ —1]4+1} (v-V)v = —Vp + tegt

have been employed. We mention this to point out that C ®)

the solution computed here is not unique or new, rather x {x[® — 1] + 1} V?v — {uv + pdv|v|}

the method used is an analytical approximate method that k vk

is simple to employ. In addition, the problem we set upherev is the velocity vectorp is the fluid pressurep

consists of very general boundary conditions and offéassthe fluid densityy is the fluid viscosityp.g is the vis-

flexibility to the user of these results. cosity of the fluid in the porous mediurh, = peg/u, k
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is the permeability(; is the drag coefficient, anfand We assume the following boundary conditions
x are both binary parameters that take the values 0 and 1.
Note that whery = 0 Eq. (3) reduces to Navier—Stokes w0)=a, u(l)=b (1)

Eq. (2); wheny = 1 the flow is in the porous medium; ofwhereq andb simply take values of either 0 or 1. These
course, the various types of porous media can be specifigtindary conditions give us a lot of flexibility, allowing
by the choice of the parametg(Hamdan, 1994). us to represent the different entry profiles that are of in-

In the analysis in this paper we consider the flow t@rest to us. The cases we will explore are:
be in two dimensions, hence Eqg. (3) takes the following o
component form: 1. For Poiseuille flow we have = b = 0 andC' # 0.

2. For Couette flow we have = 0 andb = 1, with

P {X[C — 1] + 1} (uuy + vuy) = —pa + Hesr el

u2+02} 4 5

. For Poiseuille—Couette flow we again set 0 and

k
b= 1, with C' # 0.

x {x[®d—1]+1} VQu—x{qu—pCdu p

p {X[C — 1] 4+ 1} (uvy 4+ vvy) = —py + Heft In the next section we will solve the more general problem

mn w2iv2) (5) keeping the boundary conditions as in Eq. (11).
x {xP—1]+1} VZo—x EU‘H’CdUV A

. ) 3. SOLUTION OF THE PROBLEM USING THE
We will consider the flow to be plane, parallel, and fully {oMOTOPY PERTURBATION METHOD

developed through a straight channel, which means that
The HPM approach requires that we start by first defining

u=u(y); p=p@); © 2 homotopyw (y, ) : © x [0,1] — R for Eq. (10), which
Up = Ugy =V =Vp = Ugg =Py =0 satisfies the equation

. . . . 2 2
These relations [Eq. (6)], automatically satisfy contmu-M_sz_Rc_(l_q) 9 ug —Pup — RC

ity Eq. (1) andy-momentum Eg. (5), and reduce Oy Oy? (12)

momentum Eq. (4) to — gRCykw? =0
— Pa + Hemr {X[® — 1] + 1} uyy — X whereq € [0,1] is the embedding parameter is the
w pCqulu| | 0 (7) initial guess approximation, and= 1/v/k is introduced
X E“ + Vi - for notational convenience. Note that whes: 0 we have

) o a simple linear problem to solve and@s- 1, the linear
We introduce a characteristic lengthand a free-stream equation deforms to the equation we wish to solve.

characteristic velocity/, which enable us to nondimen- \y.e assume that the initial guess approximation of
sionalize Eq. (7) employing the definitions Eq. (10) subject to the boundary conditions [Eq. (11)] is
*=ux/L, y*=y/L, v =u/Us, k*=k/L* (8
v =2/l y"=y/L, v =u/ /L@ uo(y) = acosh(ky) + P sinh(ky) — R—g (13)
Substituting Eq. (8) into Eq. (7), and eliminating the aster- K

isks and rearranging, Eq. (7) takes the following dimeMhere RC
sionless form whem = pg: x=a+— (14)
K

u  RCy 2} 1 RC RC

9—-1]+1 =RC+x{-+— 9 = — i el
b -y =R ex{Fe el @ pe oo (00 20 s 5] s
whereC' — [pX/(ono)2] and Reynolds numbeR — Note that the corresponding boundary conditions are
(PUso L/W). w(0) =a, w(l)=b (16)

At this point we get more specific since we are inter-
ested in the DFB equation. Taking= 9 = 1 and{ = 0, We assume that the solution of Eq. (10) can be expressed

we have as a power series iy i.e.,

RC,
Uyy = RC + % + \/EduQ (10)

u(y,q) = wo + qui + ¢*wa + - - - 17)
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where thew;’s are independent @f Substituting Eq. (17) or equivalently
into Egs. (12) and (16), and equating powers;ofjives
rise to a set of problems that we will now specify and u(y) = [RCd {ocy

: . : — sinh
solve in the following subsections. 2 + (p} + B} sinh(ky)

RCy (By RC
— = - = sh 26
3.1 The Zeroth-Order Problem { K ( 2 K3 o p cosh(ky) (26)
The differential equation of the zeroth-order problem is + ig (RC;d _ 1)
K K
0w 0%u
8y20 — K*wo — 6y20 + k*ug =0 (18) where recall thatx, 3, ande as above are
" RC
under the boundary conditions x=a+—
K
wo(0) =a, wo(l)="> (19)
B = L b—(a+ RO hk + RO
The solution of the zeroth-order problem is ~ sinhk “T e ) K2

. RC 1 RC B « RC
w = occosh(ky) + P sinh(ky) — —- 20 - -~ _r _ g _
0(y) (xy) + B (ky) 2 (20) o p— {( 3 2) cosh(k) 5 sinh k 3 ]

3.2 The First-Order Problem
4., THE DARCY-LAPWOOD-BRINKMAN

The differential equation for the first-order problem is EQUATION
82101
Oy?

Mathematically, the particular form of DFB Eq. (10) is

a more general equation in the sense that it includes the
microscopic inertial terms, and the DLB equation is a par-
under the boundary conditions ticular case of DFB Eq. (10). This particular case occurs
when the drag coefficierit; = 0, reducing Eq. (10) to

— k*w; — RCykwi =0 (22)

w1(0) =0, wi(l)=0 (22)
u
The solution of the first-order boundary value problem is Uyy = RO+ k 27)
iven b
g y which is the DLB equation for the problem under consid-
RCy [ (ay ) eration. Consequently, a part of the verification of the so-
wily) = — [{2 + @} sinh(ky) lution [Eq. (26)] can be achieved by substitutiflg = 0
(23) into Eq. (26), giving us the following general solution for
+ By _ RO cosh(ky) + RO Eq. (27):
2 K3 Y K3 4 '
h . RC
where u(y) = P sinh(ky) + « cosh(ky) — = (28)
1 RC B x RC
= KK3 — 2) cosh(k)— 3 sinh k — KB} (24) where we recall thak andp as above are
. . RC
Although it is possible to go up to the second-order prob- x=a+—
K

lem and its associated solutions, the solution to the first-
order problem is reasonable. Therefore, the homotopy

perturbation solution of the problem up to the first order fp = — 1 [b — (a + RO) cosh k + RC}
is sinh k K2 K2

) We will complete the verification in the next section by
u(y) = Jim u(y,q) = wo(y) +wiy) +--- (25) specifying practical situations by definiagandb.
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5. RESULTS AND DISCUSSION 0.7 ;
—o— DFB
The solutions of the two equations mentioned earlier &, | DLB ]
general, but for practical purposes we introduce thr
different entry flow profiles. As mentioned above, w 44| |
will consider Poiseuille, Couette, and Poiseuille—Couetl
flows. In the next few subsections we consider each 4| |
these flow conditions for both Egs. (10) and (27).
0.3 b
5.1 Poiseuille Entry Profile
0.2 |
In the first instance we consider the DFB equation. A
suming an entry profile of Poiseuille type, we get= o0.1¢ .
b= 0andC # 0, giving us the solution
(x/ L L L L
0 0.2 04 0.6 0.8 1
RC | [ RC .
utn) =5 {5t =1+ By psinn(ey) | .
K ZAN FIG. 1: This graph represents a Poiseuille-type entry pro-

RCy4(1 — cosh k) RCy 1 W 29 file. Variation of velocityu versusy for both the Darcy—
oxsinhk YT @ T eos (ky) (29) Lapwood—-Brinkman (DLB) and Darcy—Forchheimer—

RC, Brinkman (DFB) models. For computing these graphs we
(%)

have set” = —5, R = 1, andk = 1. In addition, for the

2
. DFB modelCy; = 0.55 and for the DLB modeUC,; = 0.

whereE; is defined as

B - 1 — cosh {1

tained here. The advantage gained in the analytical solu-
tion is that we can see the expressions that are the con-

Similarly, for DLB Eq. (27), for an entry profile of tributing elements representing the microscopic inertia.
Poiseuille type, we substitute = b = 0 andC # 0 One can clearly notice these as terms that have drag coef-

into Eq. (28) and we get ficient Cqy multiplying them in Eq. (29).

K 2sinhk =k

RC, ( coshk 1 )} These graphs also offer a verification for the solutions ob-
sinh k B

“(y):RTS [Cosh(Ky)+( Si(;IOhSKK) Sinh(Ky)—l] (30) 5:2 Poiseuille-Couette Entry Profile
Once again, starting with the DFB equation, assuming an
which can be re-written as entry profile of Poiseuille—Couette type, we get= 0,

b =1, andC # 0 giving us the solution

u(y) = —RCk + RCk |e¥/V*

(31) u(y) = RC{RQid(yl)JrEl}Jr

K2 sinh k

+ RC

eu/VE _ o=y/VE _ (4y)/VE 4 e(l—ywﬁ]
2

el/VE _ o—1/VE " (1_ RC, coshk

2k sinh k

e

This, in fact, is the solution of the DLB equation for a (32)

Poiseuille entry profile, which also matches the solutiony
given by Awartani and Hamdan (2005).
In Fig. 1 we see the velocity profiles for the DLB and RC <R0d )

RCd(l —cosh K) ROd RCd

{ oksinhk 7 K2 }+2Ksinh|<y

DFB models for a Poiseuille entry profile. We clearly see* cosh(ky) + e\ e 1

that the inclusion of the microscopic inertia through the

DFB model causes a slowing down of the flow, which i&s one would expect, the analytical solution obtained in
the same result obtained by Awartani and Hamdan (2008 previous section of DFB Eq. (10) should reduce to
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the solution of the DLB Eg. (27). If we substitute= 0, 5.3 Couette Entry Profile

b=1,a=0,b=1,C #0,andCy; = 0 into Eq. (26) we

get We begin again with the DFB equation and simply substi-
tuteC = 0 into Eq. (32), giving us

sinh RC 1—cosh
u(y) = 75111. (Ky) =+ — COSh(Ky)+ m
sinh k K sinh k (33) B 1 1 RC 4 cosh k b
- ) uly) = sinhk \©  2ksinhk sinh(ky)
x sinh(ky) — (35)
RC,
which can be re-written as + {QKSH&IIK?J} cosh(ky)
Vi _ —y/Vk
u(y)=RCk e?;ﬁ_e ?j\/z (1+ Ré‘k _el/\/E> We substitute”; = 0 into Eq. (35), giving us
e —e~ ’
i (34) uly) = sinh(ky) _ ev/VE _ o=u/VE (36)
+e¥/VE 1 Y sinh el/VEk _ o=1/VE

which matches the result obtained by Awartani and Hanvhich is the expected solution if we solve DLB Eq. (27)
dan (2005), as expected. It is also worth noting that tiwdth C' = 0. This further verifies the solutions presented
DLB equation is a linear differential equation and sinin the preceding sections.

ple to solve, and that the solution, indeed, is correct. In In Fig. 3 we present the graphs of the solutions for the
Fig. 2 we present the graphs of the solutions for the twwo models, this time for a Couette entry profile. Once
models. Once again, we notice the slower profile of tlagain we notice the slower profile of the DFB model,
DFB model, due to the presence of the microscopic idue to the presence of the microscopic inertia. The graph
ertia. The graph closely matches the results obtainedddysely matches the results obtained by Awartani and

Awartani and Hamdan (2005). Hamdan (2005).
14 T T T T 1 T T T T
—o—DFB —o—DFB
——DLB 09| ——DLB :
12} :
08} :
T 07} :
o8l | osf :
05} :
08y 1 o4t 1
04f 1 03f )
0.2f :
02f :
01} )
0 0.2 04 0.6 08 1 0 0.2 04 06 08 1

FIG. 2. This graph represents a Poiseuille-CouettetG. 3: This graph represents a Couette-type entry pro-
type entry profile. Variation of velocity: versusy for file. Variation of velocityu versusy for both the Darcy—
both the Darcy-Lapwood-Brinkman (DLB) and Darcytapwood—Brinkman (DLB) and Darcy—Forchheimer—
Forchheimer—Brinkman (DFB) models. For computinBrinkman (DFB) models. For computing these graphs we
these graphs we have s€t= 1, R = 1, andk = 1. have sel’’ = 1, R = 1, andk = 1. In addition, for the

In addition, for the DFB modet’; = 0.55 and for the DFB model Cy; = 0.55 and for the DLB modelC,; =
DLB modelC,; = 0. 0.
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6. CONCLUSIONS review of flow models and channel entry conditiodgpl.
Math. Comput.yol. 62, pp. 203—-222, 1994.

T i s o i sy s 0 0S4 S oy et iy s
y P ' Appl. Mech. Engyol. 178, pp. 257-262, 1999.

representing the developed flow through a porous chan- ) ,
nel between parallel plates. The problem has been . J. H Some asymptotic methods for strongly nonlinear
documented by Awartani and Hamdan (2005); in fact, weigggt'ggggg‘ J- Mod. Phys. Byol. 20, no. 10, pp. 1141~
follow the analysis of their work and use it as a bencvh ] H’ N i . ation of h . crbati thod
mark for the analytical solution presented here. We havé *- 1~ NeW Interpretation ot homotopy perturbation method,
considered three types of entry profiles driving the flow, Int. J. Mod. Phys. Byol. ?0‘ n(_)' 18, Pp' _2561_2568’ 2006b.
namely, Poiseuille, Couette, and Poiseuille—Couette tyﬁg._znetsov, A. V., Analytical investigation .of hea.t. tlransfer
In addition, we have considered the problem with gen-" Couette flow through a porous medium utilizing the
eralized boundary conditions and presented the soIutiorfglnI;rzn;g;':cl);c_h;f'Tgeééexmnded Darcy modetta Mech.,
with respect to these boundary conditions. The solution” = " " ! ' ] ]
simply requires the input of the appropriate parameterg fgrafie; A. and Vatai, K., Analysis of Non-Darcian effects on
produce solutions to different problems. We have demon_temperature differentials in porous mediat. J. Heat Mass
. . ) . Transferyvol. 44, pp. 4401-4411, 2001.
strated this through the subsections above in the sec-I p'_o
tion on Results and Analysis. Although we do not reall‘?}'e_d’ I_:)' A, J_unquelra, S.L.M., and L"’.‘ge’ JL, Forcgd convec-
present the solution to a new problem, we do present thélon in a fluid-saturated porous-medium channel with isother-
. . ! . mal or isoflux boundaries), Fluid Mech. vol. 32 . 201-
analytical solution of the problem. This solution shows, ,;, 1996. 3 2pp

for instance, not only the overall effect of the microp- .
y pPantokratoras, A., Fully developed forced convection of

tc inertia, b.Ut I addlthnally shows the term(s) (SI.nce three fluids with variable thermophysical properties flow-
more terms n the solution can be taken) that ContrIbUteing through a porous medium channel heated asymmetrically
to the dynamics of the problem. We also demonstrates the i, large temperature differencel,Porous Mediayol. 10,
advantages of an analytical solution. As verification, we pp. 409-419, 2007a.

have shc-)wn the solution of the PLB model for the sarTiieantokratoras, A., Fully developed Couette flow of three flu-
problem; the model can be obtained from the DFB modeliys ith variable thermophysical properties flowing through

by simply setting the drag coefficient to zero. As such, a porous medium channel heated asymmetrically with large

for the solution obtained by doing the same with our so-temperature difference8SME J. Heat Transfevol. 129, pp.

lution, we expect the correct solution of the DLB model, 1742-1747, 2007b.

which is an easier linear solvable differential equatiosjqdiqui, A. M., Ahmed, M., and Ghori, Q. K., Couette and

and this, in fact, was shown and verified our solution. In poiseuille flow for non-Newtonian fluidgnt. J. Nonlinear

addition, we have offered further verification of the solu- Sci. Numer. Simulyol. 7, no. 1, pp. 15-26, 2006a.

tion by comparing it to the solution obtained by Awartardiddiqui, A. M., Mahmood, R., and Ghori, Q. K., Thin film flow

and Hamdan (2005), and all scenarios show a match.  of a fourth grade fluid down a vertical cylinder by He’s homo-
topy Perturbation methodhys. Lett. Ayol. 352 pp. 404—
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