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THE INSTABILITY OF A DEVELOPING THERMAL
FRONT IN A POROUS MEDIUM. III SUBHARMONIC
INSTABILITIES

Asma Selim & D. Andrew S. Rees∗

Department of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 7AY,
United Kingdom

∗Address all correspondence to D. Andrew S. Rees E-mail: ensdasr@bath.ac.uk

Original Manuscript Submitted: 12/29/2008; Final Draft Received: 6/12/2009

In this paper we study the instability of the developing thermal boundary layer that is induced by suddenly raising the
temperature of the lower horizontal boundary of a uniformly cold semi-infinite region of saturated porous medium. The
basic state consists of no flow, but the evolving temperature field may be described by a similarity solution involving
the complementary error function. In very recent papers, Selim and Rees (2007a) (Part I) have sought to determine
when this evolving thermal boundary layer becomes unstable and then Selim and Rees (2007b) (Part II) followed the
subsequent evolution of horizontally periodic disturbances well into the nonlinear regime. In this paper we investigate
the secondary instability of the nonlinear cells by introducing subharmonic disturbances into the evolving flow. We
consider three different types of subharmonic disturbance, namely, the 2:1, 3:2, and 4:3 types. Cellular disturbances are
seeded into the evolving basic state, the primary mode having an amplitude that is greater than that of the subharmonic.
In general, we find that the subharmonic decays at first, while the primary mode grows, but at a time that is dependent
on the relative initial amplitudes, the subharmonic experiences an extremely rapid growth and quickly establishes itself
as the dominant flow pattern. A fairly detailed account of the 2:1 case is given, including an indication of how the time
of transition between the primary and the subharmonic varies with wave number and initial amplitudes. The other two
types of subharmonic disturbance yield a richer variety of behaviors; therefore, we present some typical cases to indicate
some of the ways in which the primary mode may be destabilized.

KEY WORDS: boundary layer, secondary instability, sub-harmonic disturbances

1. INTRODUCTION

The study of convection generated by a heated horizontal
surface underlying a fluid-saturated porous medium has
attracted much interest in recent years due to its appli-
cation to the sudden heating of porous rocks from below
such as might occur in volcanically active regions. Re-
cently, convection induced by the sequestration of CO2 in
saturated porous rocks during oil recovery has received at-
tention (Riaz et al., 2006). Indeed, such convection could
easily occur during the long-term underground storage
of CO2 gas, as described by Xu et al. (2004), Socolow
(2005), and Ennis-King and Paterson (2005), when sur-

face pollutants are present, or indeed when surface evap-
oration increases the brine density near the surface of a
saline lake (Wooding et al. 1997). In all of these cases the
presence of thermal or solutal instability will cause an in-
creased mixing, which is generally undesirable. In this pa-
per we shall analyze situations caused by sudden heating
as the exemplar of the two different cases, although they
are essentially identical when the Boussinesq approxima-
tion applies.

When a semi-infinite cold domain has the temperature
of its lower impermeable surface raised suddenly, the tem-
perature field evolves according to the standard comple-
mentary error function conduction solution, as given by

1091–028X/10/$35.00 c© 2010 by Begell House, Inc. 1039



1040 Selim & Rees

NOMENCLATURE

a related to disturbance amplitude Greek characters
A amplitude of disturbance α thermal diffusivity
g gravity β expansion coefficient
k wavenumber of disturbance η similarity variable
K permeability θ nondimensional temperature
L natural length scale µ dynamic viscosity
N number of modes used ρ density
p pressure τ scaled time
q heat transfer ψ streamfunction
qn heat transfer for moden
Ra Darcy–Rayleigh number Superscripts and subscripts
t time c neutral/critical
T dimensional temperature conditions
u horizontal velocity i initiation time
v vertical velocity s subharmonic transition
x horizontal coordinate w wall
y vertical coordinate ∞ ambient

Carslaw and Jaeger (1986). This situation is potentially
unstable since relatively heavy fluid lies over relatively
light fluid. A Rayleigh number may be defined using a
length scale that is based upon the thickness of the evolv-
ing hot region. This value increases as time progresses,
and therefore a critical time for the onset of convection
should be expected. Rees et al. (2008) discuss the many
ways in which this criterion for the onset of convection
may be obtained. Various methods have been proposed
such as quasistatic theory (i.e., a frozen-time theory) and
a local Rayleigh number analysis, which are approxi-
mate, but which give a rough idea of the time of onset
and the expected critical wave number. Energy analyses
and amplitude theory (in the sense of solving the time-
dependent disturbance equations) yield results that should
be expected to tally with experimental results. However,
these comparisons and the discussions surrounding them
are lengthy; therefore, the reader is referred to Rees et al.
(2008), and the references cited therein for further infor-
mation.

The present paper is an extension of work by Selim
and Rees (2007a, 2007b), hereafter referred to as Parts I
and II. The former of these papers did not rely upon an
approximate theory to give a critical time for the onset of

convection. Instead, the full linearized disturbance equa-
tions, which are parabolic in time, were solved numeri-
cally in order to assess when disturbance ceases to decay
and begins to grow, thereby determining a critical time.
After a large number of different disturbance wavelengths
was considered, a neutral curve was constructed that re-
lates the critical time and the disturbance wave number. It
was found that the critical time also depends on the time
at which the disturbance is introduced (unless this time
is well before the smallest achievable onset time). More
surprisingly, it also depends on the manner in which one
attempts to define instability (i.e., on how one defines the
strength of the evolving disturbance). The resulting neu-
tral curves were compared with the results of a quasistatic
or frozen-time approximate theory. The earliest onset time
was the one that employed a thermal energy functional
as the measure of the disturbance amplitude. In general,
it was found that convection occurs much earlier than is
predicted by the approximate theories. Moreover, and to
one’s initial surprise, it was found that growing cells al-
ways eventually restabilize and decay.

The linear theory was extended into the nonlinear re-
gime in Part II in order to determine how finite-amplitude
disturbances evolve. A mixed finite-difference and Fou-
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Developing Thermal Front Subharmonic Instabilities 1041

rier series method was used to follow the evolution of
nonlinear cells. Although detailed results were given on
the effects of varying the initiation time and amplitude of
the disturbance, the most important feature that was found
is that even nonlinear cells eventually restabilize and de-
cay. Indeed, nonlinear cells were found to restabilize ear-
lier than their small-amplitude counterparts. This property
of restabilization is seemingly at odds with the fact that
the Darcy–Rayleigh number based on the thickness of the
evolving basic state continues to grow, and therefore the
whole configuration becomes increasingly thermoconvec-
tively unstable with time. The aim of the present paper is
to begin the process of resolving this apparent conflict.

In this paper, then, we are interested in the role played
by secondary instabilities of the evolving nonlinear cells.
That secondary instabilities should form the correct mode
of disturbance may be predicted using the fact that the
basic thermal boundary layer thickness grows in time,
and larger wavelengths of cells (i.e., smaller wave num-
bers) are required to ensure that convection cells remain
with roughly anO(1) aspect ratio. The shape of the neu-
tral stability curve is also such that the time interval over
which growth can occur is much longer for smaller wave
numbers. Therefore, it is worth investigating whether sec-
ondary disturbances with relatively small wave numbers
can destabilize evolving nonlinear cells, thereby allowing
strong convection to be maintained at later times.

We concentrate on the 2:1, 3:2, and 4:3 subharmonic
cases where the respective wave numbers of the primary
and subharmonic modes are in the ratio,m:n.

2. GOVERNING EQUATIONS AND BASIC
SOLUTION

We are considering the instability of a basic state that
is composed of a quiescent semi-infinite region of satu-
rated porous medium at the uniform cold temperatureT∞,
in which the lower horizontal boundary has its tempera-
ture raised suddenly to a new uniform levelTw, where
Tw > T∞. The porous medium is considered to be ho-
mogeneous and isotropic, and the solid and fluid phases
are in local thermal equilibrium. We assume that the flow
is governed by Darcy’s law modified by the presence of
buoyancy and subject to the Boussinesq approximation.
Thus, the governing equations for the fluid motion and
temperature field for buoyancy-driven convection are ex-
pressed in the following nondimensional form:

∂u

∂x
+

∂v

∂y
= 0 (1a)

u = −∂p

∂x
(1b)

v = −∂p

∂y
+ θ (1c)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
=

∂2θ

∂x2
+

∂2θ

∂y2
(1d)

The appropriate boundary conditions are as follows:

y=0 : v=0, θ=1 and y →∞ : v, θ → 0 (1e)

while θ = 0 everywhere within the porous medium when
t = 0. In Eqs. (1a) and (1b)x andy are the horizontal
and vertical coordinates, respectively, whileu andv are
the corresponding seepage velocities. In addition,p is the
pressure whileθ is the temperature.

It is essential to mention that there is no physical length
scale in this semi-infinite domain, but that it is possible to
define a length scale in terms of the properties of the fluid
and porous matrix:

L =
µα

ρgβK(Tw − T∞)
(2)

whereρ, g, β, K, Tw, T∞, µ and α are the reference
density, gravity, coefficient of cubical expansion, perme-
ability, wall temperature, ambient temperature, dynamic
viscosity, and effective thermal diffusivity, respectively.
This definition of the length scale means that the usual
Darcy–Rayleigh number takes a unit value

Ra= ρgβKL(Tw − T∞)/µα = 1. (3)

After eliminating pressurep between Eqs. (1b) and
(1c) and on introducing stream functionψ, which is de-
fined according to

u =
∂ψ

∂y
and v = −∂ψ

∂x
(4)

then the continuity equation is satisfied. Equations (1b)–
(1d) now reduce to the pair

∂2ψ

∂x2
+

∂2ψ

∂y2
=

∂θ

∂x
(5a)

∂θ

∂t
+

∂ψ

∂x

∂θ

∂y
− ∂ψ

∂y

∂θ

∂x
=

∂2θ

∂x2
+

∂2θ

∂y2
(5b)

which are to be solved subject to the boundary conditions

y=0 : ψ=0, θ=1 and y→∞ : ψ, θ→0 (5c)
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1042 Selim & Rees

and the initial condition that

ψ = θ = 0 at t = 0 (5d)

Therefore, att = 0, the temperature of the lower bound-
ary of the semi-infinite region of porous medium is raised
suddenly from 0 to 1 where it remains for allt > 0.

The basic conduction profile is independent ofx with
no flow, and the thermal energy equation reduces to

∂θ

∂t
=

∂2θ

∂y2
(6)

Equation (6) admits the well-known solution,

θ = erfcη =
2√
π

∫ ∞

η

e−ξ2
dξ (7)

where the similarity variable is given by

η =
y

2
√

t
(8)

In this paper we choose to consider disturbances to the
basic profile given in Eq. (7) by transforming the gov-
erning equations into the new coordinate system(η, τ),
whereη is given above andτ =

√
t; this transformation

of t to τ avoids the explicit appearance of fractional pow-
ers of t within the governing equations. Equations (5a)
and (5b) now become

4τ2 ∂2ψ

∂x2
+

∂2ψ

∂η2
= 4τ2 ∂θ

∂x
(9a)

2τ
∂θ

∂τ
+ 2τ

(
∂ψ

∂x

∂θ

∂η
− ∂ψ

∂η

∂θ

∂x

)
= 4τ2 ∂2θ

∂x2

+
∂2θ

∂η2
+ 2η

∂θ

∂η

(9b)

Given that the coefficient ofθ on the right-hand side of
Eq. (9a) increases with time, it is clear that the strength of
the buoyancy forces also increases. Physically, the thick-
ness of the region over which the temperature varies from
1 on the lower boundary to a nominal value, such as 0.01,
also increases with time, and therefore a local Rayleigh
number based on the thermal boundary layer thickness is
seen to increase.

3. NUMERICAL METHOD

In Part II, we undertook a numerical investigation of the
nonlinear evolution of spanwise periodic disturbances by
taking a truncated spanwise Fourier expansion of the form

ψ(x, η, τ) =
N∑

n=1

ψn(η, τ) sin nkx (10a)

θ(x, η, τ) = erfcη +
1
2
θ0(η, τ)

+
N∑

n=1

θn(η, τ) cos nkx
(10b)

wherek is the wave number andN is the truncation level.
In Part I we retained only theψ1 andθ1 terms since they
were assumed to be infinitesimally small in magnitude.
Therefore, nonlinearities were neglected in order to form
a linearized stability theory. In Part IIψ1 andθ1 formed
the primary mode and this mode interacted with itself to
induce components with wave numbers2k, 3k, and so on.
The term 1

2θ0 yields the mean change to the basic state
due to the presence of convective cells. In this paper we
shall refer to the pair(ψn,θn) as moden.

The substitution of the expansions (10) into Eqs. (9a)
and (9b) is very lengthy to present and has been omitted
for the sake of brevity. The resulting system is comprised
of 2N + 1 second-order partial differential equations inη

andτ. In the numerical simulations of Part II, the trunca-
tion level was chosen to beN = 5, which was sufficient
since the magnitude ofθ5 was always very small com-
pared with unity. The full system was then solved by a
standard Keller-box method using the numerical differen-
tiation methodology described by Lewis et al. (1997) to
obtain the Newton–Raphson iteration matrix.

In the present paper we are interested in how subhar-
monic disturbances destabilize the solutions obtained in
Part II. For the 2:1 subharmonic case, mode 2 (which
has wave number2k) is termed the primary mode, while
mode 1 is the potentially destabilizing subharmonic. For
the 3:2 case, mode 3 forms the primary mode while
mode 2 is the subharmonic disturbance. This naming
scheme follows in the obvious way for the 4:3 subhar-
monic case.

In general, then, thermal disturbances are introduced
at the initiation timeτ = τi for a given wave numberk
and the disturbance profiles take the form

θn = Anηe−3η (11)

whereAn is the amplitude of the moden disturbance.
Part II showed that the mode shape is largely irrelevant, as
the disturbances quickly evolve to a common shape that
is essentially independent of the initial disturbance shape
and time of introduction. For the nonlinear study of Part II
we setA1 = A andAn = 0 otherwise. Here, for the 2:1
case, bothA1 andA2 will be nonzero withA2 > A1,
since mode 2 is to be destabilised by mode 1. All other
An values will be set to zero. Likewise, for the 3:2 case
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we will haveA3 > A2 with all other values ofAn set to
zero.

Given thatN = 5 was the smallest truncation level that
yielded reliable results in Part II, we need to takeN = 10
for the 2:1 case,N = 15 for the 3:2 case, andN = 20 for
the 4:3 case.

A rectangular domain inη and τ was used whereη
ranges from 0 to 10 with the uniform step of 0.05, this
maximum value ofη being sufficient to contain the evolv-
ing disturbance, while a step length of0.1 was used in the
τ direction.

For reference, Fig. 1 depicts the neutral stability char-
acteristics obtained in Part I, and forms the context into
which to set the present computations. Two neutral curves
are shown, namely, that obtained using a quasistatic the-
ory (continuous curve) and that obtained by using an en-
ergy integral to determine the magnitude of the evolv-
ing disturbance (symbols). Disturbances decay when the
wave number and time correspond to locations below the
curve, to the right of the right-hand branch and to the
left of the left-hand branch, otherwise they grow. For
the quasistatic approximate theory disturbances for which
k > 0.101053 (see Part I) are always destined to decay,
i.e., they are stable. All other disturbances decay until
they first cross the curve vertically, after which point they
grow, but then they restabilize and decay upon crossing
the upper branch of the curve. The equivalent maximum
wave number for the exact theory isk = 0.1124.

FIG. 1: Neutral stability curve:τ againstk.

Of more importance is the earliest time after which dis-
turbances grow; for the quasistatic theory this critical time
and its associated wave number are given by

τc = 12.944356 and kc = 0.069623 (12a)

while the corresponding data for the exact theory are

τc = 8.9018 and kc = 0.07807 (12b)

Thus, disturbances always decay whenτ < 8.9018.

4. NUMERICAL RESULTS

In this section we present a detailed account of how the
presence of subharmonic disturbances affects the evolu-
tion of the primary mode. In all cases we shall takeτi = 8
as the initiation time for both the primary and the subhar-
monic. This leaves us with a choice of the wave number,
the type of subharmonic (i.e., 2:1, 3:2, or 4:3), and the
amplitudes of the initiating disturbances. The strength of
the various horizontal Fourier modes may be gauged in
terms of the surface rate of heat transfer of each:

qn(τ) =
∂θn

∂η

∣∣∣
η=0

(13)

The overall evolution of the flow is also assisted by the
heat transfer footprint of disturbance,q(x, τ), which is
defined as follows:

q(x, τ) =
1
2
q0 +

N∑
n=1

qn(τ) cos nkx (14)

The expression forq is useful, in particular, for show-
ing how many convection cells are present at any point in
time, and for showing when the peak rates of heat transfer
occur.

4.1 The 2:1 Subharmonic Case

In this case we specify a relatively large value of am-
plitude A2 of mode 2 (the primary mode) and attempt
to destabilize it with a small disturbance in the form of
mode 1. Figure 2 represents a typical set of cases where
the wave number of the subharmonic isk = 0.035, so that
the primary mode has a wave number of0.07. We have
chosenA2 = 10−1 as the initial amplitude of the primary
mode. A selection of values ofA1 have been used to show
the influence of the amplitude of the subharmonic on how
quickly the primary mode is destabilized. Also included
is the basic case withA1 = 0 in order to show how the
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1044 Selim & Rees

FIG. 2: Variation withτ of the surface rates of heat transfer,qn, corresponding to the modes,n = 0, 1, 2 · · · . These
simulations correspond toτi = 8, k = 0.035, andA2 = 10−1 and a selection of values ofA1.

primary mode varies without subharmonic disturbances
being present. Solutions are presented in terms of the sur-
face rate of heat transfer of the different Fourier modes.

Concentrating first on the unrestricted evolution of the
primary mode, for whichA1 = 0, both Fig. 2 and the data
it represents show that the primary mode begins to grows
at a time that is roughly consistent with thek = 0.07
mode in Fig. 1. It is worthy of note that the neutral curve
shown in Fig. 1 corresponds to a thermal energy criterion
which gives an earlier onset time a curve which is based
on the surface rate of heat of heat transfer; see Part I for a
detailed discussion of this point. The primary mode then
decays atτ ≡ 45, which is well before the stabilization
time for linear theory, which is roughlyτ ≡ 75. The
strength of the nonlinear convection may be gauged by the
magnitude of12q0, which, at its peak, almost doubles the

rate of heat transfer due to the basic temperature profile.
Therefore, strongly nonlinear effects have altered thex-
independent background state from that of the solution
given in Eq. (7), and it is this that causes the premature
restabilization when compared with linearized theory.

Concentrating now on how subharmonic disturbances
alter the evolution of the primary mode, Fig. 2 also pre-
sents the effect of three different subharmonic amplitudes,
A1 = 10−6, 10−4, and10−2, while keeping all other pa-
rameters fixed. We note that the subharmonic, for which
k = 0.035, has a later onset time and a much later resta-
bilization time than the primary mode, which has a wave
number of0.070, at least for linearized theory (see Fig. 1).
In all three cases the subharmonic appears very suddenly
while the primary mode is undergoing a slow decline. In
fact, whenA1 is much smaller than10−2, the primary
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mode has already decayed substantially before the sub-
harmonic begins to grow, and the late appearance of the
subharmonic is due entirely to how small its amplitude
has become sinceτ = τi and the need to be able to grow
again to anO(1) magnitude. However, whenA1 is as
large as10−2, the subharmonic grows well before the
primary modes decay greatly. Figure 2 also shows that
destabilization of the primary mode occurs increasingly
early asA1 increases, but that the peak magnitude ofq0

decreases asA1 increases. In Figs. 1 and 2 the behav-
ior of the higher modes is most easily illustrated by not-
ing the heights of the various maxima situated atτ ' 90
in Fig. 2(b); here, the highest maximum corresponds to
mode 1, the next to mode 2, and so on.

The behavior of the mean rate of heat transferq0 also
deserves some discussion. In Part II we saw that the maxi-
mum magnitude ofq0 is attained at roughly the same time
as the maximum value of the heat transfer since the pri-
mary mode is attained. The large value ofq0 is a con-
sequence of the fact that the mean temperature field has
been altered substantially by the strongly nonlinear con-
vection pattern. Thereafter, the magnitude ofq0 decreases
rapidly, andq0 itself changes sign. This feature also oc-
curs here. However, when the primary mode is destabi-
lized, the magnitude ofq0 rises rapidly once more as the
subharmonic mode is established, and then it falls away
again as the subharmonic mode eventually begins to de-
cay.

Figure 3 shows an alternative view of the solutions
shown in Fig. 2 by depicting the isolines of the surface
rate of heat transfer of the disturbance as a function ofx
andτ; i.e., the heat transfer footprint given by Eq. (14).
In each subfigure, contours are drawn using20 equally

spaced intervals centered at zero. Therefore, the levels
vary from subfigure to subfigure. Four whole wavelengths
of the primary mode are depicted, but the subharmonic
instability reduces this to two wavelengths. The evolution
of the primary mode, for whichA1 = 0, shows a clear
period of growth followed by decay. The strength of the
nonlinearity is indicated by the lack of symmetry between
neighboring thermal cells. The four strongest cells corre-
spond to situations where the fluid is moving toward the
surface, bringing cold fluid downward and increasing the
rate of heat transfer. The weaker cells, which interleave
the stronger ones, correspond to outflow, and these rise up
from the surface (see Part II).

When subharmonic disturbances are present, the ini-
tial evolution of the primary mode is unaffected until well
after they have achieved their maximum rate of heat trans-
fer. In fact, the bottom half of each of the subfigures
with A1 6= 0 are almost identical to the subfigure with
A1 = 0. However, once the subharmonic appears, the
primary cells are destroyed rapidly, as seen by the very
close spacing of the isotherms. In fact, the subharmonic
is so strong that the alternate cells have lifted from the
surface, as will be seen in Fig. 4(a). Thus, the contours
in the very top parts of the nonzeroA1 subfigures corre-
spond to two periods. Figure 3 also shows very clearly
how different values ofA1 affect the time at which the
subharmonic appears.

Figures 4(a) and 4(b) show the detailed isotherms and
streamlines of the evolving disturbance, respectively, at
various values ofτ for theA1 = 10−2 case, which is cov-
ered in Figs. 2 and 3. In Figs. 2 and 3, two whole horizon-
tal periods of the primary mode are depicted, and this cor-
responds to one period of the subharmonic. In Fig. 4(a),

FIG. 3: Isolines of the surface rate of heat transfer,q(x, τ), for the wave number,k = 0.035, usingτi = 8, A2 =
10−1, and a selection of values ofA1. The horizontal coordinate varies betweenx = 0 andx = 8π/k; i.e., four
horizontal periods, and the vertical axis varies betweenτ = τi = 8 andτ = 100.
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(a)

(b)

FIG. 4: (a) Contours of the perturbation temperature profiles and(b) streamlines of the flow at chosen times for the
evolution of the subharmonic instability given byτi = 8, k = 0.035, A1 = 10−2, andA2 = 10−1. The horizontal
coordinate varies betweenx = 0 andx = 4π/k; i.e., two horizontal periods.
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the transition from the fully developed primary mode to
the fully developed subharmonic is shown. At first, the
two thermal cells on either side of the central cell shrink
compared with the others due to inflow, and it is these
cells which are responsible for the higher rates of heat
transfer seen in Fig. 3. Whenτ = 50, the outer half-cells
have grown to such an extent that all three cells in the
middle are smaller. Although the central cell was larger
than its two nearest neighbors whenτ = 35, it shrinks
and does so to such an extent that these neighbors drive
it to extinction at the surface, whereupon they grow and
merge. Att = 70 the process is complete and the rate
of heat transfer at the heated surface is now very large in-
deed, as is seen by the closeness of the isotherms there,
and by the magnitude ofq0 in Fig. 2. Whenτ = 100 the
isotherm spacing has increased, thereby reducing the sur-
face rate of heat transfer once more.

Figure 4(b) depicts the corresponding behavior of the
streamlines and this shows an alternative view of the sub-
harmonic instability. Betweenτ = 10 andτ = 35 the
momentum boundary layer decreases in thickness. This
happens because eachψn function, as given in Eq. (9a),
satisfies an equation of the form

ψ′′n − 4n2k2τ2ψn = −4nk2τ2θn (15)

and therefore, for a givenk, the e-folding distance de-
creases asτ increases. Afterτ = 35 the inner two cells
gradually weaken forming a pair of recirculating regions
which gradually diminish in size and strength. Just after
τ = 60 they disappear, leaving a relatively thick region
where the subharmonic forms the dominant solution. The
e-folding distance of the subharmonic is double that of the
primary mode, which is why the disturbance has roughly
doubled in thickness. At later times the thickness of the
subharmonic will begin to decrease once more.

Figure 5 shows a summary of the situation depicted in
Figs. 2–4 and of a much larger set of computations. Fig-
ure 5 displays what we shall call the transition time as a
function of the initial amplitudes of the primary mode and
the subharmonic. The transition timeτs is defined as be-
ing that time at which the values ofq1 andq2 have exactly
the same magnitude. The valuea on the abscissa corre-
sponds to an initial subharmonic amplitude ofA1 = 10−a

(i.e.,a = − log10 A1), while the different symbols corre-
spond to different initial primary cell amplitudes; these
are indicated in the caption to Fig. 5.

The interpretation of Fig. 5 is as follows. Below the
horizontal line all modes of the chosen wave number de-
cay, but the primary mode begins to grow upon crossing

the line, as the line represents the onset criterion. Given
the information represented by Fig. 2, the primary mode
then reaches a maximum and subsequently decays. When
the symbol representing the chosen value ofA2 is encoun-
tered, it is at this point in time that the surface heat transfer
due to the growing subharmonicq1 is equal to that of the
decaying primary mode, as given byq2.

Focusing first on the casek = 0.04, for which the pri-
mary mode has a wave number of0.08, it is clear that for a
chosen value ofA2, the transition time increases with in-
creasing value ofa, i.e., for decreasing amplitudes of the
subharmonic disturbance. This happens because it takes a
longer time for the subharmonic to grow until it reaches
anO(1) magnitude. When we consider the variation in the
transition time as a function ofA2, it is also clear that the
transition time increases asA2 decreases. This behavior
may be understood easily, for a reduction in the strength
of the primary mode requires a less strong subharmonic
to destabilize it.

Whenk = 0.035 we obtain a similar pattern of tran-
sition times as fork = 0.04, but they occur later because
the primary mode has the wave number0.07, which is
very close to the critical wave number given in Eq. (12),
and therefore it grows more strongly than that given in
Fig. 5(a). This trend continues ask is reduced, and be-
comes more marked because the linearized onset time for
the subharmonic now begins to grow quite rapidly com-
pared with that for the primary mode. Thus, the 2:1 sub-
harmonic route to destabilization becomes less effective
for these wave numbers.

A corollary of the above conclusion is that if the pri-
mary mode is sufficiently weak, then the subharmonic
may even be too strong for the “primary” mode to become
established. In fact, the absence of data belowτ ' 32
in Fig. 5(a) is because the subharmonic grows in prefer-
ence to the primary mode and establishes itself first. This
also explains the presence of some “anomolous” transi-
tion points in Fig. 5(d) for smaller values ofa; in this
case, the data points represent a reverse transition where
the mode with the smaller wave number is destabilized by
the mode with the higher wave number.

When the wave number of the primary mode is greater
than0.08 (and the subharmonic has a wave number grea-
ter thank = 0.04), the opposite effect is true. In this case,
the transition times are earlier because the onset times for
the primary mode and its subharmonic are much closer,
as may be seen in Fig. 1, and there is now only a small
interval of time over which the primary mode can grow.
Therefore, this primary mode is easier to destabilize using
subharmonic disturbances.
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FIG. 5: Variation in the values of the transition time,τs, with a = − log10 A1 for different values ofA2 for the wave
numbers(a) 0.04, (b) 0.035, (c) 0.03, and(d) 0.02. The line near toτ = 13 corresponds the onset of instability of the
primary cell. The symbols•, ♦, ¨, and∗ refer toA2 = 10−1, 10−2, 10−3, and10−4, respectively.

4.2 The 3:2 Subharmonic Case

We now turn to the 3:2 subharmonic route to destabiliza-
tion. Here, we consider the primary mode to have wave
number3k while the disturbance has wave number2k.
We shall consider two cases in detail, namely, those for
which the primary mode has wave numbers0.07 and0.09.
These cases represent the typical behavior found during
our various simulations.

We consider first the case where3k = 0.07. We take
A3 = 0.1 as the disturbance amplitude of the primary

mode,A1 = 0, andA2 taking the values,0, 10−6, 10−4,
and10−2. Figure 6 represents the variation of the surface
rate of heat transferqn with τ.

WhenA2 = 0, bothq3, the surface rate of heat trans-
fer of the primary mode, andq0, the mean change of heat
transfer, follow precisely the same evolutionary path as
shown in Fig. 2 when neglecting the influence of the sub-
harmonic disturbance, as the wave number of the primary
mode is the same in both cases. The other three subfigures
show how the primary mode is affected by the presence
of three different subharmonic disturbances. In all three
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FIG. 6: Variation withτ of the surface rate of heat transfer,qn, corresponding to the modes,n = 0, 1, 2, and3. The
simulations correspond toτi = 8, 3k = 0.07, andA1 = 0; A3 = 10−1; and a selection of values ofA2. Short dashes:
q1; medium dashes:q3; long dashes:q4; unbroken curves:q0, q2, and all other modes—this convention also applies
to Figs. 9 and 12.

of these cases,q1 and q2 begin to grow at roughly the
same rate, although with different signs. However, mode 1
eventually grows faster, takes over as the dominant mode,
with mode 2 following the growth of mode 1 as the latter
is the first superharmonic of the former.

On comparing Fig. 6 with Fig. 2, we see that mode 1
also grows very rapidly here, although it is not the sub-
harmonic mode that was introduced. Of interest is the fact
that destabilization occurs earlier for the 3:2 case than for
the 2:1 case, and the largest absolute mean change to the
surface heat transferq0 achieves larger values. Thus, it
would appear that the 3:2 destabilization is stronger in its
effect than the 2:1 case.

Isolines of the surface rate of heat transfer of distur-
bancesq(x, τ) are shown in Fig. 7 for the cases displayed

in Fig. 6. As before, contours are drawn using 20 equally
spaced intervals in each subfigure with the middle con-
tour corresponding to a zero value ofq. The growth and
decay of the primary mode, i.e., whenA2 = 0, is shown
for reference. The chief difference between these isolines
and those in Fig. 3 is that the peak rate of heat transfer
for the present case is maintained at a roughly constant
level after mode 1 has become established, whereas, for
the 2:1 case, the heat transfer begins to decay steadily just
after the peak is reached. In fact, this feature is more ev-
ident when comparing theq1 curves in Fig. 6 with those
in Fig. 3.

Figures 8(a) and 8(b) represent the detailed isotherms
and streamlines of the evolving disturbance, respectively,
at different chosen times for theA2 = 10−2 case. Three
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FIG. 7: Isolines of the surface rate of heat transfer,q(x, τ), for 3k = 0.07, usingτi = 8, A1 = 0, A3 = 10−1, and a
selection of values ofA2. The horizontal coordinate varies betweenx = 0 andx = 12π/k; i.e., six horizontal periods,
and the vertical axis varies betweenτ = τi = 8 andτ = 100.

periods of the primary mode are shown and these reduce
to one period of mode 1. The evolution of the thermal
cells with time is fairly complex and centers around the
fact that next-but-one neighbors are not equal in strength.
Nonlinear competition then serves to inhibit some thermal
cells and to enhance others. If, in the top row of Fig. 8(a),
we were to label the cells from 0 to 6, then cells 0 and 2
combine first, thereby eliminating cell 1. The same hap-
pens between cells 4 and 6 where cell 5 is eliminated. In
the meantime, the middle cell grows and we are left with
just one period of a cellular pattern. During the transition,
then, two cells disappear while two pairs merge; there-
fore, at no time do we see a pattern which is at all like
a mode 2 pattern with two periods being evident. A simi-
lar process happens with the streamlines in Fig. 8(b). Both
sets of figures yield a rapidly expanding region of activity,
one that is much larger than is depicted in Fig. 4, and this
is because the e-folding distance according to Eq. (15) is
larger due tok being smaller here than for the cases shown
in Fig. 4.

Essentially the same figures are now reproduced in
Figs. 9–11 for the case where the primary mode has a
wave number of0.09. We show these because qualita-
tively different behavior may be found for this choice of
wave number.

Figure 1 shows that the expected interval of growth of
a mode with a wave number of0.09 is relatively short,
although significant growth can happen. TheA2 = 0 sub-
figure of Fig. 9 appears to show little activity, but this is
simply scaled in the same way as for the remaining subfig-
ures. On the other hand, theA2 = 0 subframe of Fig. 10
shows clearly the period of time over which growth oc-
curs, and the mismatch between neighboring thermal cells

shows that the mode has become nonlinear, although not
strongly so.

Figure 9(b), for whichA2 = 10−6, gives an evolution-
ary behavior that is identical qualitatively to those shown
in Fig. 6, in that while mode 2 destabilizes the primary
mode (mode 3), it is mode 1 that appears. On the other
hand, when the initial amplitude of mode 2 is increased to
A2 = 10−4, there is a clear, but short, interval in which
mode 2 is dominant before it, too, is overtaken by mode 1.
This may be seen in Fig. 10(c) at the point marked by
an asterisk where there are now four periods showing, as
compared with the original six periods. At larger values
of τ there are only two periods of the mode 1 cell.

However, whenA2 = 10−2, the successive transitions
from mode 3 to mode 2 and from mode 2 to mode 1 takes
place in a very clear way with long intervals of time dur-
ing which each mode is dominant. Interestingly, Fig. 9(d)
shows that the transition from mode 2 to mode 1 yields
a negative value ofq1, which means that this final transi-
tion, a 2:1 subharmonic in effect, yields a pattern that is
180◦ out of phase with those shown in Fig. 3. Figure 10(d)
gives an exceptionally clear representation of both transi-
tions.

Some instantaneous isotherms and streamlines of the
evolving disturbance corresponding to the previous two
figures are shown in Figs. 11(a) and 11(b) for the cases
A1 = 0, A2 = 10−2, andA3 = 10−1. In Figs. 11(a) and
11(b) we see that six cells atτ = 10 transform into four
cells atτ = 50 by cell merging and removal, and then
into two cells atτ = 100. Of particular interest is the very
rapid evolution betweenτ = 90 andτ = 100, where the
cells that are placed close to the heated surface strengthen
suddenly.
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(a)

(b)

FIG. 8: (a) Contours of the perturbation temperature profiles, and(b) streamlines of the evolving flow, at chosen times
for the evolution of the subharmonic instability given byτi = 8, 3k = 0.07, A1 = 0, A2 = 10−2, andA3 = 10−1.
The horizontal coordinate varies betweenx = 0 andx = 6π/k; i.e., three horizontal periods.
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FIG. 9: Variation withτ of the surface rate of heat transfer,qn, corresponding to the modes,n = 0, 1, 2, and3. The
simulations correspond toτi = 8, 3k = 0.09 andA1 = 0, A3 = 10−1, and a selection of values ofA2.

FIG. 10: Isolines of the surface rate of heat transfer,q(x, τ), for the wave number,3k = 0.09, usingτi = 8, A1 = 0,
A3 = 10−1, and a selection of values ofA2. The horizontal coordinate varies betweenx = 0 andx = 12π/k; i.e., six
horizontal periods, and the vertical axis varies betweenτ = τi = 8 andτ = 100.
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(a)

(b)

FIG. 11: (a) Contours of the perturbation temperature profiles, and(b) streamlines of the evolving flow, at chosen
times for the evolution of the subharmonic instability given byτi = 8, 3k = 0.09, A1 = 0, A2 = 10−2, and
A3 = 10−1. The horizontal coordinate varies betweenx = 0 andx = 6π/k; i.e., three horizontal periods.
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4.3 The 4:3 Subharmonic Case

Now we will concentrate on the 4:3 subharmonic case,
where modes 3 and 4 in the Fourier expansion represent
the subharmonic and primary modes, respectively.

Figure 12 represents the variation of the surface rate
of heat transferqn with τ. The wave number of the pri-
mary mode is given by4k = 0.07, and therefore the
subharmonic has wave number3k = 0.0525. The initial
amplitudes of modes 1 and 2 are set to zero, and for the
primary disturbance we takeA4 = 10−1. As above, we
have used the following amplitudes for subharmonic dis-
turbance:A3 = 0, 10−6, 10−4, and10−2, whereA3 = 0
is equivalent to having no subharmonic disturbance. We
note that we have again chosen the primary mode to have
wave number0.07, so that all three subharmonic cases
(namely, 2:1, 3:2, and 4:3) may be compared.

Figure 12 shows the evolution of the variousqn val-
ues withτ, and we find that the ultimate fate of flow de-
pends on the magnitude of the subharmonic disturbance.
WhenA3 = 10−6 the primary mode has decayed almost
to nothing before mode 2 makes a brief appearance prior
to the establishment of mode 1 as the dominant mode.
WhenA3 takes larger values, the modal exchanges that
take place favor mode 2 as the final convecting state, at
least forτ ≤ 200. We suspect that mode 1 will destabilize
the evolving mode 2 pattern at later times, although we
have not tested this hypothesis.

Of interest is the fact that the mean change to the sur-
face rate of heat transferq0 is substantially larger when
A3 = 10−6 than whenA3 takes the two larger values de-
picted in Fig. 12. Thus, the magnitude of the response is
not necessarily in proportion to the magnitude of the dis-
turbance, but depends on complicated modal exchanges.

FIG. 12: Variation withτ of the surface rate of heat transfer,qn, corresponding to the modes,n = 0, 1, 2, and3. The
simulations correspond toτi = 8, 4k = 0.07 andA1 = 0, A2 = 0, A4 = 10−1, and a selection of values ofA3.
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The surface rates of heat transfer corresponding to the
four subfigures in Fig. 12 are depicted in Fig. 13. Here,
we see that the initial destabilization of the primary mode
is indeed later for the smaller disturbance amplitudes, as
one might expect intuitively.

Figure 14 shows instantaneous isotherms and stream-
lines for theA3 = 10−2 case, for which mode 2 emerges
as the dominant mode. We have chosen this case par-
ticularly because the surface heat transfer data shown in
Fig. 13 do not give a full picture of the complicated evolu-
tion that takes place. Concentrating first on the isotherms
shown in Fig. 14(a), by the timeτ = 45, the thermal cells
have either risen or fallen depending on whether they are
located where there is outflow or inflow. Moreover, the
amount by which the rising cells have risen varies and the
pattern is reminiscent of the Eckhaus (or sideband) insta-
bility, which is a well-known destabilization mechanism
for Bénard–like problems. Whenτ = 55, the disturbance
pattern has modified rapidly into a form that looks super-
ficially like a mode 1 pattern. However, the central cell of
this pattern has a detailed three-cell structure close to the
surface, and it is this structure that causesq2 to dominate
in Figs. 12 and 13, and that grows strongly asτ increases
further. In fact, whenτ = 100 the disturbance pattern is a
rather unusual mixture of mode 2 near the heated surface
and mode 1 further away.

Similar comments may be made about the evolution
of the streamlines in Fig. 14(b). The Eckhaus amplitude
modulation is very clear whenτ = 10, and so is the dual
modal structure whenτ = 100.

5. DISCUSSION AND CONCLUSIONS

In this paper we have investigated various types of subhar-
monic instability of an evolving cellular pattern in an un-
steady thermal boundary layer in a porous medium. This
is an extension of the nonlinear simulations presented in
Part II where it was found that, contrary to expectations,
the nonlinearly developing cells are always eventually
restabilized. In the present paper we have paid particular
attention to the 2:1, 3:2, and 4:3 subharmonic cases, and
these have all been found to destabilize the primary mode
of convection. For the 2:1 case we have provided a com-
prehensive set of information on how the transition time
between the primary and the subharmonic depends on the
initial amplitudes of each disturbance. For the 3:2 case
we have found two different routes to destabilization: one
where mode 3 evolves directly into mode 1 and the other
where there is a double transition with mode 3 giving way
to mode 2 and then to mode 1. We have also shown some
simulations for the 4:3 case, where we have obtained an
unusual pattern that consists of one mode near the heated
surface and another further away. We have also found that
the strength of the response to subharmonic disturbance
(in terms of the change in mean rate of heat transfer) is
not a smooth function of the amplitude of the disturbance
because the identity of the dominant mode also depends
on that amplitude.

Given that the passage of time may be interpreted as an
increasing Darcy–Rayleigh number, Ra, it is worth mak-
ing some comparisons with the classical Darcy–Bénard

FIG. 13: Isolines of the surface rate of heat transfer,q(x, τ), for the wave number,4k = 0.07, usingτi = 8, A1 = 0,
A2 = 0, A4 = 10−1, and a selection of values ofA3. The horizontal coordinate varies betweenx = 0 andx = 16π/k;
i.e., eight horizontal periods, and the vertical axis varies betweenτ = τi = 8 andτ = 100.
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(a)

(b)

FIG. 14: (a) Contours of the perturbation temperature profiles, and(b) streamlines of the evolving flow, at chosen
times for the evolution of the subharmonic instability given byτ = τi = 8, 4k = 0.07, A1 = A2 = 0, A3 = 10−2,
andA4 = 10−1. The horizontal coordinate varies betweenx = 0 andx = 8π/k; i.e., four horizontal periods.
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problem. The first comprehensive study of the stability
of large-amplitude convection in a uniform layer heated
from below was undertaken by Straus (1974), who de-
termined the region in wave number/Ra space in which
steady two-dimensional convection is stable. Generally,
as Ra increases, the range of wave numbers for which
convection is stable moves toward higher wave numbers.
This is consistent with the computations of Georgiadis
and Catton (1986), who found the wave number that cor-
responds to the largest rate of heat transfer at any cho-
sen value of Ra also increases as Ra increases. The im-
plication of the shape of the stability envelope of Straus
(1974) is as follows: should Ra be increased slowly or
quasistatically, then eventually convection at the chosen
(and originally stable) wave number becomes unstable,
and the primary instability mechanism is a cross-roll dis-
turbance with a larger wave number. This observation
marks a major qualitative difference between the Darcy–
Bénard problem and the present unsteady thermal bound-
ary layer where destabilization causes a reduction in the
observed wave number. Although our present calculations
are confined to two dimensions, we would expect that any
three-dimensional instability mechanism would also con-
sist of roll disturbances (within the linear regime, at least),
whose wave number is smaller than that of the evolv-
ing pattern; this is the implication of the previously men-
tioned tendency of cells to try to maintain a roughlyO(1)
aspect ratio as the boundary layer thickens in time.

Our numerical simulations have the nature of a highly
controlled experiment. The adoption of the Fourier ansatz
in Eq. (10) means that the results are not affected by noise,
taking the form of small-scale random fluctuations, such
as one would have quite naturally in a porous medium.
In addition, we have not considered the effect of iso-
lated disturbances, nor of three-dimensionality. Indeed,
the fact that most of Straus’s (1974) stability envelope cor-
responds to the cross-roll instability suggests that three-
dimensional effects may also be significant here. It is also
quite certain that the various transitions that we have ob-
served will change should the initiation time we have
adopted be changed. In addition, the cascade of instabil-
ities that our computations suggest as a possible destabi-
lization mechanism cannot continue to much later times
because the detailed numerical studies of Kimura et al.
(1986) and Riley and Winters (1991) suggest that the nar-
row thermal boundary layer which occurs in the convec-
tion cells near toη = 0 (see theτ = 100 frames in Figs. 4
and 8, for example) may itself be destabilized by travel-
ing waves, thereby leading to yet another potential desta-
bilization mechanism in the present context.

We certainly intend to investigate how isolated distur-
bances propagate, and preliminary work seems to suggest
that the convection cells that are induced tend to have a
wavelength that increases with time (Selim 2009). Riaz
et al. (2006) also provides much information on chaotic
cellular development in two dimensions, but as yet no
three-dimensional simulations have been undertaken; it
is hoped that this issue also will be addressed in the near
future.
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Mixed convection flow in a two-dimensional square cavity filled with a Darcian fluid-saturated uniform porous medium
is considered. The cold vertical wall at the left is moving up whereas the hot wall in the right is moving down. The fixed
top and the bottom walls are thermally insulated. The normalized governing equations are solved numerically with
appropriate boundary conditions by finite volume approach. The code has been validated with previously published
work and the results are found to be in excellent agreement. The study is conducted by varying the Richardson number
Ri =

(
Gr/Re2

)
[Ri =

(
Gr/Re2

)
], Darcy number (Da = κ/H2κ, Grashof number Gr =

(
gβ∆TH3/υ2

)
[Gr =(

gβ∆TH3/υ2
)
]. The Prandtl number is fixed at 0.71. A parametric study is conducted and a set of streamlines and

isotherm plots are presented. A heat transfer correlation is also presented.

KEY WORDS: lid-driven cavity, mixed convection, porous medium, numerical simulation

1. INTRODUCTION

Heat and fluid flow studies in porous medium have been
done on many occasions on geothermal systems (Cheng,
1978), drying of porous solids, solar collectors (Ideriah,
1980), furnaces, and many others. Moreover, mixed con-
vection problems with lid-driven flows in enclosures are
encountered in a variety of engineering applications in-
cluding cooling of electronic devices, lubrication tech-
nologies, chemical processing equipment, float glass pro-
duction (Pilkington, 1969), etc. Iwastu et al. (1993) re-
ported mixed convection in a lid-driven cavity with a sta-
ble vertical temperature gradient. The flow and heat trans-
fer study of viscous fluid contained in a square cavity have
been done, where the top wall is moving at constant speed
and the remaining walls are kept fixed. The isothermal
top wall is hotter than the cold bottom wall and the side
walls are adiabatic. Numerical experiments were reported
for a range of Richardson numbers (0 ≤ Ri ≤ 106) and

Reynolds numbers (0 ≤ Re≤ 3000). The computed re-
sults indicate the effect of the Richardson number on the
flow field. The study of mixed convection in a square en-
closure with side walls moving was done by Oztop and
Dagtekin (2004). They considered the range of Richard-
son numbers0.01 ≤ Ri ≤ 100 in which the Prandtl num-
ber was fixed at 0.7. For Ri< 1, the influence of mov-
ing walls during heat transfer is the same when the side
walls move in the opposite direction regardless of the di-
rection of the walls. For the case of opposing buoyancy
and shear forces, and for Ri> 1, the heat transfer is some
what better due to the formation of secondary cells on the
walls. Kuhlmann et al. (1997) have presented experimen-
tal and numerical results on the steady flow in rectangular
cavities. The flow is driven by moving two facing walls
tangentially in opposite directions. They concluded that
the basic two-dimensional flow was not always unique.
For low Reynolds numbers, the flow consists of two sep-
arate co-rotating vortices adjacent to the moving walls.
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NOMENCLATURE

A surface area (m2) ur dimensionless resultant velocity
Da Darcy number (κ/H2) u, v dimensionless velocity components
g gravitational acceleration (m/s2) along (X,Y) axes
Gr Grashof number [Gr=

(
gβ∆TH3/υ2

)
] x∗, y∗ dimensional Cartesian coordinates (m)

H enclosure length (m) x, y dimensionless Cartesian coordinates
i x-direction grid point
j y-direction grid point Greek Symbols
ke effective thermal conductivity of the αe effective thermal diffusivity of

porous medium (W/m K) porous medium (m2/s)
ks thermal conductivity of the solid β fluid thermal expansion coefficient

(W/m K) βs solid expansion coefficient
k thermal conductivity ratio (ks/kf ) θ dimensionless temperature
Nu local Nusselt number [(T − Tc)/(Th − Tc)]
Nu average Nusselt number υ effective kinematic viscosity (m2/s)
n time level κ permeability of the porous medium (m2)
p nondimensional pressure
Pr Prandtl number (υ/αe) Subscripts
Q constant c cold wall
Re Reynolds number of the fluid (VpH/υ) f fluid
Ri Richardson number [Ri=

(
Gr/Re2

)
] h hot wall

T dimensional temperature (◦C)
u∗, v∗ dimensional velocity components along Superscripts

(x,y) axes (m/s) * dimensional form

Blohm and Kuhlmann (2002) have investigated experi-
mentally the flow in a rectangular cavity driven by two
facing side walls that move steadily in anti-parallel di-
rections for Reynolds numbers up to 1200. They con-
cluded that beyond a first threshold, robust, steady, three-
dimensional cells bifurcate super-critically out of the ba-
sic flow state. The oscillatory instability is found to be
tri-critical if both side walls move with the same veloc-
ity (symmetrical driving). The non-Darcian effects were
considered by Vafai and Tien (1981), where they studied
the inertia and boundary effects on flow and heat transfer
in porous media. Lauriat and Prasad (1989) studied the
relative importance of inertia and viscous forces on natu-
ral convection in porous media via the Darcy–Brinkman–
Forchheimer solutions for a differentially heated verti-
cal cavity. Khanafer and Chamkha (1999) investigated
a mixed convection flow in a lid-driven cavity enclo-
sure filled with a fluid-saturated porous medium. In their
work, the Brinkman-extended Darcy equation of motion

was used and the influence of the Richardson and Darcy
numbers on the flow was studied. Many authors have
reported mixed convection flows with Darcian and non-
Darcian effects along vertical plates embedded in porous
media (e.g., Lai and Kulacki, 1991; Hsieh et al., 1993) or
in rectangular geometries filled with porous media (e.g.,
Nithiarasu et al., 1997, 1998). Recently, Vishnuvardha-
narao and Das (2008) studied the mixed convection flow
in a square cavity filled with porous medium, in which the
left wall was moving up and was maintained at a constant
cold temperature—thus opposing the buoyancy force. The
right wall also was moving up with the same velocity and
was maintained at a constant hot temperature—thus aid-
ing the buoyancy. These effects have been reported and an
empirical correlation has been presented. In the present
study, the mixed convection flow in a square cavity filled
with porous media is considered. The left wall is mov-
ing up and is maintained at a constant cold temperature,
whereas the right is moving down and maintained at a
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constant hot temperature. The objective of the present
work is to consider the Brinkman-extended Darcy equa-
tion of motion with the convective terms included, as was
used by Khanafer and Chamkha (1999). The governing
parameters are Richardson numbers (Ri) and Darcy num-
bers (Da) for a range of Grashof numbers (Gr).

2. PROBLEM DESCRIPTION

The physical model considered is shown schematically
in Fig. 1. A two-dimensional square cavity of heightH
is filled with fluid-saturated uniform porous medium and
permeability. The top and the bottom surfaces of the cav-
ity are thermally insulated. The left and the right walls
are maintained at temperaturesTc andTh, respectively,
as shown. The left wall is moving up and the right wall
is moving down. The velocities of the moving walls are
equal and the directions are as shown. The direction of
the gravitational force and thex–y coordinate system are
also shown in the Fig. 1.

3. GOVERNING EQUATIONS

Flow is assumed to be two-dimensional, steady, and lam-
inar and the fluid is assumed to be incompressible. The
thermophysical properties are assumed to be constant ex-
cept for the body force term in the momentum equation,
which has been approximated by the Boussinesq approx-
imation. Radiation heat transfer is considered negligible
with respect to other modes of heat transfer. Inertia effects
of the porous medium are negligible, which is appropri-
ate when the Reynolds number is small (Khanafer and
Chamkha, 1999). By considering the assumptions men-
tioned above, the nondimensional form of the governing

FIG. 1: Schematic diagram and boundary conditions

equations can be written using the following dimension-
less variables:

x =
x∗

H
, y =

y∗

H
, u =

u∗

Vp
, v =

v∗

Vp
,

p =
p∗

ρ0V 2
p

, θ =
T − Tc

Th − Tc

(1)

The resulting dimensionless equations are

∂u

∂x
+

∂v

∂y
= 0 (2)

u
∂u

∂x
+v

∂u

∂y
=−∂p

∂x
+

1
Re

(
∂2u

∂x2
+

∂2u

∂y2

)
− u

Da · Re
(3)

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1
Re

(
∂2v

∂x2
+

∂2v

∂y2

)

+
Gr

Re2
θ− v

Da · Re

(4)

u
∂θ

∂x
+ v

∂θ

∂y
=

1
Re· Pr

(
∂2θ

∂x2
+

∂2θ

∂y2

)
(5)

where

Re= VpH/υ; Gr =
gβ∆TH3

υ2
;

Da = κ/H2; Pr = υ/αe

(6)

The dimensionless boundary conditions are given as fol-
lows:

Left wall: u = 0.0, v = 1.0, θ = 0.0
Right wall: u = 0.0, v = −1.0, θ = 1.0
Top wall: u = 0.0, v = 0.0, (∂θ/∂y) = 0
Bottom wall:u = 0.0, v = 0.0, (∂θ/∂y) = 0

The average Nusselt number (Nu) is calculated by inte-
grating the local Nusselt number (Nu) along the left wall
and is given by

Nu =

1∫

0

Nu dy (7)

where the local Nusslet number is defined as

Nu = − ∂θ

∂x

∣∣∣∣
w

(8)

4. NUMERICAL PROCEDURE

Governing Eqs. (2)–(5) are discretized on a structured
collocated grid. The velocity components (u, v) and the
scalar variables (pressure, temperature) are located at the
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center of the control volume in a nonstaggered man-
ner. The governing equations are solved numerically by
the finite-volume method. The semi-implicit method for
pressure-linked equation (SIMPLE) (Patankar, 1980) is
used to couple the momentum and the continuity equa-
tions. In the nonstaggered grid, the momentum interpola-
tion of Rhie and Chow (1983) has been used to avoid the
checkerboard solution.

The deferred quadratic upstream interpolation for con-
vection kinematics (QUICK) scheme is employed to min-
imize the numerical diffusion for the convective terms
in both the momentum and energy equations (Hayase et
al., 1992). The solution of the discretized momentum and
pressure correction equation is obtained by the line-by-
line method. The pseudo-transient approach is followed
for the numerical solution as it is useful for situations
in which the governing equations give rise to stability
problems, e.g., buoyant flows (Versteeg and Malalasek-
era, 1996). The iterative procedure is initiated by the solu-
tion of the energy equation followed by momentum equa-
tions and is continued until convergence is achieved. To
get a converged solution, the Euclidean norm was used to
calculate the error (Van Doormaal and Raithby, 1984) and
its value was set to 10−6 for dependent the variableφu,
v, θ and the mass residual was set to 10−10. An under-
relaxation of 0.2 is used for pressure.

5. CODE VALIDATION AND GRID
INDEPENDENCE STUDY

Validation of the developed code was done for mixed
convection flow in a lid-driven enclosure filled with a
fluid-saturated porous medium problem of Khanafer and
Chamkha (1999). Vishnuvardhanarao and Das (2008)
show comparisons of midplaneu-velocity, midplanev-
velocity, and midplane temperature in their Figs. 3(a),
3(b), and 3(c), respectively. The results are in very good
agreement with the benchmark solution for the range of
parameters considered. To test and assess the grid in-
dependent solutions, numerical experiments were per-
formed for the following grid sizes: 61×61, 81×81,
101×101, 121×121, and 141×141, with extreme values
of Richardson numbers (Ri= 0.01 and 100) and Darcy
numbers (Da= 10−4 and∞). The u-velocity in the
horizontal midplane,v-velocity in the vertical midplane,
and temperature in the horizontal midplane are shown
in Figs. 2(a)–2(c), respectively, for all the grid sizes. It
is observed that the curves overlap with each other for
121×121 and 141×141. A grid number of 121×121 is
chosen for further computations.
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FIG. 2: Grid independence study
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FIG. 3: Streamline plots for Ri= 10−2, Gr = 102 and
for various Darcy numbers (Da)

6. RESULTS AND DISCUSSION

In this section, the numerical results for mixed convec-
tion flow and heat transfer in a two-sided lid-driven cav-
ity in the presence of uniform porous medium are dis-
cussed. The nondimensional governing parameters are the
Richardson number that signifies the relative dominance
of buoyancy to forced convection and the Darcy num-
ber that inversely accounts for the intensity of porous
medium. To vary the Richardson number, the Grashof
number is fixed at three levels, i.e., at 102, 103, and 104,
and correspondingly, the Reynolds number is varied. At
each Ri, the Darcy number is varied between 10−4 and

10−1, without the presence of porous medium (i.e., Da=
∞) and the computations are carried out. For analyzing
the characteristics, the streamline and isotherms for one
forced convection dominated flow (Ri= 10−2) and the
other natural convection dominated flow (Ri= 102) are
reported for different Darcy numbers.

In the present case, the forces generated at the slid-
ing lids are opposite to the buoyancy force. Figures 3(a)–
3(e) and 4(a)–4(e) represent the streamline and temper-
ature contours, respectively, for Ri= 10−2, and Gr =
102 for different Darcy numbers. It is observed that for
Da = 10−4 [Fig. 3(a)], most of the flow is attenuated
due to the effect of porous medium, convection is lim-
ited to near the sliding lids, and isotherms [Fig. 4(a)] are
nearly vertical, representing heat transfer by conduction.
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and for various Darcy numbers (Da)
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As the Darcy number is increased, the strength of convec-
tion is increased. The convection domain becomes larger
and vortices are generated near the moving lid [Fig. 3(b)].
The vortices grow bigger in size and move closer together
[Fig. 3(c)] and they finally merge together and form a
single vortex, which is close to the center of the cavity
[Figs. 3(d) and 3(e)]. Here, the direction of the vortex
is clockwise. The isotherm plots also show a gradual in-
crease in the strength of convection, which is observed
by the deviation of the shape of the constant tempera-
ture lines and also the formation of the thermal boundary
layers on the two vertical walls. The top wall becomes
cooler and the bottom wall becomes hotter, which rep-
resents forced convection dominated flow. Figures 5(a)–
5(e) and 6(a)–6(e) represent the streamline and tempera-
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FIG. 5: Streamline plots for Ri= 10−2, Gr = 104 and
for various Darcy numbers (Da)

ture contours, respectively, for Ri= 10−2 and Gr= 104

for different Darcy numbers. Since Ri is kept constant
as Gr is increased to 104, Re is increased (Re= 103)
compared with the previous case (Re= 102). Because of
the high inertia force, as the Darcy number is increased,
the vortices are shifted to the corners [Fig. 5(b)] and they
finally merge together at early Da= 10−2 [Fig. 5(c)].
By the same reason, two small vortices are observed at
the top-right and the bottom-left corners. The effect of
thermal convection is observed even at low Da= 10−4

[Fig. 6(a)]. The strength increases with the increase in Da
[Figs. 6(b)–6(d)]. At Da= ∞ the shape of the isotherms
[Fig. 6(e)] is similar to those in a lid-driven cavity flow
problem. The formation of the thermal boundary layer at
the two moving walls is noticed.
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Figures 7(a)–7(e) and 8(a)–8(e) represent the stream-
line and temperature contours, respectively, for Ri= 102

and Gr= 102 for different Darcy numbers. In the present
case, the Reynolds number is equal to 1. As the Ri is high,
there is a relative dominance of natural convection over
the forced convection heat transfer. It is noted that for
Da = 10−4 [Fig. 7(a)], the flow is confined near to the
sliding lids and the vortices are also confined to the walls.
As the Darcy number is increased, the vortices move away
from the sliding lids [Fig. 7(b)]. Also, new vortices are
generated at the top and bottom walls of the cavity due
to the natural convection [Fig. 7(c)]. As Da= 10−1, the
size of these vortices (top and bottom) increase and they
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FIG. 7: Streamline plots for Ri= 102, Gr = 102 and for
various Darcy numbers (Da)

merge together [Fig. 8(d)]. The direction of this vortex is
anti-clockwise (an effect of the natural convection phe-
nomenon). Even for large Da [Fig. 7(e)], the situation
remains same. The isotherms for all Darcy numbers are
nearly vertical, indicating the convection currents are very
low [Figs. 8(a)–8(e)].

Figures 9(a)–9(e) and 10(a)–10(e) represent the
streamline and temperature contours, respectively, for
Ri = 102 and Gr = 104 for different Darcy numbers.
The Reynolds number in the present case is 10. For a low
Da = 10−4 [Fig. 9(a)], a vortex due to natural convection
is observed at the center. Due to the sliding lids, there are
two vortices near the side walls. As the Darcy number
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FIG. 9: Streamline plots for Ri= 102, Gr = 104 and for
various Darcy numbers (Da)

increases, the center vortex becomes larger in size and
two vortices near the walls are reduced to smaller regions
[Figs. 9(b)–9(e)]. Each one finally splits into two vortices,
which clearly shows the dominance of natural convection
over forced convection. As the Darcy number is gradu-
ally increased, the effect of natural convection is observed
[Figs. 10(a)–10(d)]. Finally, for Da= ∞ [Fig. 10(e)], the
isotherms resemble the natural convection in a differen-
tially heated square cavity problem as given by de Vahl
Davis (1983).

Figures 11(a) and 11(b) show the centerlineu-velocity
profile at the vertical midplane of the cavity for Da=
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FIG. 10: Temperature contours for Ri= 102, Gr = 104

and for various Darcy numbers (Da)

10−4 and Da= ∞ respectively. The other parameters are
Ri = 10−2 − 102 and Gr = 102 − 104. It is clear that
convection currents for Da= 10−4 are much less when
compared with Da= ∞ without porous medium). There
is a velocity reversal for Ri= 102 and Gr= 104, which
is due to the formation of the central vortex [Figs. 9(a)
and 9(e)]. Figures 11(c) and 11(d) show the centerline ve-
locity profile at the center of the cavity for Gr= 102

and Gr= 104. The plots reveal the dominance of natu-
ral or forced convection on the flow. The parameters are
Da = 10−4 and∞, and Ri= 10−2 and 102. The cases of
Ri = 10−2 and 102 are dominated by forced and natural
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FIG. 11: u-velocity along vertical centerline.(a) Da = 10−4, (b) Da = ∞, (c) Gr = 102, (d) Gr = 104, (e)Ri = 100,
Gr = 102, and(f) Ri = 0.01, Gr = 102.

Volume 13, Number 12, 2010



1068 Vishnuvardhanarao & Das

convection, respectively. The opposite nature of the veloc-
ity profile is noticed. With the increase in Gr from 102 to
104, the magnitude of the velocity also reverses for these
two cases. Figures 11(e) and 11(f) show the centerline ve-
locity profile at the center of the cavity for Ri= 102 and
Ri = 10−2, respectively, for Gr= 102 and for different
Darcy numbers. For Ri= 102, the centerline velocities
are much less compared with the case for Ri= 10−2. It
is observed in Fig. 11(f), that the velocity increases with
the increase in Da.

The temperature distribution along the vertical mid-
plane is shown in Fig. 12 for various parameters. It is
observed that for low Ri, the bottom wall is hot and the
top wall is cold [Fig. 12(a)], and the magnitude depends
upon the Gr value. For a high Ri value, the opposite sit-
uation is observed [Fig. 12(b)]. The temperature distribu-
tions for two Grashof numbers are shown in Figs. 12(c)
and 12(d) for various Ri and Da. Similar profile has been
observed and the temperature difference increases with
increase in Da. The variations of temperature at the cen-
ter of the cavity along they-direction for Gr= 102 and
Ri = 102 [Fig. 12(e)] and Ri= 10−2 [Fig. 12(f)] with
the Darcy number as the parameter. It is clearly demon-
strated that for Ri= 102 conduction predominates, while
for Ri = 10−2 convection takes place.

The local Nusselt number (Nu) distribution along the
left wall is presented in Fig. 13. Figures 13(a)–13(b) rep-
resent the cases for two Darcy numbers. In the case of low
Ri (forced convection), Nu is high near the bottom wall,
whereas for high Ri, the opposite is true. For large Da, the
magnitude of Nu is also high. In the cases of Ri= 102

and Gr= 102, conduction with the Nu remains constant
at a value of 1. The same is presented for two Gr cases in
Figs. 13(c) and 13(d). It is to be observed that for small
Ri and large Gr, the Reynolds number is also large. Thus,
the local Nu is large in the case of large Gr [Fig. 13(d)].
Figures 13(e) and 13(f) represent the local Nusselt num-
ber along the cold wall for Ri= 102 and Ri = 10−2 at
Gr = 102, respectively. It is observed that for Ri= 102,
the Nusselt number variation is very small and is almost
unity for all Darcy numbers. For Ri= 10−2, the Nusselt
number is very high at the bottom wall and decreases to
approximately unity for all Darcy numbers.

Figure 14(a) shows the average Nusselt number for
three Darcy numbers with Gr =102. It is observed, that
Nu increases as the Darcy number increases. For a fixed
Grashof number, as the Richardson number increases,
Nu for all Darcy numbers reaches asymptotically to a
same constant value and is approximately equal to 1,
which represents strong conduction-dominated flow. But,

for a fixed Darcy number, as the Richardson number in-
creases,Nu asymptotically reaches a constant value and
then increases as the Grashof number is further increased
[Fig. 14(b)].

7. A HEAT TRANSFER CORRELATION

The numerically calculated heat transfer results were cor-
related for mixed convection in a square cavity and in the
presence of porous medium. The average Nusselt number
is correlated as a function of the inverse Darcy number
[Da−1 = 1/Da], the Richardson number Ri= Gr/Re2,
and the Grashof number. The equation is given by

Nu = 1 +
0.1289(

1 + Da−1
)0.1953 Ri−0.4278Gr0.3785 (9)

8. CONCLUSIONS

In this study, numerical results of mixed convection heat
transfer in a two-dimensional enclosure filled with a fluid-
saturated porous medium and subjected to the left wall
moving up and the right wall moving down have been pre-
sented. The left and the right walls were under cold and
hot conditions, respectively. The finite-volume method
using the SIMPLE algorithm in a collocated grid arrange-
ment was employed for the present problem. The deferred
QUICK scheme was used to minimize the numerical dif-
fusion. Comparisons with previously published work on
special cases of the problem were performed and found to
be in good agreement. The constant stream function and
temperature plots for various parametric conditions were
presented and discussed. To vary the Richardson number,
the Grashof number was fixed at three levels (i.e., at 102,
103, and 104, and correspondingly, the Reynolds number
was varied.

In the case of Ri= 10−2, a single vortex was observed
for low Gr. The strength of the vortex increases when Gr
is increased. However, in the case of Ri= 102, the vortex
cell due to the lid-movement and natural convection were
present. The effect of natural convection increases when
Gr is increased. Also, significant suppression of the con-
vective currents was obtained by the presence of a porous
medium. The local Nusselt number distribution along the
left wall has a large value at the bottom for low Ri, which
is opposite in the case of a large Ri value. With the in-
crease in Ri, the average Nusselt number approaches a
value of 1 asymptotically. This signifies that heat transfer
is dominated by conduction only.
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FIG. 12: Variation of temperature along vertical centerline.(a) Da = 10−4, (b) Da = ∞, (c) Gr = 102, (d) Gr = 104,
(e)Ri = 100, Gr = 102, and(f) Ri = 0.01, Gr = 102.
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FIG. 13: Variation local Nusselt number (Nuy) along the right wall.(a) Da = 10−4, (b) Da = ∞, (c) Gr = 102, (d)
Gr = 104, (e)Ri = 100, Gr = 102, and(f) Ri = 0.01, Gr = 102.
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FIG. 14: Variation of average Nusselt number (Nu). (a) Gr = 102, (b) Da = 10−2.
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When modeling fluid flow through porous media it is necessary to know when to take inertia effects into account,
as well as when to switch to a turbulent description of the flow. From an engineering point of view, the problem is
often solved with the empirically derived Ergun equation or a recently upgraded version by Nemec and Levec [Chem.
Eng. Sci., vol. 60, pp. 6947–6957, 2005]. The drawback with this approach is, however, that the mechanisms for the
transitions between the three states of flow are not revealed and time-consuming experiments have to be performed.
In order to increase knowledge of the detailed flow, numerical studies of flow through arrays of quadratically packed
cylinders at a variety of Re values were carried out. One result is that the laminar and turbulent approaches used both
mimic experimental results for low Re, while for higher Re only the turbulent approach resembles the empirically derived
equations. The deviation from Darcy’s law for different porosities of the array can be defined by usage of Re based on
the hydraulic radius and the average interstitial velocity. However, to find a common Re when turbulence need to be
accounted for, another Re based solely on the averaged interstitial velocity and the diameter of the cylinders was used. It
was found that at low Re the laminar and turbulent setups give practically the same velocity fields, while the turbulent
dissipation at higher Re results in larger circulation zones and weaker jets.

KEY WORDS: porous media, turbulence, computation, fluid mechanics, hydrodynamics

1. INTRODUCTION

Flow through porous media is important in many techni-
cal areas, including ground water flow, flow through em-
bankment dams, paper-making, composites manufactur-
ing, filtering and drying, and sintering of iron ore pellets.
In some of these applications the characteristics of flow
are unknown, while for others higher demands on the
environment, security, and process efficiency imply that
the flow must be studied in more detail. In the present
case we want to study the forces on individual particles
in connection to flow through embankment dams. There-
fore we need to know when inertia effects should be ac-
counted for and when turbulence comes into play. In this
context definition of the Reynolds number (Re) becomes
important. Therefore we carried out a computational fluid

dynamics (CFD)–based micromechanical investigation of
flow through porous media ranging from creeping, strictly
Darcian, to fully turbulent.

Creeping flow of a Newtonian fluid through porous
media follows Darcy’s law on a global scale according
to

vi = −Kij

µ
p,j (1)

in a general form and

K

µ

∆p

L
=

Q

A
(2)

in one-dimensional form. In these equationsvi is the su-
perficial velocity vector,Kij the permeability tensor,µ
the dynamic viscosity of the fluid,p pressure,Q flow rate
through an areaA, and∆p the pressure drop over a length
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L in the streamwise direction. The permeability is set by
the geometry of the porous media, and many expressions
have been derived for this relationship. For flow perpen-
dicular to an array of cylinders, the following equation is
strictly valid for low porositiesφ and the error is less than
10% forφ = 0.65 (Gebart, 1992):

K⊥ = C

(√
1− φmin

1− φ
− 1

)5/2

R2, (3)

where C and φmin are determined from the geometri-
cal arrangement (such as quadratic or hexagonal arrange-
ment). When the flow in the pores is fully or partly tur-
bulent, a nonlinear term is often introduced for flow of a
Newtonian fluid to form the Forchheimer equation:

K

µ

∆p

L
=

Q

A
+ b

(
Q

A

)m

, (4)

whereb is a property of the porous media, andm, in this
case, is a measure of the influence of fluid turbulence
(Forchheimer, 1901; Papathanasiou et al., 2001). As a
special case of Eq. (4), Ergun derived the following ex-
pression:

∆pF

L
g=150

(1−φ)2

φ3

µQ
A

D2
p

+1.75
(1−φ)

φ3

ρ
(

Q
A

)2

Dp
, (5)

by fittings to the experimental data (Ergun, 1952). In this
equationpF is the pressure represented as a force,g is
the gravitational constant,Dp the effective diameter of
particles, andρ the density of the fluid. In between the
creeping flow region and the turbulent one, laminar in-
ertia gives a substantial contribution to the resistance to
flow and experiments have indicated that it is possible to
use Eqs. (4) and (5) in this case as well. Hence, mea-
surements of averaged quantities have thus shown that
the transition from laminar to turbulent flow is smooth.
In accordance with this observation, Dybbs and Edwards
(1984) conclude, from their experimental visualizations
of flow around cylinders arranged in an array, that there is
a smooth transition from an unsteady laminar flow regime
to a highly unsteady and chaotic flow regime. They also
state that further investigations on the nature of these
regimes are needed in order to give insight into veloc-
ity distributions and various transport phenomena inside
porous media. Results in Seguin et al. (1998) indicate that
the local transition within porous media takes place at
various global Re, since the local velocity as well as the
characteristic length scales vary as a function of spatial

coordinate; hence laminar and turbulent flow may coex-
ist. This certainly affects the forces on individual parti-
cles within a porous media. Another result in Seguin et
al. (1998) is that when increasing Re the velocity gradient
starts to fluctuate at an increasing rate until a certain Re
where this rate is stabilized.

Returning to the global description of the flow, the Er-
gun equation has shown best agreement with a bed of ran-
domly distributed spheres and is therefore not optimal for
all geometries. Instead the following expression is pro-
posed by Nemec and Levec (2005):

∆p

L

1
ρg

= Ψ = A∗
Re∗

Ga∗
+ B∗Re∗2

Ga∗
, (6)

where Re∗ and Ga∗ are defined as

Re∗ =
ρϕDpU

µ (1− ε)
(7)

and

Ga∗ =
ρ2gϕ3D3

pε3

µ2 (1− ε)3
(8)

and where the material-dependent constantsA∗ andB∗

range between 180–280 and 1.9–4.6, respectively. This
reveals that additional variables besidesφ andDp need to
be introduced in order to fully describe the relation be-
tween the detailed geometry and the resistance to flow
through porous media. Another common way to globally
relate pressure to flow rate is by the Blake-type friction
factor, defined as

f ′ =
∆p

L

Dp

ρ
(

Q
A

)2

φ3

1− φ
. (9)

Introducing this relationship into the Ergun Eq. (5) yields

f ′ = 1.75 +
150
Re′

, (10)

which resembles experimental data and where the modi-
fied Re is defined as

Re′ =
ρDp

Q
A

µ

1
1− φ

. (11)

This definition of Re stems from Ergun (1952), with the
hydraulic diameter and the real average velocity set as the
characteristic lengthL and the characteristic velocityU,
respectively, and where Re, in general terms, is expressed
as

Re=
UL

ν
, (12)
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whereν is the kinematic viscosity. We mainly use Re′

throughout this paper, but as pointed out in Comiti (2000),
this is just one way of defining Re for porous media. For
the characteristic length, typical size of the pores, typical
size of the particles, and the square root of the permeabil-
ity of the porous media were also employed, while the
characteristic velocity is often set as the superficial veloc-
ity.

The validity of the global equations presented above
has been thoroughly investigated. Fand et al. (1987),
for instance, performed an experimental study of flow
through simple and complex porous media with the con-
clusion that Darcy’s law is valid for Re, based on the su-
perficial velocity and the diameter of the sphere ReS be-
low 2.3. Inertia needs to be considered when5 < ReS <
80, and turbulence is the dominating mechanism con-
tributing to loss when ReS is above 120. This range was
extended in an experimental study on a pore scale by
Lesage et al. (2004), who concluded that the flow is lam-
inar for ReS below 110 and turbulent for ReS above 280,
which is also in agreement with additional results pre-
sented in Hlushkou and Tallarek (2006). The experiments
performed in Seguin et al. (1998) indicate that the flow is
laminar until Re, based on average pore space and aver-
age pore velocity Red, reaches 180, and the fully turbu-
lent region starts when Red becomes equal to 900. Hence
similar results to those presented above are obtained. Mc-
Farland and Dranchuk (1976) discovered that transition
to turbulent flow took place for Re from 0.241 to 4.56,
where Re is based on the Darcy superficial velocity and a
length parameter equal to the product of the permeability
and an inertial resistance coefficient, a definition leading
to the relatively small values for the transition. Yet an-
other way of defining Re was used by Venkataraman et
al. (1998), who related Re to the square root of the perme-
ability ReK . Thus there are several ways to define Re in a
porous media, and a variety of critical Re for inertia and
turbulence have been proposed. The latter is confirmed by
Bear (1960), who state that there is an uncertainty in the
critical Re for inertia by a factor of 750.

In order to understand porous media flow, a num-
ber of numerical methods have been applied as outlined
by Ziólkowska and Zíolkowski (1988). The increases in
computer capacity in recent decades have facilitated even
more detailed studies, including the one presented here.
In the numerical investigation by Koch and Ladd (1997),
drag is calculated for some arrays of cylinders. One result
is that the magnitude of drag per unit length on cylinders
in a square array at moderate Re is strongly dependent on
the orientation of the pressure gradient. Another is that in

random arrays, drag makes a transition from quadratic to
a linear Re dependence at ReD, based on the diameter of
the cylinders and the average interstitial velocity between
2 and 5. Ghaddar (1995) also considers flow through a
regular array of cylinders, showing that the flow becomes
unsteady for Re′ greater than 150. However, Pedras and
de Lemos (2003) present a strategy for computations of
turbulent simulations in porous media using a low-Rek-ε
model, which shows good agreement with published data
incorporating a steady flow assumption.

Lattice-Boltzmann simulations have also been per-
formed in order to bridge the gap between Stokes flow and
moderate Re simulations of flow in porous media (Hill et
al., 2001). In Beetstra et al. (2007) this technique was ap-
plied for a variety of solid volume fractions and Reynolds
numbers up to ReS= 1000.

The short literature survey presented above does not
clarify which Re to use when defining when inertia be-
comes important and the onset of turbulence. Furthermore
it is not apparent how inertia and turbulent flow are com-
posed in a porous media, although the experiments by
Dybbs and Edwards (1984) and Seguin et al. (1998) are
a very good starting point. In this paper we therefore per-
form a CFD-based micromechanical investigation rang-
ing from creeping, strictly Darcian flow to fully turbu-
lent, full Navier-Stokes equation flow in order to inves-
tigate the limitations of the equations for flow through a
quadratic array of cylinders packed at different solid frac-
tions. We perform the simulations with very fine meshes
(high accuracy) and with a laminar flow setup (creeping
to turbulent Re), as well as with a two-equation turbu-
lence model (creeping to turbulent Re). This enables us to
study the flow field in detail and to do simulations at much
higher Reynolds numbers than practically possible with
the Lattice-Boltzmann technique (Beetstra et al., 2007).
The outcomes from laminar and turbulent flow setups are
then compared to each other and to results from the liter-
ature.

2. GOVERNING EQUATIONS

To be able to capture the complete flow field as a func-
tion of Re, the Navier-Stokes equations are applied. To
start with the equations are set up for laminar flow of a
Newtonian and incompressible fluid according to

ui,t + ujui,j = −1
ρ

p,i + νui,jj (13)

and
ui,i = 0. (14)
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Then at a second stage the flow is allowed to be turbulent
by applying Reynolds averaging by decomposing the total
velocity ũ into a meanU and fluctuation componentu,
i.e., ũ = U + u whereU ≡ ¯̃u, resulting in the following
equations:

Ui,t + UjUi,j = −1
ρ

p,i + νUi,jj − (ujui),j (15)

and
Ui,i = 0. (16)

Here ν is the kinematic viscosity anduiuj are the
Reynolds stresses. These equations represent the mean
flow characteristics where turbulent effects are modelled
via the Reynolds stresses in order to obtain closure. Since
focus is set on flow around a number of periodically ar-
ranged cylinders having curved surfaces, the shear-stress-
transport (SST) turbulence model is applied (Menter,
1993) because of its good behavior when considering ad-
verse pressure gradient flows and separating flow. In the
SST model the best ingredients from thek-ε and thek-ω
models are combined via a blending factor. This factor ac-
tivates thek-ω model in the near-wall region and thek-ε
model in the bulk, showing that the shift from thek-ω to
thek-ε formulation takes place in the logarithmic part of
the boundary layer. The model is based on the assumption
that the principal shear stress is proportional to the turbu-
lent kinetic energy, which is introduced to the definition
of the eddy viscosity, the so-called Bradshaw’s assump-
tion. The mathematical formulations thus develop into

Dρk

Dt
=Sij

∂ui

∂xj
−β∗ρωk+

∂

∂xj

[
(µ+σkµT )

∂k

∂xj

]
(17)

and

Dρω

Dt
=

γ

νT
Sij

∂ui

∂xj
−βω2+

∂

∂xj

[
(µ+σωµT )

∂ω

∂xj

]

+ 2ρ (1−F1)σω2
1
ω

∂k

∂xj

∂ω

∂xj
, (18)

wherek is the turbulent kinetic energy,Sij the turbulent
stress tensor,ω the turbulent frequency,µT the turbulent
dynamic viscosity,νT the turbulent kinematic viscosity,
andβ∗, σk, γ, σω, F1, andσω2 are constants (Menter,
1993).

The laminar and turbulent setups arebothused to cal-
culate the flow through a porous media at a variety of
Reynolds numbers, from fractions of 1 up to values near
10,000. Obviously the laminar and turbulent simulations
are thus applied in areas of Reynolds numbers where they
are usually not valid. However, it will turn out that a num-
ber of interesting results are generated by this approach.

3. GEOMETRY AND NUMERICAL VERIFICATION

The geometry chosen for this study is an array of quadrat-
ically packed infinite long cylinders for which a unit-cell
approach is applied, where for each porosity two unit cells
are defined (see Fig. 1) that are divided into finite vol-
umes with the aid of ANSYS ICEM CFD 10.0 Hexa. In
order to get a high-quality design of the numerical grid,
a block structure is created that is projected onto the re-
spective unit cell. The eight blocks used in this proce-
dure are arranged so that the main flow features in the
unit cells can be resolved. For laminar flow it has pre-
viously been shown that the quality of the grid is by
all means good enough, yielding an error of less than
0.3 per mille when using 370,000 nodes (Hellström and
Lundstr̈om, 2006). The flow field is solved with the com-
mercial software ANSYS CFX 10.0, and the computa-
tional domain is parallelized with the MeTis partition-
ing method and simulated on homogenous Windows and
LINUX clusters. For the Windows part of the simulations
the MPICH-1.2.5 message-passing libraries (MPI) are ap-
plied, and for the LINUX part a HP-MPI-2.1 routine is
chosen (see Hellström et al., 2006). For the turbulent sim-
ulations measures are taken to keep they-plus value low
enough. This is a dimensionless distance from the wall
used to provide information on the near wall resolution.
To exemplify, when Re′ is equal to 2000 the maximum
y-plus is 1.3. This is within the limits of the recommenda-
tions in the CFX-manual CFXR© (2005), stating that the
y-plus value should be lower than 2, and the requirements
the European Research Community on Flow, Turbulence
and Combustion (ERCOFTAC) Best practice Guidelines
(2000), where the conditions are thaty-plus should be be-
low 4 and close to unity.

The boundary conditions of the unit cell are defined as
follows: The top and the bottom part are symmetry planes,

L

L

R

FIG. 1: Schematic sketch of the computational domains.
To the left is the unit cell for the steady simulations and
to the right the unit cell for the unsteady simulations.
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the cylinder wall is assumed to be smooth with a no-slip
condition, and the left- and right-hand sides are periodic
domain interfaces, all in all, representing the repeatable
structure of the array. In order to drive the flow, a mo-
mentum source is defined in a subdomain. The advection
scheme used to solve the continuity and momentum equa-
tions is chosen to be strictly second-order accurate by set-
ting the specified blend factor equal to one in CFX-Pre.
The simulations are furthermore assumed to be well con-
verged when the root-mean-square (RMS) residuals have
dropped 5–6 orders of magnitude and when the maximum
residuals are less than 1.5 orders of magnitude above the
RMS residuals.

For the unsteady calculations a second-order backward
Euler scheme is applied, and the time step is selected
so that the Courant number is between 0 and 5, where
the Courant number is defined as the fluid velocity times
the timestep divided by the mesh size. To discern the un-
steady behavior of the simulations, a number of monitor
points were introduced that recorded pressure at nine lo-
cations and logged the mass flow at the domain interfaces.
Most turbulent simulations were performed with the SST
model for reasons already presented, and other turbulence
models tested gave similar results and thus indicate the
same behavior but they need more central processing unit
(CPU) time.

In order to decrease the usage of CPUs, most simu-
lations were initially based on former runs, in particu-
lar, when appropriate each turbulent simulation was based
on its laminar counterpart, that is, the laminar simulation
with the same pressure gradient. For the laminar simula-
tions as well as the turbulent simulations with high pres-
sure gradients, there is no initial guess of the velocity
field. Initial conditions for the turbulent kinetic energy
and the eddy frequency were 0.03 m2/s2 and 300 Hz, re-
spectively, based on experience from former simulations
and post-processing. For the periodic domain interface
boundaries the turbulence option is set as a conservative
interface flux. To ensure that the selected values of the
turbulent parameters are relevant for the problem studied,
a perturbation analysis was carried out. The variations in-
troduced only weakly influence the results, indicating that
the solutions obtained are stable in this context.

At higher Re the laminar simulations were performed
by an unsteady approach, since the steady simulations in-
dicated problems like oscillating residuals and unstable
values of the mass flow. This is in agreement with the re-
sults in Ghaddar (1995) and Seguin et al. (1998), who got
indications of an oscillating numerical solution and ex-
perimentally derived the velocity gradient as described in

the Introduction. For the turbulent setup this behavior was
not observed, which also follows the experimental results
in Seguin et al. (1998) showing that the fluctuation rate
of the velocity gradient stabilizes at a certain Re. Hence,
all turbulent simulations were performed with steady flow
approach.

4. REYNOLDS NUMBERS FOR A QUADRATIC
ARRAY OF CYLINDERS

As stated in the Introduction there are several ways to de-
fine Re, and here we will derive and compare a couple of
those for a quadratic arrangement of cylinders. Compar-
isons between results from the simulations are critically
dependent on which Re is used. Thus let

U = Ua =
Q

Aφ
=

U0

φ
(19a)

and

L = Dh =
Vp

As
=

Dpφ

4 (1− φ)
, (19b)

whereUa is the average velocity within the array,U0 the
porous media superficial velocity,Dh the hydraulic diam-
eter of the array,Vp the volume of the pore space within
the array,As the surface of the solid phase within the ar-
ray, andDp is the diameter of the cylinders. The resulting
Re then becomes

ReDh =
DpU0

ν4 (1− φ)
=

Re′

4
. (20)

The interpretation is that whenφ increases, an increase of
the scale of the pores combined with an overall decrease
in velocity results in an Re thatincreases,with φ keep-
ing the flow rate constant (see Fig. 2). Another way of
defining Re is to set the typical length scale to the diame-
ter of the cylinders while using the same definition of the
velocity to form

ReD =
U0Dp

νφ
. (21)

This Re is not coupled to the detailed geometry of the ar-
ray and has been termed the interstitial Re (Comiti et al.,
2000). For a given size of the cylinders it relates Re to the
actual averaged velocity within the array. Hence ReD de-
creases with porosity (see Fig. 2). A third possible way to
define Re is to find a typical length scale in the pore space
within the array. One such scale is the distance between
the fibers,d. In this gap a corresponding velocityUd may
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FIG. 2: Comparison between different Reynolds number formulations for a variety of porosities

be identified. These quantities are usually not known, but
after some algebra, the following Re materializes:

Red =
U0Dp

ν

√
π

2
√

1− φ
. (22)

As for ReDh, Red increaseswith porosity (see Fig. 2).
The typical length scale can also be linked to the perme-
ability of the array, hence

ReK =
U0

√
Kq

νφ
, (23)

where

Kq =
4

9π
√

2

(√
π/4

1− φ
− 1

)5/2

D2
p. (24)

In this case also, Re increases with porosity; however, the
magnitude of it is much lower than for the other defini-
tions of Re for the porosities studied (see Fig. 2). In this
context it is also of interest to notice that ReS , defined in
the Introduction, is independent of porosity and equal to
1 for all φ > 0 in Fig. 2.

5. RESULTS AND DISCUSSION

For the simulation carried out with the full Navier–Stokes
equations and a laminar flow assumption, there is a drop

in permeability at Re′ ≈ 10 (see Fig. 3). As Re′ is in-
creased, the curve for the apparent permeability then
makes a smooth bend and seems to level out. In reality
and at the high end of this curve it is likely that large-scale
eddies are generated that strongly affect the flow field. Be-
fore presenting results from the simulations with a turbu-
lent flow assumption, let us study the flow field calculated
for various setups with the laminar flow hypothesis.

As Re′ is increased a sort of jet is formed, transport-
ing most of the fluid through the porous medium, which
is in agreement with measurements of velocity profiles
in Johns et al. (2000). Also, the stagnation point on the
left-hand side of the cylinder climbs “uphill” toward the
top of the cylinder and the corresponding recirculation
zone becomes smaller and seemingly more chaotic (see
Fig. 4). At very low Re′ the circulation generated acts on
a larger scale, while as Re′ increases the structure splits
into several zones and the contribution from the circula-
tion is taken as a whole, as the overall resistance to flow
becomes more significant (see Fig. 4). The fact that the
circulation zone becomes smaller at even higher Re′ may
explain the result that the apparent permeability levels out
(cf. Figs. 3 and 4).

The laminar flow simulations may also be compared
to experiment on a global scale by using the empirically
derived and previously defined Blake-type friction factor,
i.e., Eqs. (9) and (10). The simulated values correspond
very well to the Ergun equation and its modified version
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FIG. 3: Apparent permeability divided by true permeability for the three porosities studied here, 0.3, 0.4, and 0.6

 

FIG. 4: Vectors representing the velocity for the laminar configuration with different Re′ for 0.4 porosity:(top left)
Re′ = 0.02,(top right) Re′ = 200,(bottom left) Re′ = 1000, and(bottom right) Re′ = 4000

until Re′ ≈ 30, but as Re′ is allowed to increase further
the simulated results start to deviate from this equation
(see Fig. 5). To exemplify, the difference between the case
of porosity 0.6 and the Ergun equation is about 20% at Re′

= 30. This indicates that mechanisms other than inertia
effects such as turbulence become important when Re′ is
larger than about 30.

When comparing the results from the turbulent simu-
lations (denoted as white symbols in Fig. 6) with the lam-
inar equivalents (denoted with black symbols in Fig. 6),
it is shown that the SST formulation captures the main
feature of the flow field even at very low Re′ values. In-

creasing Re′ further implies that the turbulent simulations
give lower apparent permeability values than the laminar
ones. This is expected and there is no sign of a rapid tran-
sition, as the one in the pipe flow which here is in con-
formity with the results of Seguin et al. (1998), although
the mechanism differs slightly. In Seguin et al. (1998) the
smooth transition is attributed to the transition appear-
ing at different Reynolds numbers within different pores,
while the simulations presented here indicate rather that
the smooth transition is a result of an interplay between
inertia and turbulence within a single pore. A comparison
of the results at three solid fractions yields that the devia-
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FIG. 5: The Blake-type friction factor calculated for the simulations as well as the Ergun equation and the modifica-
tion by Nemec and Levec for the different porosities

FIG. 6: The apparent permeability divided by the true permeability for the three porosities (0.3, 0.4, and 0.6), values
for both the laminar and the turbulent case

tion between the laminar and turbulent setups takes place
for Re′ ranging from 100 to 600, depending on the poros-
ity. This fact stresses that Re′ denotes the onset of inertia
while another Re yielding the onset of turbulence has to
be defined.

When comparing the simulated values with the Er-
gun and the modified Ergun equation, the discrepancy for
Re′ > 30 is now reduced (cf. Figs. 5 and 7). This con-

firms that turbulence needs to be considered at Re′ larger
than 100–600. However, this very large range can be con-
siderably reduced by plotting the results as a function of
ReD instead, which is directly related to the average ve-
locity within the porous media (see Figs. 8 and 9). The
deviation between the laminar and turbulent simulations
now takes place at practically the same ReD (ReD = 300),
regardless of the porosity.
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FIG. 7: The Blake-type friction factor for the Ergun and the modified Ergun equation as well as for the simulated
values, only the turbulent case

FIG. 8: Apparent permeability divided by true permeability for the three porosities (0.3, 0.4, and 0.6), values for both
the laminar and also the turbulent case plotted with respect to the new ReD

FIG. 9: Apparent permeability divided by true permeability for the three porosities (0.3, 0.4, and 0.6) zoomed in at
the area where the onset takes place, values for both the laminar and also the turbulent case plotted with respect to
ReD
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By scrutinizing the averaged turbulent velocity field in
detail it can be seen that the large circulation zone has
more or less the same position for all Re′ but increases in
strength with Re′ (see Fig. 10). When comparing with the
results from the laminar setup (Fig. 4), the jet formed has
a much weaker development as a function of Re′, con-
firming that the turbulent energy losses are more evenly
distributed in the bulk flow (Fig. 10). The next significant
flow feature after the jet for the turbulent flow appears on
the right-hand side of the cylinder where a distinct separa-
tion materializes as the large circulation zone increases in
strength. The point of separation climbs closer to the top
of the cylinder as Re′ increases (see Fig. 11). This prede-
parture of the jet from the cylinder may cause a relatively
lower resistance to flow and might be one of the reasons
the simulated results deviate from the Ergun equation at
Re′ > 300 for φ = 0.4 (see Fig. 7). Such a deviation has
not been reported in the literature, to the authors knowl-
edge, and may be related to either the geometrical setup
used in this investigation or the fact that rather high Re′

values (higher than before) have been simulated with very
high accuracy (better than before). As a final remark, it is
evident that at low Reynolds numbers the flow fields pro-
duced by the laminar and turbulent setups are practically
the same.

The force per unit area acting on the cylinder increases
dramatically with Re (see Figs. 12 and 13). It is also evi-
dent that a turbulent flow assumption will generate larger
forces on the cylinder than a laminar one, and that the nor-
mal forces are considerably larger than the shear forces

(see Figs. 12 and 13). This result is of great importance,
for instance, when considering internal erosion in em-
bankment dams, as larger forces acting on the particles
create a larger risk of forming a sinkhole and/or progres-
sion of the process for a dam to breach. Hence knowl-
edge of the size and distribution of the forces acting inside
porous media is important in order to know which simu-
lation approach to use for which flow conditions, since
the forces for high Re differ as much as 1 decade when
comparing laminar and turbulent setups.

6. CONCLUSIONS

Literature review as well as analysis of a quadratic array
of cylinders shows that a number of different Reynolds
number values can be defined for porous media. Analysis
further shows that this number can be independent of the
porosity of the porous media (ReS), as well as increase
(Re′, Red, and ReK) or decrease (ReD) with it. Thus the
outcome is critically dependent on which Re is used.

CFD simulations for flow through a quadratic array of
cylinders at three solid fractions with a turbulent as well
as laminar setup were then performed. All simulations
were in good agreement with each other and with the ex-
perimental data regarding permeability and friction factor
from the creeping flow region up to Re′ of about 30. The
turbulent simulations with the shear stress transport turbu-
lence model thus capture main flow features even at very
low Re′ flows. In conformity with the data in the litera-
ture, all simulations yield an Re′ of about 10 when inertia

 

FIG. 10: Vectors representing the velocity field for the turbulent configuration with different Re′ values for 0.4
porosity;(top left) Re′ = 1.5,(top right) Re′ = 200,(bottom left) Re′ = 1000, and(bottom right) Re′ = 2000.
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FIG. 11: The length of the vectors represents the velocity and the velocity gradient,du/dy, displayed on the cylinder
wall for different Re′ numbers:(top left) Re′ = 1.5,(top right) Re′ = 65,(middle left) Re′ = 120,(middle right) Re′

= 210,(bottom left) Re′ = 1000, and(bottom right) Re′ = 2000. When the velocity gradient turns black, the gradient
switches sign and separation occurs.

FIG. 12: Shear force acting on the cylinder for different porosities
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FIG. 13: Normal forces acting on the cylinder for different porosities

effects are considered. For higher Re′ values than 30 the
laminar flow simulations produce results that differ from
the simulations with a turbulent formulation as well as ex-
perimental data from literature. The results from the latter
two are similar, however, indicating that the point where
turbulence must be considered can be defined as the Re
where the laminar and turbulent simulations start to devi-
ate from each other. To get similar conformity regarding
this possible onset of turbulence as for the onset of iner-
tia, ReD must be used instead of Re′. By doing this it is
found that turbulent flow needs be considered when ReD

is above 300, since the laminar setup of equations fails to
predict the experimental results over this value. The dif-
ference between Re′ (or ReDh) and ReD is that for the
latter only the increase in interstitial velocity is captured
when the porosity is decreased, while in the former the
decrease in hydraulic diameter is also modelled.

A detailed comparison between the flow fields for the
laminar and turbulent setup furthermore yields that a pro-
nounced jet formed close to the middle of the gap for the
laminar case is smeared out in the turbulent case. It is also
found that circulation zones formed are larger when using
a turbulent formulation.

In order to predict the normal and shear forces acting
in the porous media, it is essential to make the right choice
between laminar and turbulent setup, since the force pre-
diction differs considerably at high Re. This is vital for
modelling internal erosion in embankment dams, for in-
stance.

It now remains to link the results obtained in this study
to other ordered materials, as well as more disordered ma-
terials such as those used in embankment dams, including
three-dimensional materials, internal wall effects and ef-
fects of a multidisperse system.
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A model approach for heat and mass transfers during gas sorption by a zeolite bed is developed. The mathematical
modeling is based on assuming the bed to be formed with three phases—solid, liquid, and gaseous. The classical finite
volume method is used to numerically solve the differential set of governing macroscopic equations. Numerical results
provide us the time–space evolutions of temperature and moisture content. A comparison between results obtained with
a three-phase model versus those obtained with a two-phase model is performed and discussed. A comprehensive analysis
of the influence of the bed porosity and the grain porosity on the average reduced moisture content and average reduced
temperature is also investigated.

KEY WORDS: zeolite, desorption, plane desorber, moisture content, numerical simulation, three-phase
model, two-phase model

1. INTRODUCTION

Heat transfer and fluid flow in porous media with phase
change appears in many applications such as drying sys-
tems, geothermal systems, heat-transfer materials design,
and nuclear analysis (Auriault and Adler, 1995; Andrew
et al., 2003; Duval et al., 2004; Badruddin et al., 2006).
Modeling heat and mass transfers in porous media has
attracted important research interest in many published
books (Ingham and Pop, 1998; Nield and Bejan, 1999;
Vafai, 2000; Pop and Ingham, 2001). There are two dif-
ferent modeling approaches for heat transfer in porous
medium based on the validity or invalidity of the local
thermal equilibrium. When the local thermal equilibrium
assumption is assumed to hold (Mhimid, 1998), only one
energy conservation equation is required to predict heat-
transfer behavior. However, in the local thermal nonequi-
librium case (Berthoud and Valette, 1994; Angelini et al.,

1995; Duval et al., 2004), the two phases are not in lo-
cal thermal equilibrium condition. Consequently, the two
phases have different temperatures. In this case, two en-
ergy conservation equations, one for the fluid and the
other for the solid matrix, are needed to predict heat trans-
fer. These two energy conservation equations are coupled
together by a convective term.

The difficulty inherent to heat-transfer modeling in
sorption phenomena is strongly subordinate to whether
the local thermal equilibrium assumption is valid or not.
Numerous published studies related to sorption phenom-
ena are based on a two-temperature model (Mhimid et
al., 1997; Wu et al., 2009; Hu et al., 2009). In the lo-
cal nonequilibrium thermal approach, the involved tem-
peratures are that of the gas and that of the solid, so
the liquid and the solid together are supposed to form
the same phase. The local thermal nonequilibrium model
for two-phase flows with phase change in porous media

1091–028X/10/$35.00 c© 2010 by Begell House, Inc. 1087
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NOMENCLATURE

Cp specific heat, J kg−1K−1 εb bed porosity
dp mean particle diameter, m εm grain porosity
H height of the bed, m λ thermal conductivity,
hm heat-transfer coefficient between W m−1K−1

the bed and the heating source, W m−2 ρ density, kg m−3

h0 heat-transfer coefficient at the bed inlet, W m−2 µ viscosity, kg m−1 s−1

k permeability, m2 τ volume, m3

L length of the bed, m
ṁ evaporation rate, kg m−3 s−1 Subscripts
P pressure, kg m−1s−2 c condenser
T temperature, K eff effective
t time, s g gas
U0 heating gas velocity, m s−1 h heating
Vg gas velocity, m s−1 i initial
X moisture content, kg/kg l liquid
y transverse coordinate, m s solid
z axial coordinate, m sat saturation

vap vapor
Greek symbols y alongy-axis
∆H latent heat of vaporization, J kg−1 z alongz-axis

has been studied by Duval et al. (2004). The volume-
averaging method has been used in order to derive a three-
temperature macroscopic model assuming a local thermal
nonequilibrium between the three phases (gas, solid, and
liquid).

Studies related to heat and mass transfer modeling in
an adsorber (Mhimid, 1998; Maggio et al., 2004; El Fadar
et al., 2009; Demir et al., 2009) have supposed the system
to be composed of two phases: the solid and the liquid
are one phase and the vapor constitutes the second phase.
Marletta et al. (2002) have undertaken a nonuniform tem-
perature and a nonuniform pressure dynamic model of
heat and mass transfers in compact adsorbent beds com-
posed of three phases, solid, liquid, and vapor. Liu and
Leong (2005) have numerically investigated the effect
of operating conditions on thermal performance (coeffi-
cient of performance and specific cooling power) of zeo-
lite 13X/water adsorption cooling systems. Both heat- and
mass-transfer limitations are taken into account in the nu-
merical model. Darcy’s law and the linear driving force
(LDF) model are used to describe the mass-transfer lim-

itation between the particles and within the particle, re-
spectively. Hu et al. (2008) have considered the compos-
ite zeolite/foam aluminum–water mass recovery adsorp-
tion refrigeration system driven by engine exhaust heat.
In this paper the composite zeolite/foam aluminum is pro-
posed to enhance heat and mass transfers for adsorption
refrigeration. The effective thermal conductivity of this
composite material is 2.89 W/mK measured by the hot
disk method with the same zeolite packed bed adsorp-
tion performance. The performance of this composite ze-
olite/foam aluminum–water mass recovery adsorption re-
frigeration device driven by engine exhaust gases has also
been calculated by the authors. Both numerical simula-
tions and experimental study of a modified zeolite 13X–
water adsorption refrigeration model have been presented
by Wu et al. (2009). The performance of the adsorption
cooling module (16 mm in diameter and 1020 mm in
length) with zeolite 13X–water as the adsorption work-
ing pair has been calculated by the authors. A dynamic
heat- and mass-transfer model has been established based
on the LDF model. Ferni et al. (2009) have developed
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a mathematical model for zeolite synthesized on copper
foam for adsorption chillers. In this study, a new ad-
sorbent bed for adsorption chillers is proposed. Highly
porous copper foams were directly sintered on the exter-
nal surface of copper pipes. Afterward, the foam surface
was coated by several layers of zeolite 4A by in situ hy-
drothermal synthesis. The performance of an adsorbent
bed based on the proposed configuration was then evalu-
ated using a dynamic model.

As far as we know, studies related to the three-phase
model during desorption have not been performed, which
motivated the present investigation. In the current study
we aim to develop a mathematical model simulating cou-
pled heat and mass transfers within a plane adsorber dur-
ing the gas sorption by a zeolite 13X on the basis of a
scale change. It is assumed that the representative elemen-
tary volume (REV) is formed with three phases, gas, liq-
uid, and solid. The considered phases are supposed to be
in local thermal equilibrium, and therefore a one-equation
model is adopted to predict the heat-transfer rate.

A comparison between numerical results obtained by
the proposed model with three phases (MOD3P) versus
those obtained using a classical model assuming the ex-
istence of only two phases (MOD2P) is performed and
discussed.

2. MATHEMATICAL FORMULATION

2.1 Problem Definition and Governing Equations

The plane adsorber considered in this paper can exchange
heat through all surfaces (Fig. 1) with hot air at con-
stant temperature and constant flow rate. The adsorber
is composed of a solid phase (zeolite), liquid phase (wa-

z

TC

L

H

U0

T0, hm

U0

T0, hm

U0

T0, hm

y

FIG. 1: Sketch of the physical problem and the coordi-
nates system

ter), and a gaseous phase (vapor water). The macroscopic
equations governing coupled heat and mass transfer are
derived from the volume-averaging technique (Whitaker,
1977).

Figure 2 shows a skeleton of an REV. The liquid and
gas phases were in a rigid section of the porous medium.
Solid is denoted by s-phase, liquid by l-phase, and the
vapor by g-phase. The thermophysical properties of the
porous bed are assumed to be constant and independent
of temperature in the range of pressure and temperature
considered here.

2.2 Model with Two Phases (MOD2P)

In this model, the solid and liquid are assumed to form
the same phase. Several assumptions are made in order to
obtain a closed set of governing macroscopic equations:

- Coupled heat and mass transfers and fluid flow are
assumed to be two-dimensional;

- The solid particles are incompressible;

- The local thermal equilibrium assumption for the en-
ergy conservation equation as well as the Darcy flow
model are assumed to be valid;

- The compression work and viscous dissipation are
negligible;

- The gas phase is ideal from a thermodynamic point
of view, and radiative transfer is negligible regard-
less of the other heat-transfer modes;

- A unique macroscopic porosity (or bed porosity) is
used.

On the basis of the above assumptions, the macro-
scopic governing equations can be written as follows:
Mass conservation equation

εb
∂ρg

∂t
+ div (ρg

−→v g) = −ṁ, (1)

whereρg,−→v g, andṁ are the gas density, the gas velocity,
and the desorbed mass rate, respectively.
Momentum equation (Darcy’s law)

−→vg = −k

µ

−−→
grad P, (2)

wherek is the permeability of the medium, given by the
Koseny-Carmen empirical relation as follows:

k =
ε3

bd
2
p

150 (1− εb)
2 .
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Liquid in 

micropores 

 (l-phase)

Adsorbant

grain (s-phase) 

Desorbed vapor 

(g-phase) 

g

L

S

FIG. 2: A skeleton of a representative elementary volume of the porous bed

Energy conservation equation

(ρCp)eff
∂T

∂t
+ ρgCPg

−→v g
−−→
gradT = ṁ∆Hvap

+ div
(
λeff

−−→
gradT

) (3)

The effective heat capacity and the effective thermal con-
ductivity of the porous media are respectively given by

(ρCp)eff = [(1− εb) ρs (CPs + XCPl) + εbρgCPg]

and
λeff = εbλg + (1− εb) λs,

whereλg andλs denote the gas thermal conductivity and
the solid thermal conductivity, respectively, andεb is the
bed porosity.
Desorption kinetic

ṁ = (1− εb) ρs
∂X

∂t
(4)

whereX is the moisture content.

2.3 Model with Three Phases (MOD3P)

In this model we have adopted the same assumptions as
in the last model (i.e., with two phases), except for the
definition of a new porosity (the grain porosity) besides
the bed porosity,εb. In this model two different porosities
are considered, since the liquid itself is assumed to form
a separate phase.

On the basis of these assumptions, the problem is gov-
erned by macroscopic governing Eqs. (1)–(3), where the
effective heat capacity and the effective thermal conduc-
tivity are now written as follows:

(ρCp)eff = (εSρSCpS + εLρLCpL + εgρgCpg)

λeff = (εSλS + εLλL + εgλg) .

After development (Annex A), the effective heat capacity
can be written as follows:

(ρCp)eff = (1− εb) (1− εm) ρS (CpS + XCpL)
+ εbρgCpg.

Then the effective thermal conductivity expression beco-
mes

λeff = (1− εb) (1− εm) λS + (1− εb) εmλL + εbλg.

Desorption kinetic
From the continuity equation, it results that

∂ (εLρL)
∂t

= ṁ.

After development (Annex B) the kinetic desorption is
given by

ṁ = (1− εb) (1− εm) ρS
∂X

∂t
. (5)

Moisture Content (Dubinin Equation)
The moisture content is determined by the Dubinin’s
equation:

X = X0 exp

[
−D

[
T log

(
Ps (T )
Ps (Tc)

)]2
]

(6)

whereX0 = 0.269 kg of water/kg of zeolite andD =
1.802×10−7 K−2 are two coefficients determined exper-
imentally (Mhimid, 1998).

In the present study,log [Ps (T )] is given by the fol-
lowing relation (Mhimid, 1998):

log [Ps (T )] = a1 − a2

T
, (7)
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wherea1 = 20.9 anda2 = 5225.5 K. Thus, the Dubinin
equation givingX becomes

X = X0 exp

[
−DB2

(
T

Tc
− 1

)2
]

. (8)

2.4 Initial and Boundary Conditions

The temperature, pressure, and liquid content in the ad-
sorber are initially supposed to be constant:

T (0, y, z)=Ti; P (0, y, z)=Pi; X (0, y, z)=Xi (9)

whereTi, Pi, andXi are, respectively, the initial temper-
ature, the initial pressure, and the initial moisture content
present in the medium. At the inlet face (i.e., aty = 0), the
hydrodynamic boundary condition is written as

P (t, 0, z) = Pc (10a)

The faces (y = L), (z= 0), and (z= H) are impermeable to
mass transfer, and then

∂P

∂y
(t, L, z) = 0; vy (t, L, z) = 0 (10b)

∂P

∂z
(t, y, 0) = 0; vz (t, y, 0) = 0 (10c)

∂P

∂z
(t, y,H) = 0; vz (t, y,H) = 0. (10d)

At the entrance region (i.e., aty = 0), the thermal bound-
ary condition is written as

λeff
∂T

∂y
(t, 0, z) = h0 (T − Tc) . (11a)

The adsorber is heated by a hot gas from all faces (Fig. 1).
A heat-transfer coefficienthm is introduced and the ther-
mal boundary conditions atz = 0, z = H, andy = L are
given by

λeff
∂T

∂z
(t, y, H) = hm (T0 − T ) (11b)

−λeff
∂T

∂y
(t, L, z) = hm (T0 − T ) (11c)

λeff
∂T

∂z
(t, y, 0) = hm (T0 − T ) , (11d)

wherehm is an average heat-transfer coefficient given by
the following expression:

hm = 2h(y=L).

hy is the local heat-transfer coefficient in the case of
a laminar thermal boundary layer (Kays and Crawford,
1993) given by

Nuy = 0.332
1/3

Pr Re1/2
y .

Due to the definition of local Nusselt number, Nuy =
(hyy)/λf , it follows that

hy = 0.332
λf

y

3/2

Pr Re1/2
y , (12)

where Pr is the Prandtl number, Rey is the local Reynolds
number, andλf is the fluid thermal conductivity.

3. NUMERICAL PROCEDURE

The system of differential equations governing coupled
heat and mass transfers during desorption is solved
numerically by the classical finite volumes method
(Patankar, 1980). We have used an implicit scheme for
temporal derivative terms, the upwind scheme for the con-
vective terms, and a centered scheme for the diffusive
terms. The obtained numerical code is iterative. The nu-
merical iterations were advanced in time until the actual
error for all variables is lower than 10−6.

To determine the value of the minimal size of the mesh
for which the numerical code becomes independent of the
space steps, we carried out a series of numerical simula-
tions with different mesh sizes starting with a mesh with
26×10 grids. It was observed that the code becomes sta-
ble and the computed values of the reduced average mois-
ture content and the reduced average temperature are al-
most the same with 26×26 grids. Indeed, for mesh of di-
mensions 52×26, 26×52, and 5×52, results are similar.
In the same way, we have carried out different tests on
the sensibility of the numerical results to time step. It was
shown that∆t=1 s is a trade-off between numerical accu-
racy, stability, and computational time.

A uniform spatial grid of 26×26 and uniform time step
∆t = 1 s were then used in all the calculations performed
here. The present code has been validated with the closest
available works and good agreement was shown (see, for
instance, Zegnani et al., 2009).

4. RESULTS AND DISCUSSION

The plane adsorber used in this study is of lengthL = 50
cm, width l = 50 cm, and heightH = 4 cm. During the
adsorption phase, the adsorber is connected to the evapo-
rator where the pressure is 6 mbar and the temperature is

Volume 13, Number 12, 2010



1092 Zegnani et al.

273 K. However, during desorption phase, the adsorber is
connected to the condenser with a pressure of 70 mbar
and the temperature is 313 K. The adsorber is heated,
during desorption, by a flowing hot air at a temperature
T0 = 180◦C and cooled, during adsorption, by a flowing
cold air at a temperatureT0 = 20◦C. The thermophysi-
cal properties used in all the numerical simulations per-
formed with the three-phase model (MOD3P) are listed
in Table 1.

To clearly appreciate the effects of the influencing pa-
rameters on fluid flow, heat, and mass-transfer character-
istics, we have defined the average reduced temperature
and the average reduced moisture content, respectively,
as follows:

T
∗

=
1

LH

L∫

0

H∫

0

T − Ti

T0 − Ti
dydz;

X
∗

=
1
ω

∫

ω

(
X

Xi

)
dω

(13)

4.1 General Description

The numerical results obtained with the model using
three phases (MOD3P) and those using only two phases
(MOD2P) are presented as curves given the spatial distri-
butions of temperature (Fig. 3) and the time–space evolu-
tions of moisture content (Fig. 4) for different time steps
(t =60 s,t = 3600 s,t = 7200 s,t =10,800 s).

It can be seen from Fig. 3 that as time goes on; the
overheating propagates inside the medium. From Fig. 4
it can be observed that the front of desorption phenom-
ena moves inside the medium and separates the granu-
lar bed in two different regions (dried region and wet re-
gion). Evaporation is essentially localized in the zone in

TABLE 1: Thermophysical property values used in nu-
merical simulations performed with the three-phase mo-
del (MOD3P)

Zeolite Cps = 836 J kg−1 K−1,
λs = 0.2 W m−1 K−1,
dP = 2.5× 10−3 m,
εb = 0.34, εm = 0.32

Water CPl = 4180 J kg−1 K−1;
∆Hvap = 3× 106 J K−1;

λL = 0.6 W m−1 K−1

Vapor of water CPg = 1840 J kg−1 K−1;
λL = 0.024 W m−1 K−1

which the gradient of moisture content is higher. It can
also be seen that the region close to the wall is rapidly
dried. As time progresses, the front of evaporation ap-
proaches the outlet of the medium and the humid region
becomes smaller. By the end of the desorption, the tem-
perature tends asymptotically to the heating temperature
and the moisture content tends to its equilibrium values
in the whole of the medium. In addition, the mass rate is
diminished. After a period of time, the remaining quantity
of moisture content in the adsorber becomes too small and
the evaporation phenomenon is stopped.

4.2 A Comparison Study

In order to examine how accurate the new modeling ap-
proach based on three different phases is, we performed
a comparison between the temperature profiles obtained
with the two models (i.e., MOD2P and MOD3P). As
shown in Fig. 5, the difference between these curves is
important at the lateral faces, because the heating tem-
perature is higher than the initial medium temperature. In
addition, this difference increases as time goes on. In the
front of the desorption phenomenon, this difference be-
comes important. It is about 25 K after 1 hour. As times
passes, this difference decreases progressively. At the end
of desorption it is about 5 K.

In the same way we compared the moisture content
calculated by the two models (Fig. 6). Here also we noted
a difference between these two curves. This difference
reaches 0.03 kg water/kg zeolite after 1 hour. At the end
of desorption, it does not exceed 0.01 kg water/kg zeolite.

Heat- and mass-transfer rates predicted by MOD3P are
faster than those obtained with MOD2P. This is can be ex-
plained by the difference in the thermophysical properties
such as[λeff ] and [(ρ CP )eff ] used in these two models
(Figs. 7 and 8). The difference in the effective thermal
conductivity value used in the two models is small (about
0.169 Wm−1 K−1). However, the difference in the effec-
tive heat capacity value used in the two models is large
(between 376.964 and 574.713 kJ m−3 K−1).

4.3 Comparison with Experimental Data

We have made comparisons between numerical results
obtained with the two models (MOD2P, and MOD3P)
versus available related experimental data (Marmottant et
al., 1992). To perform this comparison, we have consid-
ered a plane solar collector 4 cm in thickness filled with
19 kg of zeolite grains. The upper surface of the collec-
tor heated by solar energy is 0.87 m2. In this case, the
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Temps = 60 s
temps = 3600 s

temps = 7200 s temps = 10800 s

FIG. 3: Time–space evolution of temperature field obtained by MOD3P

temperatureT0 is variable. The temperature of the con-
denser isTC = 313 K, and the pressure during desorption
is PC = 70 mbs. The temperature is measured at the mid-
point of the upper and lower surface areas of the collector.
Numerical and experimental temperature variations with
time are plotted in Fig. 9. Numerical and experimental
values of the moisture content as a function of time are
drawn in Fig. 10. It can be concluded from theses figures
that the numerical results obtained by MOD3P are more

representative and accurate, as they fit the experimental
values better.

4.4 Parametric Study

It is well known that bed porosity as well as grain poros-
ity depend strongly on the size of zeolite grain changed.
In this section we study the sensitivity of heat and mass
transfers to theses two porosities. Figures 11 and 12, re-
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temps = 3600 stemps = 60 s

temps = 7200 s
temps = 10800 s

FIG. 4: Time–space evolution of the moisture content obtained by MOD3P

spectively, show the time evolutions of the reduced aver-
age temperature and the reduced average moisture content
for different values of the bed porosityεb and the grain
porosityεm. As it is seen later,εb has less influence on
heat- and mass-transfer rates thanεm.

It can be concluded from Table 2 that increasingεm to
a certain value around 0.37 has no significant effect on the
sorption phenomena. Moreover, decreasingεm leads to a
decrease in the temporal sorption kinetic. This behavior
can be explained by the fact that due to the total volume
of liquid contained in the total volume of pores, the mass

rate of desorbed water (respectively adsorbed water) de-
creases.

Table 3 and Fig. 11 show clearly thatεb has a strong in-
fluence on the acceleration of the temporal sorption phe-
nomena. This is evident because varying the volume be-
tween the grains of zeolite enhances the vapor velocity.

5. CONCLUDING REMARKS

The problem of two-dimensional transient heat and mass
transfer during desorption of water by a plane adsorber of
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time = 3600 stime = 60 s

time = 7200 s time = 10800 s

FIG. 5: Time–space evolution of the temperature difference obtained by the two models (MOD2P and MOD3P)

zeolite 13X was the focus of the present investigation. A
new modeling approach based on considering the porous
bed formed with three different phases was developed and
validated with published experimental results. The main
results obtained from the numerical solutions can be sum-
marized as follows:

1. The new mathematical model for heat and mass
transfer (MOD3P) obtained is more convenient to
predict more accurately and rigorously heat and
mass transfer in the adsorber than the simple classic
model based on two different phases (MOD2P).

2. Increasing the grain porosity leads to serious acceler-
ation of sorption phenomenon. In addition, increas-
ing this parameter up to around 0.37 has no signifi-
cant effect.

3. Heat- and mass-transfer rates are strongly subordi-
nate to the bed porosity.

Annex A
In the new modeling approach (MOD3P),εS , εL, andεg

are, respectively, the solid, liquid, and gas fractions sat-
isfying εS + εL + εg = 1. These different fractions are
unknown and should be expressed as functions of known
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temps = 7200 s
temps = 10800 s

temps = 3600 stemps = 60 s

FIG. 6: Time–space evolutions of the moisture content difference obtained by the two models (MOD2P and MOD3P)

Journal of Porous Media



New Modeling Approach for Heat and Mass Transfers 1097

0 5000 10000 15000 20000 25000

Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
d

u
c
e

d
 a

v
e

ra
g

e
 t

e
m

p
e
ra

tu
re

MOD3P

MOD2P

FIG. 7: Temporal evolutions of the reduced average tem-
perature obtained by the two models (MOD2P and
MOD3P)
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FIG. 8: Temporal evolutions of the reduced average val-
ues of the moisture content obtained by the two models
(MOD2P and MOD3P)

physical parameters such as the bed porosityεb and the
grain porosityεm.

Since the vapor is located in the total volume between
the solid grains, then the gas fraction can be assumed to
the equivalent to the bed porosity. Consequently, we have
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FIG. 9: Comparison between numerical results of tem-
perature field obtained by the two models versus available
experimental data
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FIG. 11: Influence of the bed porosity on the reduced average moisture content and the reduced average temperature
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FIG. 12: Influence of grain porosity on the reduced average moisture content and the reduced average temperature
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TABLE 2: Time variation of absolute difference in sorp-
tion kinetic for different values ofεm and a real value of
εm = 0.32

εm 0.22 0.27 0.37 0.42
t = 6000 s 5.56% 2.78% 2.76% 2.46%
t = 14,000 s 3.21% 1.59% 1.50% 1.31%

TABLE 3: Time variation of absolute difference in sorp-
tion kinetic for different values ofεb = 0.34

εb 0.24 0.29 0.39 0.44
t = 6000 s 3.08% 1.54% 1.53% 3.06%
t = 14,000 s 1.61% 0.78% 0.81% 1.65%

εg =
τg

τT
= εb,

whereτg is the gas volume andτT is the total volume.
The grain porosityεm is defined as the volume of the

micropores contained in the grains. Then we can write

εm =
τp

τgr

whereτp denotes the volume of micropores, andτgr is the
volume of grains. The liquid is assumed to be contained in
the micropores. Then the grain porosityεm is expressed
as

εm =
τL

τS + τL
.

This porosity can also be written differently, introducing
the total volumeτT as follows:

εm =
τL/τT

τS/τT + τL/τT
,

whereτL is the liquid volume andτS is the solid volume.
Using the expressions of the solid fractionsεS and the
liquid fractionεL asεS = τS/τT andεL = τL/τT , then
the grain porosityεm can be expressed as

εm =
εL

εS + εL
.

Consequently, the fractions of liquid, solid, and gas,εL,
εS , andεg, are written as functions of the bed porosityεb

and grain porosityεm as follows:

εL = (1− εb) εm

εS = (1− εb) (1− εm)

εg = εb.

Annex B
The moisture content is defined by

X =
mL

mS
=

τL

τS

ρL

ρS
.

Dividing this equation by the total volumeτT leads to

X =
εL

εS

ρL

ρS
.

Then, it follows that

X εSρS = εLρL.

Consequently, the mass conservation equation becomes

∂ (XεSρS)
∂t

= ṁ.

As εS andρS are assumed constant, the mass rate can be
expressed as follows:

ṁ = εSρS
∂X

∂t
.
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In this study we prove the existence and uniqueness of solutions for the mixed initial-boundary value problems in
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continuous dependence of the solutions upon initial data and supply terms is also proved.
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1. INTRODUCTION

In the opinion of many researchers, the theory of bod-
ies with voids is quite sufficient for a large number of
solid mechanics applications. The origin of the theories
of bodies with voids dates back to Goodman and Cowin
(1972). In their paper we introduce an additional degree of
freedom in order to develop a continuum theory for flow-
ing granular materials. Previously, Nunziato and Cowin
(1983) established the theory of elastic materials with
voids, Iesan (1986) established the general equations in
the context of the theory of the thermo-elasticity of mate-
rials with voids, and Marin (1995, 1997, 2009) obtained
some reasonable extensions of the previous results regard-
ing materials with voids.

The present study is dedicated to the behavior of the
solids in which the matrix material is elastic and the inter-
stices are voids of material. The intended applications of
these theories are to geological materials, like rocks and
solids, and to manufactured porous materials.

The plan of this paper is as follow. First, the basic
equations and conditions of the mixed boundary value
problem within the context of the theory of porous mate-
rials are given. Then, a nonhomogeneous and anisotropic
elastic material is considered and the initial-boundary
value problem is transformed in an abstract temporally
homogeneous evolutionary equation in Hilbert space. By
using the results from the theory of semigroups of linear

operators, the existence, uniqueness, and continuous de-
pendence results are derived. The proof is given for the
first boundary value problem, but the results are the same
in the case when the boundary conditions are replaced
with those from the second problem and, also, with those
from the third problem.

2. BASIC EQUATIONS AND CONDITIONS

For convenience, the notations and terminology chosen
are almost identical to those given previously (Marin,
1995, 1997). Consider that our body occupies—at time
t = 0—a properly regular regionB of Euclidian three-
dimensional spaceR3. Assume that domainB is bounded
by the piece-wise smooth surface∂B. We refer to the mo-
tion of the continuum to a fixed system of rectangular
Cartesian axes,Oxi, i = 1, 2, 3 and adopt the Carte-
sian tensor notation. The points inB are denoted asxi

(or x). The variablet is time and we havet ∈ [0, t0].
We employ the usual convention of summation over re-
peated subscripts while that the subscripts preceded by a
comma denote the partial differentiation with respect to
the respective spatial argument.

We also use a superposed dot to denote the partial dif-
ferentiation with respect to time variablet. Latin indices
are understood to range over the integers(1, 2, 3).

The behavior of a micropolar body with voids is char-
acterized by the following kinematic variables:
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ui = ui(x, t), φi = φi(x, t), σ = σ(x, t),
(x, t) ∈ B̄0 × [0, t0] (1)

If we assume that the body is free of initial and couple
stresses and has zero intrinsic equilibrated body forces,
then we can write the internal energy density in the form

ρ0e=
1
2
Aijmnεijεmn+Bijmnεijµmn+

1
2
Cijmnµij

× µmn+
1
2
ξσ2 +

1
2
Aijσ,iσ,j + Pijεijσ + Rijµijσ

+ Qijkεijσ,k + Sijkµijσ,k + diσσ,i (2)

Where the constitutive coefficientsAijmn, Bijmn, ..., di

are prescribed functions and they obey the following sym-
metry relations:

Aijmn = Ajimn = Amnij , Cijmn = Cmnij

Aij = Aji, Pij = Pji, Qijm = Qjim
(3)

Taking into account the internal energy density in the
form [Eq. (2)] and symmetries [Eq. (3)], we obtain the
basic equations of the elasticity of micropolar bodies with
voids as follows:
• The equations of motion

tij,j +ρ0Fi =ρ0üi

mij,j +εijktjk+ρ0Gi =Iijϕ̈j (4)

• The balance of the equilibrated forces

hi,i + g + ρ0L = ρ0kσ̈ (5)

• The constitutive equations

tij = Aijmnεmn + Bijmnµmn + Pijσ + Qijkσ,k

mij = Bijmnεmn + Cijmnµmn + Rijσ + Sijkσ,k

hi = Dmniεmn + Emniµmn + diσ + Aijσ,j

g = −Pijεij −Rijµij − diσ,i − ξσ (6)

• The geometrical equations

εij = uj,i + εijkφk

µij = φj,i

σ = ν− ν0

(7)

In Eqs. (4)–(7), we have used the following notations:ρ0

is the constant mass density;ui is the component of the
displacement field;ϕi is the component of the microrota-
tion vector;ν is the volume distribution function, which
in the reference state isν0; σ is a measure of the volume
change of the bulk material;Fi is the component of the

body forces;Gi is the component of the body couple;L
is the extrinsic equilibrated body force;g is the intrinsic
equilibrated force;tij is the component of the stress ten-
sor;mij is the component of the couple stress tensor;hi

is the component of the equilibrated stress;k is the equili-
brated inertia;Iij is the coefficient of inertia;εij , µij are
the kinematic characteristics of the strain; andεijk is the
alternating symbol;

Here, we outline the volume change of the bulk ma-
terial results from void compaction or dilatation. Previ-
ously, the physical significances of the functionsL, h, and
k have been presented by Goodman and Cowin (1972)
and Nunziato and Cowin (1983).

To the system of field Eqs. (4)–(7), we now add the
boundary conditions in the following homogeneous form:

ui(x, t) = 0, φi(x, t) = 0, σ(x, t) = 0,

(x, t) ∈ ∂B × [0, t0] (8)

and with the following initial conditions:

ui(x, 0)=ai(x), u̇i(x, 0)=bi(x), φi(x, 0)=ci(x)

φ̇i(x, 0)=di(x), σ(x, 0)=σ0(x), σ̇(x, 0)=σ1(x),
∀(x) ∈ B (9)

whereai, bi, ci, di, σ0, andσ1 are prescribed functions.
Substituting the constitutive Eqs. (6) and the geometric

Eqs. (7) into Eqs. (4) and (5), we obtain the following
system of coupled equations:

ρ0üi =[Aijmn(un,m+εnmkφk)+Bijmnφn,m+Pijσ

+Qijkσ,k],j +ρ0Fi

Iijφ̈j =[Bijmn(un,m+εnmkφk) +Cijmnφn,m+Rijσ

+Sijkσ,k],j+εijk[Ajkmn(un,m+εnmsφs)+Bjkmnφn,m

+Pjkσ+Qjkrσ,r]+ρ0Gi

ρ0κσ̈=[Qmni(un,m+εnmsϕs)+SmnIφn,m+diσ+Aij

×σ,j ],i−Pij(uj,i+εijkφk)−Rijφj,i−ξσ−diσ,i

+ρ0L (10)

Next, we shall examine the existence and uniqueness of
the solution and, also, the continuous dependence of the
solution upon initial data, and we supply the terms for
the initial-boundary value problem defined by Eqs. (10),
boundary conditions (8), and the initial conditions (9).

3. MAIN RESULTS

In all what follows we shall use the following assumptions
on the material properties:
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• Assumption (i)

ρ0 > 0, Iij > 0, κ > 0

• Assumption (ii)

Aijmnξijξmn + 2Bijmnξijηmn + Cijmnηijηmn

+ 2Pijξijσ + 2Rijηijσ + 2Qijsξijκs + 2Sijsηijκs

+ 2diκiσ + ξσ2 + Aijκiκj ≥ α0(ξijξij + ηijηij

+ κiκi + σ2), α0 > 0

for all arbitraryξij , ηij , κi, andσ.
Assumptions (i) and (ii) are in agreement with the

usual restrictions imposed in the mechanics of solids in
order to obtain the existence and uniqueness of the solu-
tion. For instance, assumption (ii) assures that the internal
energy density is a positive definite.

We shall use the following vectorial notations:

u = (ui) , v = (vi) , φ = (φi) , ψ = (ψi) ,

i = 1, 2, 3

And define spaceX by

X =

{
(u,v, φ, ψ, α)
u ∈ H1

0(B)
, v ∈ H0(B), φ ∈ H1

0(B),

ψ∈H0(B), σ∈H1
0 (B), α ∈ H0(B)

}
(11)

whereH1
0 (B) andH0(B) are the familiar Sobolev spaces

(see Pazy, 1983). The following notations have been used:

H1
0(B) =

[
H1

0 (B)
]
3, H0(B) =

[
H0(B)

]
3

We want to transform our initial-boundary value problem,
given by Eqs. (10) and conditions (8) and (9) into a tem-
porally homogeneous abstract equation in Hilbert space
X defined in Eq. (11). Thus, we define the operators

AiW = vi

BiW =
1
ρ0

[Aijmn(un,m + εnmkφk) + Bijmnφn,m

+ Pijσ + Qijkσ,k],j
CiW = ψi

DiW =
1
Iij

[Bijmn(un,m + εnmkφk) + Cijmnφn,m

+ Rijσ + Sijkσ,k],j + εnmk[Ajkmn(un,m + εnmsφs)
+ Bjkmnφn,m + Pjkσ + Qjkrσ,r]
EW = α

FW =
1

ρ0κ

{
[Qmni(un,m + εnmsφs) + Smniφn,m

+ diσ + Aijσ,j ],i − Pij(uj,i + εijkϕk)−Rijφj,i

− ξσ− diσ,i

}
(12)

LetL be the following operator:

L = (AW,BW,CW,DW, EW, FW) (13)

whereA=(Ai), B=(Bi), C=(Ci), andD=(Di) , i=
1, 2, 3. The domain of the operatorL is

D = D(L) =
{

W ∈ X

LW ∈ X
, v = 0, ψ = 0,

α = 0 on ∂B

}
(14)

The closure ofD(L) is obviously spaceX, and hence,
D(L) is dense inX. Also, it is easy to see that the domain
D(L) is not empty because it at least contains[C∞0 (B)]7.
Thus, we can reduce the initial-boundary value problems
(10), (8), and (9) to the temporally equation on Hilbert
spaceX

dW
dt

= LW + F(t), 0 ≤ t ≤ t0 (15)

with the initial condition

W(0) = W0 (16)

where

F(t)=
(
0,F,0,G,0,

1
κ

L

)
, W0=

(
a,b, c,d, σ0,σ1

)

F = (ρ0Fi) , G = (ρ0Gi) , a = (ai) , b = (bi) ,

c = (ci) , d = (di)

Let X∗ be the Hilbert space equipped with the norm in-
duced by the inner product

< W,W >∗=
∫

B

[ρ0νiν̄i+Iijψiψ̄i+ρ0καᾱ+Aijmn

×εij ε̄mn+Cijmnµijµ̄mn+Bijmn(εijµ̄mn+ε̄ijµmn)
+ Pij(εij σ̄ + ε̄ijσ) + Rij(µij σ̄ + µ̄ijσ) + Qijk(εij σ̄,k

+ ε̄ijσ,k) + Sijk(µijσ̄,k + µ̄ijσ,k) + di(σσ̄,i + σ̄σ,i)
+ Aijσ,iσ̄,j + ξσσ̄] dV (17)
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By taking into account hypotheses (i) and (ii) imposed on
the material properties, we obtain

|W|2∗ =< W,W >∗=
∫

B

[ρ0νiνi + Iijψiψi + ρ0κα2

+Aijmnεijεmn+2Bijmnεijµmn+Cijmnµijµmn+2Pij

× εijσ + 2Rijµijσ + 2Qijkεijσ,k + 2Sijkµijσ,k + 2di

× σσ,i + Aijσ,iσ,j + ξσ2] dV ≥
∫

B

[ρ0νiνi + Iijψiψj

+ ρ0κα2 + α0(εijεij + µijµij + σ2 + σ,iσ,i)]

× dV ≥ c1 |W|2X (18)

On the other hand, using the first Korn inequality and
Eq. (17), we deduce the inequality

|W|2∗ ≤ c2 |W|2X
From this inequality and taking into account Eq. (18), we
obtain

c1 |W|2X ≤ |W|2∗ ≤ c2 |W|2X
hence, the norm|.|∗ is equivalent to the original norm in
Hilbert spaceX.

3.1 Lemma 1

The operatorL is dissipative, that is

〈LW, W〉∗ ≤ 0, for all W ∈ D(L)

3.2 Proof

According to relations (12), we have

<LW, W>∗=
∫

B

{
νi[Aijmn(un,m+εmnkφk)+Bijmn

×φm,n+Pijσ+Qijkσ,k],j+ψi[Bijmn(un,m+εnmkφk)
+Cijmnφn,m+Rijσ+Sijkσ,k],k+ψiεijk[Ajkmn

×(un,m+εnmsφs)+Bjkmnφn,m+Pjkσ+Qjkrσ,r]+α

×[Qmni(um,n+εnmsφs+Smniφn,m+diσ+Aijσ,j ],i
−α[Pij(uj,i+εijkφk)+Rijφj,i+ξσ+diσ,i]+Aijmn

×(un,m+εnmkφk)(vj,i+εjisψs)+Cijmnψn,mφj,i+Bijmn

×[(uj,i+εjisφs)ψn,m+(νn,m+εnmsψs)φj,i]+Pij

×[(uj,i+εijsφs)α+(νj,k+εijsψs)σ]+Rij(φj,iα+ψj,iσ)
+Qijk[(uj,i+εjisφs)α,k+(νj,i+εjisψs)]+Sijk(φj,iα,k

+ψj,iσ,k)+di(σα,i+ασ,i)+ξσα+Aijσ,iα,i

}
dV

Making use of the Green-Gauss formula and boundary
condition (8), we obtain the desired result.

3.3 Lemma 2

The operatorL satisfies the range condition, that is

R(λI − L) = X, λ > 0 (19)

3.4 Proof

Assume thatW̃ =
(
ũ, ṽ, ϕ̃, ψ̃, σ̃, α̃

)
∈ X. Then,

we have to show that for all̃W ∈ X, the equation

λW − LW = W̃ (20)

has at least a solutionW in D(L). By eliminating the
functionsvi, ψi, andα from Eq. (20), we obtain the fol-
lowing system of equations in the variablesui, φi, and
σ:

Liω≡λ2ui− 1
ρ0

[Aijmn(un,m+εnmkφk)+Bijmnφn,m

+ Pijσ + Qijkσ,k],j = gi

Li+3ω ≡ λ2φi − 1
Iij

[Bijmn(un,m+εnmsφs)+Cijmn

× φn,m+Rijσ+Sijkσ,k],j +εijk[Ajkmn(un,m +εnms

× φs) +Bjkmnφn,m+Pjkσ +Qjkrσ,r]=gi+3

L7ω≡λ2σ− 1
ρ0κ

[Qmni(un,m+εnmsφs) + Smniφn,m

+ diσ+Aijσ,j ],i+
1

ρ0κ
[Pij(uj,i+εijsφs)+Rijφj,i

+ ξσ− diσ,i] = g7 (21)

where

ω = (u, φ, σ), gi = λũi + ṽi, i = 1, 2, 3
gi+3 = λφ̃i + ψ̃i, i = 1, 2, 3, g7 = λσ̃ + α̃

(22)

We will denote by 〈., .〉 the conveniently weighted
[L2(B)]7 inner product and we consider the bilinear form

Q [ω, ω̄] = 〈Lω, ω̄〉 = 〈(Liω, Li + 3ω, L7ω) ,

(ūi, ϕ̄i, σ̄)〉=
∫

B

ūiLiω+Iijψ̄jLi+3ω+ρ0κσ̄L7ω]

× dV (23)

Using the Green–Gauss formula and boundary conditions
(8), we obtain the following:

Q[ω,ω]=
∫

B

[ρ0λ
2uiui+Iijλ

2ϕiϕj +ρ0κλ2σ2] dV

+
∫

B

[Aijmn(un,m+εnmkϕk)(uj,i+εjisϕs)+Cijmn

×ϕn,mϕj,i+2Bijmn(uj,i+εjisφs)φn,m+2Pij(uj,i

+ εjisφs)σ+2Rijφj,iσ+2diσσ,i+Aiσ,iσ,j ] dV (24)
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for any ω = (u, ϕ, σ) ∈ Y , whereY ≡ H1
0(B) ×

H1
0(B)×H1

0 (B).
Due to hypotheses (i) and (ii) and the first Korn’s in-

equality, it follows that

Q [ω, ω̄]≥C1|ω|2Y , for all ω=(u, ϕ,σ)∈Y (25)

whereC1 is a positive, conveniently chosen, constant and
the norm|ω|Y is defined by

|ω|Y = |(u, φ, σ)|Y = |u|H1(B)+|φ|H1(B)+|σ|H1(B)

In the usual way, we can prove that

Q [ω, ω ] ≤ C2|ω|2Y , for all ω = (u, ϕ, σ) ∈ Y

Hence, bilinear formQ [ω, ω] determines a norm equiv-
alent to the original norm on spaceY . Since bilinear form
Q [ω, ω̄] is continuous on spaceY ×Y , we find that there
exists a linear bounded transformationT from Y to itself
such that

Q [ω, ω̄]=〈ω, T ω̄〉Y , for any ω, ω̄ ∈ Y (26)

since

〈ω, T ω̄〉Y =Q [ ω, ω̄ ]≥C1 |ω|2Y (27)

we deduce that

|Tω| ≥ C1|ω|Y , ω ∈ Y (28)

Let R(T ) be the range ofT . The linear transformationT
is 1 to 1. For this, we have to prove thatω = 0 results
from Tω = 0. Indeed, if there existsω0 ∈ Y such that
Tω0 = 0, then Eq. (26) implies thatQ [ω0, ω0 ] =
0, and then inequality (27) shows thatω0 = 0. Therefore,
there exists

T−1 : R(T ) → Y

Now, we prove thatR(T ) is dense in the spaceY . We
assume the contrary; that is, there existsω0 ∈ Y \R(T ),
ω0 6= 0 such that〈ω0, T ω̄0〉Y = 0. But from Eq. (26) it
follows thatQ [ω0, ω0 ] = 0. Making use of Eq. (25),
we obtainω0 = 0. This contradicts the initial assump-
tions, and therefore, we find thatR(T ) is dense inY .

So, we extendT−1 to whole spaceY , such thatT−1 :
Y → Y, |T−1| ≤ C1.

Let z be inR(T ) andω be the only function inY such
thatz = Tω.

We define functionalκ by

κ(z) = 〈g, ω〉

Obviously, we have

|κ(z)| ≤ |g|H−1
0 (B) |ω|Y ≤ C−1|g|H−1

0 (B) |z|Y
and then we deduce thatκ is a linear bounded functional
defined overR(T ) such that

|κ| ≤ C−1
1 |g|H−1

0 (B)

We can extendκ to whole spaceY in such a way that
extended functionalK will have the same norm.

On the other hand, sinceY is a Hilbert space, the
Riesz–Frechet theorem shows that there exists a unique
ω ∈ Y such that

K (ω̃) = 〈ω, ω̃〉Y , ∀ ω̃ ∈ Y
|ω|Y = |K| ≤ C−1

1 |g|H−1
0 (B)

(29)

If we chooseω̃ = T ω̃, then from Eqs. (26) and (29), it
follows thatω ∈ Y is the unique solution of the equation

Q [ω, ω̃] = 〈g, ω̃〉 , ∀ω̃ ∈ Y (30)

From the relationsλui − ũi = vi, λφi − φ̃i = ψi,
and λσ − σ̃ = α, it follows that v ∈ H1

0(B), ψ ∈
H1

0(B), and α ∈ H1
0 (B). Therefore, we deduce that

W = (u, v, φ, ψ, σ, α) is in D(L) and the proof
of Lemma 2 is complete.

3.5 Theorem 1

OperatorL defined by the relation (13) generates aC0;
i.e., a semigroup of contractions on spaceX.

3.6 Proof

This result follows immediately from the Lumer–Phillips
corollary of the Hille–Yosida theorem, (see, for example,
Pazy, 1983).

In order to study the existence and the uniqueness of
the solution for inhomogeneous Eq. (15), we shall need
the following result.

3.7 Theorem 2

LetL be the infinitesimal generator of aC0; i.e., contrac-
tions semigroupT (t) on spaceX. If F(s) is a continu-
ously differentiable function on[0, t0], then initial value
problems (15) and (16) have for everyW0 ∈ D(L) the
unique solution

W(t)=T (t)W0+
∫ t

0

T (t−s)F(s)ds, t ∈ [0, t0] (31)
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such that

W(t) ∈ C1 ( [ 0, t0 ] ; X) ∩ C0 ( [ 0, t0 ] ; D(L))

On the basis of the above theorem, we obtain the follow-
ing results.

3.8 Theorem 3

Suppose that the elastic coefficients are continuously dif-
ferentiable functions that satisfy conditions (1) and (ii).
Moreover, we assume that

F ∈ C1 ([0, t0];L2(B)), G ∈ C1([0, t0];L2(B)),

L ∈ C1 ([0, t0] ; L2(B))

Also, we suppose thatW0 = (a, b, c, d, σ0, σ1)
∈ D(L).

Then, there exists a unique solution of the problem
given by Eqs. (10), (8), and (9), such that

(u, u̇,φ, φ̇, σ, σ̇) ∈ [C1([0, t0];X) ∩ C0

× ([0, t0]; D(L))]14

The following theorem establishes the continuous depen-
dence of solution of our initial-boundary value problem
upon the initial data and supply terms.

Let (ui, φi, σ) be the difference of two solutions of
the problem defined by Eqs. (10), (8), and (9), corre-
sponding to the difference of the initial data and the differ-
ence of body force, body couple, and equilibrated extrin-
sic forceW0 =

(
a, b, c, d, σ0, σ1

)
, (F, G, L),

respectively.

3.9 Theorem 4

Suppose that the elastic coefficients are continuously dif-
ferentiable functions that satisfy conditions (i) and (ii).
Moreover, we assume that

F, G ∈ L1 ( [ 0, t0 ] ; L2(B) ) , L ∈ L1

× ( [ 0, t0 ] ; L2(B) )

and

a ∈ H1(B), b ∈ H0(B), c ∈ H1(B), d ∈ H0(B),

σ0 ∈ H1(B), σ1 ∈ H0(B)

If (u, φ, σ) is the difference of two solutions for prob-
lems (10), (8), and (9), then there exists a positive con-
stantM such that

|u|H1(B)+|u̇|H0(B)+|φ|H1(B)+|φ̇|H0(B)+|σ|H1(B)

+|σ̇|H0(B) ≤ M

{
|a|H1(B)+|b|H0(B)+|c|H1(B)

+|d|H0(B)+|σ0|H1(B)+|σ1|H0(B)+
∫ t

0

[|F(τ)|H0(B)

+|G(τ)|H0(B)+|L(τ)|H0(B)] dτ

}
(32)

3.10 Proof

On the basis of the Eqs. (10) and conditions (8) and (9),
we can deduce the following identity:

∫

B

[ρ0u̇iu̇i+Iijφ̇iφ̇j +ρ0κσ̇2] dV +
∫

B

[Aijmn(un,m

+εnmkφk)(uj,i+εjisφs)+Cijmnφn,mφj,i+2Bijmn

×(uj,i+εjisφs)φn,m+2Pij(uj,i+εjisφs)σ + 2Rij

×φj,iσ+2diσσ,i+Aijσ,iσ,j ]dV =
∫

B

[ρ0α̇iα̇i+Iij ċiċj

+ρ0κ(σ̇0)2]dV+
∫

B

[Aijmn(αn,m+εnmkck)(αj,k+εjiscs)

+Cijmncn,mcj,i+2Bijmn(αj,i+εjiscs)cn,m + 2Pij

×(αj,i+εjiscs)σ0+2Rijcj,iσ
0+2diσ

0σ0
,i +Aijσ

0
,i

×σ0
,j ] dV +2

∫ t

0

∫

B

ρ0[Fiui+Giφi+Lσ] dV dτ (33)

By using the Schwarz’s inequality, hypotheses (i) and (ii),
and the first Korn’s inequality, from identity (33) we ob-
tain a Gronwall-type inequality that proves desired esti-
mate (32).

4. CONCLUSION

Because of the elegance of the theory of semigroups of
linear operators, we can derive the existence, uniqueness,
and the continuous dependence of the solution without
recourse to supplementary restrictions.

A similar procedure can be used in the case when
boundary conditions (8) are replaced by other boundary
conditions. The above results are true.
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We consider the fully developed flow through straight porous channels, where the flow entry profiles are Poiseulle–
Couette combinations. In particular, we use the Darcy–Forchheimer–Brinkman equation as the model governing the
plane parallel flow through the porous medium. In the past, this particular model has been solved using numerical
methods due to its nonlinear nature. We present an analytical solution of the problem employing an emerging pertur-
bation technique, which has been proven to be successful in tackling nonlinear problems. We offer various verifications
of the solution by comparing to existing, documented results and also mathematically, through reduction to simpler
problems.

KEY WORDS: Darcy–Forchheimer–Brinkman equation, analytical method, Poiseulle entry profile, Cou-
ette entry profile

1. INTRODUCTION

The study of flow through porous media has received con-
siderable attention due to its many faceted practical appli-
cations. In irrigation processes, the movement of fertiliz-
ers, pollutants, and nutrients into plants are all examples
of flow through porous media. The study of the interaction
of oil, gas, and water through porous earth layers has be-
come more important because of the increasing demands
for energy. It has also found applications in the biological
sciences, particularly in biomechanics. One such applica-
tion is in the human lungs, which are idealized as lay-
ers of flocs and other types of porous materials (Hamdan,
1994). The flow of a fluid through a porous medium is
essentially a two-phase flow that consists of the flow of a
matrix particle phase and a fluid phase. However, the par-
ticle phase is usually considered as a solid matrix that is
rigid, and hence, assumed to be stationary. Therefore, ef-

fectively the flow through the porous matrix boils down to
the flow of a single-phase fluid. The importance of such
flows is clear from some of the applications mentioned
above. Solutions of the problems are of fundamental im-
portance.

In this study, we consider one such model of fully
developed flow through a porous medium, between par-
allel plates, where the governing equation is the well-
known Darcy–Forchheimer–Brinkman (DFB) equation.
The entry profiles are taken to be Poiseuille, Couette.
and Poiseuille–Couette type. It is well known that the
DFB equation is nonlinear and usually solved by numeri-
cal methods (Awartani and Hamdan, 2005). We note that
the problem of forced convection flow in porous medium
where the DFB equation has been employed to represent
the fluid has been solved analytically as well; however,
the approach there involves using velocity profiles that
have been attained using singular perturbation methods

1091–028X/10/$35.00 c© 2010 by Begell House, Inc. 1111
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NOMENCLATURE

p pressure ρ fluid density
u averaged velocity in thex direction Cd drag coefficient
v averaged velocity in they direction ζ, χ binary parameters that take the values 0, 1,
k permeability respectively
µ viscosity ϑ µeff/µ

µeff effective viscosity of the fluid in C pX/(ρU∞)2

the medium R ρU∞L/µ, the Reynolds number

(Marafie and Vafai, 2001). We present an analytical solu-
tion of the problem employing the homotopy perturbation
method (HPM) (He, 1999). This technique has been used
successfully in solving many nonlinear differential equa-
tions in different fields of applied mathematics. In fluid
mechanics for instance, Siddiqui et al. (2006a,b, 2008a,b)
used this method for solving nonlinear problems involv-
ing Newtonian and non-Newtonian fluids. For a compre-
hensive account of the use of the HPM to successfully
solve problems in fluid mechanics, see He (2006a,b). It
is worth noting that recently the convergence of the HPM
has been addressed and analyzed by Biazar and Ghazvini
(2009).

Therefore, in essence, here we basically take an es-
tablished worthwhile problem (Awartani and Hamdan,
2005), and present an analytical solution to the prob-
lem. We offer verification of the solution by reducing it
to the simpler Darcy–Lapwood–Brinkman (DLB) model
and showing that the solution reduces correctly as well.
We also compare the solutions for the three scenarios of
entry flows to the numerical solution of Awartani and
Hamdan (2005). In addition, we note that Kuznetsov
(1998) has solved a similar problem analytically with a
Couette entry profile; also, Nield et al. (1996) have solved
a similar problem with a Poiseulle entry profile. However,
in both cases the velocity profiles are computed using nu-
merical solutions. Furthermore, Pantokratoras (2007a,b)
has solved a similar problem with both types of entry pro-
files, but once again, numerical methods for their solution
have been employed. We mention this to point out that
the solution computed here is not unique or new, rather
the method used is an analytical approximate method that
is simple to employ. In addition, the problem we set up
consists of very general boundary conditions and offers
flexibility to the user of these results.

2. PROBLEM FORMULATION

We start with the basic fact that the flow of a viscous fluid
is governed by the continuity and the Navier–Stokes equa-
tions that, when the fluid is incompressible and the flow
is steady, take the form

∇ · v = 0 (1)

ρ (v · ∇)v = −∇p + µ∇2v (2)

In Eqs. (1) and (2),v is the velocity vector,µ is the vis-
cosity,ρ is the density, andp is the pressure. As our ob-
jective is to consider the flow through a porous structure
we need to introduce this. Of course, this in itself is not
an easy task; it is very difficult to describe the porous ma-
trix boundaries. This is due to the complexity of the pores
and the matrix structures. It is the norm now to analyze
such problems with respect to the mathematical descrip-
tion of the macroscopic features of the flow of the fluid,
and discounting the microscopic features. The introduc-
tion of the volume averaging theorems (Hamdan, 1994)
has helped considerably in this regard.

In accordance with the above-mentioned averaging ap-
proach, we express the conservation of mass principle as
a macroscopic continuity equation, which is similar to
Eq. (1). The macroscopic momentum equations, depend-
ing on the type of the porous medium and the flow un-
der consideration, can be expressed through the following
general equation (Hamdan, 1994):

ρ {χ[ζ− 1] + 1} (v · ∇)v = −∇p + µeff

× {χ[ϑ− 1] + 1}∇2v − χ

{
µ

k
v +

ρCd√
k

v|v|
}

(3)

wherev is the velocity vector,p is the fluid pressure,ρ
is the fluid density,µ is the fluid viscosity,µeff is the vis-
cosity of the fluid in the porous medium,ϑ = µeff/µ, k
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is the permeability,Cd is the drag coefficient, andζ and
χ are both binary parameters that take the values 0 and 1.
Note that whenχ = 0 Eq. (3) reduces to Navier–Stokes
Eq. (2); whenχ = 1 the flow is in the porous medium; of
course, the various types of porous media can be specified
by the choice of the parameterζ (Hamdan, 1994).

In the analysis in this paper we consider the flow to
be in two dimensions, hence Eq. (3) takes the following
component form:

ρ {χ[ζ− 1] + 1} (uux + vuy) = −px + µeff

× {χ[ϑ−1]+1}∇2u−χ

{
µ

k
u+ρCdu

√
u2+v2

k

}
(4)

ρ {χ[ζ− 1] + 1} (uvx + vvy) = −py + µeff

× {χ[ϑ−1]+1}∇2v−χ

{
µ

k
v+ρCdv

√
u2+v2

k

}
(5)

We will consider the flow to be plane, parallel, and fully
developed through a straight channel, which means that

u = u(y); p = p(x);
ux = uxx = v = vx = vxx = py = 0

(6)

These relations [Eq. (6)], automatically satisfy continu-
ity Eq. (1) andy-momentum Eq. (5), and reducex-
momentum Eq. (4) to

− px + µeff {χ[ϑ− 1] + 1}uyy − χ

×
{

µ

k
u +

ρCdu|u|√
k

}
= 0

(7)

We introduce a characteristic lengthL and a free-stream
characteristic velocityU∞, which enable us to nondimen-
sionalize Eq. (7) employing the definitions

x∗ = x/L, y∗ = y/L, u∗ = u/U∞, k∗ = k/L2 (8)

Substituting Eq. (8) into Eq. (7), and eliminating the aster-
isks and rearranging, Eq. (7) takes the following dimen-
sionless form whenµ = µeff :

{χ[ϑ− 1] + 1}uyy = RC + χ

{
u

k
+

RCd√
k

u2

}
(9)

whereC =
[
pX/(ρU∞)2

]
and Reynolds numberR =

(ρU∞L/µ).
At this point we get more specific since we are inter-

ested in the DFB equation. Takingχ = ϑ = 1 andζ = 0,
we have

uyy = RC +
u

k
+

RCd√
k

u2 (10)

We assume the following boundary conditions

u(0) = a, u(1) = b (11)

wherea andb simply take values of either 0 or 1. These
boundary conditions give us a lot of flexibility, allowing
us to represent the different entry profiles that are of in-
terest to us. The cases we will explore are:

1. For Poiseuille flow we havea = b = 0 andC 6= 0.

2. For Couette flow we havea = 0 andb = 1, with
C = 0.

3. For Poiseuille–Couette flow we again seta = 0 and
b = 1, with C 6= 0.

In the next section we will solve the more general problem
keeping the boundary conditions as in Eq. (11).

3. SOLUTION OF THE PROBLEM USING THE
HOMOTOPY PERTURBATION METHOD

The HPM approach requires that we start by first defining
a homotopyw (y, q) : Ω× [0, 1] → R for Eq. (10), which
satisfies the equation

∂2w

∂y2
−κ2w−RC−(1−q)

[
∂2u0

∂y2
−κ2u0 −RC

]

− qRCdκw2 = 0
(12)

whereq ∈ [0, 1] is the embedding parameter,u0 is the
initial guess approximation, andκ = 1/

√
k is introduced

for notational convenience. Note that whenq = 0 we have
a simple linear problem to solve and asq → 1, the linear
equation deforms to the equation we wish to solve.

We assume that the initial guess approximation of
Eq. (10) subject to the boundary conditions [Eq. (11)] is

u0(y) = α cosh(κy) + β sinh(κy)− RC

κ2
(13)

where

α = a +
RC

κ2
(14)

β =
1

sinh κ

[
b−

(
a +

RC

κ2

)
cosh κ +

RC

κ2

]
(15)

Note that the corresponding boundary conditions are

w(0) = a, w(1) = b (16)

We assume that the solution of Eq. (10) can be expressed
as a power series inq, i.e.,

u(y, q) = w0 + qw1 + q2w2 + · · · (17)
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where thewi’s are independent ofq. Substituting Eq. (17)
into Eqs. (12) and (16), and equating powers ofq, gives
rise to a set of problems that we will now specify and
solve in the following subsections.

3.1 The Zeroth-Order Problem

The differential equation of the zeroth-order problem is

∂2w0

∂y2
− κ2w0 − ∂2u0

∂y2
+ κ2u0 = 0 (18)

under the boundary conditions

w0(0) = a, w0(1) = b (19)

The solution of the zeroth-order problem is

w0(y) = α cosh(κy) + β sinh(κy)− RC

κ2
(20)

3.2 The First-Order Problem

The differential equation for the first-order problem is

∂2w1

∂y2
− κ2w1 −RCdκw2

0 = 0 (21)

under the boundary conditions

w1(0) = 0, w1(1) = 0 (22)

The solution of the first-order boundary value problem is
given by

w1(y) =
RCd

κ

[ {αy

2
+ ϕ

}
sinh(κy)

+
{

βy

2
− RC

κ3

}
cosh(κy) +

RC

κ3

] (23)

where

ϕ=
1

sinhκ

[(
RC

κ3
−β

2

)
cosh(κ)−α

2
sinh κ−RC

κ3

]
(24)

Although it is possible to go up to the second-order prob-
lem and its associated solutions, the solution to the first-
order problem is reasonable. Therefore, the homotopy
perturbation solution of the problem up to the first order
is

u(y) = lim
q→1

u(y, q) = w0(y) + w1(y) + · · · (25)

or equivalently

u(y) =
[
RCd

κ

{αy

2
+ ϕ

}
+ β

]
sinh(κy)

+
{

RCd

κ

(
βy

2
− RC

κ3

)
+ α

}
cosh(κy)

+
RC

κ2

(
RCd

κ2
− 1

)
(26)

where recall thatα, β, andϕ as above are

α = a +
RC

κ2

β =
1

sinhκ

[
b−

(
a +

RC

κ2

)
cosh κ +

RC

κ2

]

ϕ =
1

sinh κ

[(
RC

κ3
− β

2

)
cosh(κ)− α

2
sinhκ− RC

κ3

]

4. THE DARCY–LAPWOOD–BRINKMAN
EQUATION

Mathematically, the particular form of DFB Eq. (10) is
a more general equation in the sense that it includes the
microscopic inertial terms, and the DLB equation is a par-
ticular case of DFB Eq. (10). This particular case occurs
when the drag coefficientCd = 0, reducing Eq. (10) to

uyy = RC +
u

k
(27)

which is the DLB equation for the problem under consid-
eration. Consequently, a part of the verification of the so-
lution [Eq. (26)] can be achieved by substitutingCd = 0
into Eq. (26), giving us the following general solution for
Eq. (27):

u(y) = β sinh(κy) + α cosh(κy)− RC

κ2
(28)

where we recall thatα andβ as above are

α = a +
RC

κ2

β =
1

sinhκ

[
b−

(
a +

RC

κ2

)
cosh κ +

RC

κ2

]

We will complete the verification in the next section by
specifying practical situations by defininga andb.
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5. RESULTS AND DISCUSSION

The solutions of the two equations mentioned earlier are
general, but for practical purposes we introduce three
different entry flow profiles. As mentioned above, we
will consider Poiseuille, Couette, and Poiseuille–Couette
flows. In the next few subsections we consider each of
these flow conditions for both Eqs. (10) and (27).

5.1 Poiseuille Entry Profile

In the first instance we consider the DFB equation. As-
suming an entry profile of Poiseuille type, we seta =
b = 0 andC 6= 0, giving us the solution

u(y) =
RC

κ2

[{
RCd

2κ
(y − 1) + E1

}
sinh(κy)

+
{

RCd(1− cosh κ)
2κ sinhκ

y − RCd

κ2
+ 1

}
cosh(κy)

+
(

RCd

κ2
− 1

)]
(29)

whereE1 is defined as

E1 =
1− cosh κ

sinhκ

[
1− RCd

κ

(
cosh κ

2 sinh κ
+

1
κ

)]

Similarly, for DLB Eq. (27), for an entry profile of
Poiseuille type, we substitutea = b = 0 and C 6= 0
into Eq. (28) and we get

u(y)=
RC

κ2

[
cosh(κy)+

(1−cosh κ)
sinhκ

sinh(κy)−1
]

(30)

which can be re-written as

u(y) = −RCk + RCk

[
ey/

√
k

+
ey/

√
k − e−y/

√
k − e(1+y)/

√
k + e(1−y)/

√
k

e1/
√

k − e−1/
√

k

] (31)

This, in fact, is the solution of the DLB equation for a
Poiseuille entry profile, which also matches the solution
given by Awartani and Hamdan (2005).

In Fig. 1 we see the velocity profiles for the DLB and
DFB models for a Poiseuille entry profile. We clearly see
that the inclusion of the microscopic inertia through the
DFB model causes a slowing down of the flow, which is
the same result obtained by Awartani and Hamdan (2005).

FIG. 1: This graph represents a Poiseuille-type entry pro-
file. Variation of velocityu versusy for both the Darcy–
Lapwood–Brinkman (DLB) and Darcy–Forchheimer–
Brinkman (DFB) models. For computing these graphs we
have setC = −5, R = 1, andk = 1. In addition, for the
DFB modelCd = 0.55 and for the DLB modelCd = 0.

These graphs also offer a verification for the solutions ob-
tained here. The advantage gained in the analytical solu-
tion is that we can see the expressions that are the con-
tributing elements representing the microscopic inertia.
One can clearly notice these as terms that have drag coef-
ficientCd multiplying them in Eq. (29).

5.2 Poiseuille–Couette Entry Profile

Once again, starting with the DFB equation, assuming an
entry profile of Poiseuille–Couette type, we seta = 0,
b = 1, andC 6= 0 giving us the solution

u(y) =

[
RC

κ2

{
RCd

2κ
(y − 1) + E1

}
+

1
sinhκ

×
(

1− RCd cosh κ

2κ sinhκ

) ]
sinh(κy) +

[
RC

κ2

×
{

RCd(1−coshκ)
2κ sinhκ

y−RCd

κ2
+1

}
+

RCd

2κ sinhκ
y

]

× cosh(κy) +
RC

κ2

(
RCd

κ2
− 1

)

(32)

As one would expect, the analytical solution obtained in
the previous section of DFB Eq. (10) should reduce to
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the solution of the DLB Eq. (27). If we substitutea = 0,
b = 1, a = 0, b = 1, C 6= 0, andCd = 0 into Eq. (26) we
get

u(y)=
sinh(κy)
sinhκ

+
RC

κ2

[
cosh(κy)+

(1−cosh κ)
sinhκ

× sinh(κy)− 1
] (33)

which can be re-written as

u(y)=RCk

[
ey/

√
k−e−y/

√
k

e1/
√

k−e−1/
√

k

(
1+

1
RCk

−e1/
√

k

)

+ ey/
√

k − 1

] (34)

which matches the result obtained by Awartani and Ham-
dan (2005), as expected. It is also worth noting that the
DLB equation is a linear differential equation and sim-
ple to solve, and that the solution, indeed, is correct. In
Fig. 2 we present the graphs of the solutions for the two
models. Once again, we notice the slower profile of the
DFB model, due to the presence of the microscopic in-
ertia. The graph closely matches the results obtained by
Awartani and Hamdan (2005).

FIG. 2: This graph represents a Poiseuille–Couette-
type entry profile. Variation of velocityu versusy for
both the Darcy–Lapwood–Brinkman (DLB) and Darcy–
Forchheimer–Brinkman (DFB) models. For computing
these graphs we have setC = 1, R = 1, andk = 1.
In addition, for the DFB modelCd = 0.55 and for the
DLB modelCd = 0.

5.3 Couette Entry Profile

We begin again with the DFB equation and simply substi-
tuteC = 0 into Eq. (32), giving us

u(y) =
[

1
sinh κ

(
1− RCd cosh κ

2κ sinhκ

)]
sinh(κy)

+
[

RCd

2κ sinhκ
y

]
cosh(κy)

(35)

We substituteCd = 0 into Eq. (35), giving us

u(y) =
sinh(κy)
sinhκ

=
ey/

√
k − e−y/

√
k

e1/
√

k − e−1/
√

k
(36)

which is the expected solution if we solve DLB Eq. (27)
with C = 0. This further verifies the solutions presented
in the preceding sections.

In Fig. 3 we present the graphs of the solutions for the
two models, this time for a Couette entry profile. Once
again we notice the slower profile of the DFB model,
due to the presence of the microscopic inertia. The graph
closely matches the results obtained by Awartani and
Hamdan (2005).

FIG. 3: This graph represents a Couette-type entry pro-
file. Variation of velocityu versusy for both the Darcy–
Lapwood–Brinkman (DLB) and Darcy–Forchheimer–
Brinkman (DFB) models. For computing these graphs we
have setC = 1, R = 1, andk = 1. In addition, for the
DFB model Cd = 0.55 and for the DLB modelCd =
0.
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6. CONCLUSIONS

The main objective of this study was to present an ana-
lytical solution of the particular form of the DFB model,
representing the developed flow through a porous chan-
nel between parallel plates. The problem has been well
documented by Awartani and Hamdan (2005); in fact, we
follow the analysis of their work and use it as a bench
mark for the analytical solution presented here. We have
considered three types of entry profiles driving the flow,
namely, Poiseuille, Couette, and Poiseuille–Couette type.
In addition, we have considered the problem with gen-
eralized boundary conditions and presented the solution
with respect to these boundary conditions. The solution
simply requires the input of the appropriate parameters to
produce solutions to different problems. We have demon-
strated this through the subsections above in the sec-
tion on Results and Analysis. Although we do not really
present the solution to a new problem, we do present the
analytical solution of the problem. This solution shows,
for instance, not only the overall effect of the microp-
tic inertia, but it additionally shows the term(s) (since
more terms in the solution can be taken) that contribute
to the dynamics of the problem. We also demonstrates the
advantages of an analytical solution. As verification, we
have shown the solution of the DLB model for the same
problem; the model can be obtained from the DFB model
by simply setting the drag coefficient to zero. As such,
for the solution obtained by doing the same with our so-
lution, we expect the correct solution of the DLB model,
which is an easier linear solvable differential equation;
and this, in fact, was shown and verified our solution. In
addition, we have offered further verification of the solu-
tion by comparing it to the solution obtained by Awartani
and Hamdan (2005), and all scenarios show a match.

REFERENCES

Awartani, M. M. and Hamdan, M. H., Fully developed flow
through a porous channel bounded by flat plates,Appl. Math.
Comput.,vol. 169, pp. 749–757, 2005.

Biazar, J. and Ghazvini, H., Convergence of the homotopy per-
turbation method for partial differential equations,Nonlinear
Anal.: Real World Appl.,vol. 10, pp. 2633–2640, 2009.

Hamdan, M. H., Single-phase flow through porous channels, a

review of flow models and channel entry conditions,Appl.
Math. Comput.,vol. 62, pp. 203–222, 1994.

He, J. H., Homotopy perturbation technique,Comput. Methods
Appl. Mech. Eng.,vol. 178, pp. 257–262, 1999.

He, J. H., Some asymptotic methods for strongly nonlinear
equations,Int. J. Mod. Phys. B,vol. 20, no. 10, pp. 1141–
1199, 2006a.

He, J. H., New interpretation of homotopy perturbation method,
Int. J. Mod. Phys. B,vol. 20, no. 18, pp. 2561–2568, 2006b.

Kuznetsov, A. V., Analytical investigation of heat transfer
in Couette flow through a porous medium utilizing the
Brinkman–Forchheimer-extended Darcy model,Acta Mech.,
vol. 129, pp. 13–24, 1998.

Marafie, A. and Vafai, K., Analysis of Non-Darcian effects on
temperature differentials in porous media,Int. J. Heat Mass
Transfer,vol. 44, pp. 4401–4411, 2001.

Nield, D. A., Junqueira, S.L.M., and Lage, J.L., Forced convec-
tion in a fluid-saturated porous-medium channel with isother-
mal or isoflux boundaries,J. Fluid Mech.,vol. 322, pp. 201–
214, 1996.

Pantokratoras, A., Fully developed forced convection of
three fluids with variable thermophysical properties flow-
ing through a porous medium channel heated asymmetrically
with large temperature differences,J. Porous Media,vol. 10,
pp. 409–419, 2007a.

Pantokratoras, A., Fully developed Couette flow of three flu-
ids with variable thermophysical properties flowing through
a porous medium channel heated asymmetrically with large
temperature differences,ASME J. Heat Transfer,vol. 129, pp.
1742–1747, 2007b.

Siddiqui, A. M., Ahmed, M., and Ghori, Q. K., Couette and
Poiseuille flow for non-Newtonian fluids,Int. J. Nonlinear
Sci. Numer. Simul.,vol. 7, no. 1, pp. 15–26, 2006a.

Siddiqui, A. M., Mahmood, R., and Ghori, Q. K., Thin film flow
of a fourth grade fluid down a vertical cylinder by He’s homo-
topy Perturbation method,Phys. Lett. A,vol. 352, pp. 404–
410, 2006b.

Siddiqui, A. M., Mahmood, R., and Ghori, Q. K., Homotopy
perturbation method for thin film flow of a third grade fluid
down an inclined plane,Chaos, Solitons & Fractals,vol. 35,
no. 1, pp. 140–147, 2008a.

Siddiqui, A. M., Irum, S., and Ansari, A. R., Unsteady squeez-
ing flow of a viscous MHD fluid between parallel plates, a so-
lution using the homotopy perturbation,Math. Modell. Anal.,
vol. 13, no. 4, pp. 565–576, 2008b.

Volume 13, Number 12, 2010



1119

JOURNAL OF POROUS MEDIA

VOLUME 13 CONTENTS

NUMBER 1
Anisotropic Diffusion in Fibrous Porous Media 1

Y. Nakashima & S. Kamiya

Impact of Pull Speed on Wetout for a Detached Injection Chamber in Resin Injection 13
Pultrusion
A.L. Jeswani & J.A. Roux

Oscillatory Rotating Flows of a Fractional Jeffrey Fluid Filling a Porous Space 29

T. Hayat, M. Khan, K. Fakhar, & N. Amin

Hydrogen Adsorption in Ordered Mesoporous Carbon Synthesized by a Soft-Template 39
Approach
D. Saha, Z. Wei, S.H. Valluri, & S. Deng

TECHNICAL NOTES

Effects of Variable Viscosity and Thermal Conductivity on the Brinkman Model for 53
Mixed Convection Flow Past a Horizontal Circular Cylinder in a Porous Medium

I.A. Hassanien & Z.Z. Rashed

Steady Flow of a Fourth Grade Fluid in a Porous Medium 67
T. Hayat, S. Noreen, & M. Sajid

Heat and Mass Transfer in Transient Flow by Mixed Convection Boundary Layer over 75
a Stretching Sheet Embedded in a Porous Medium with Chemically Reactive Species
A.M. Rashad & S.M.M. El-Kabeir

Chemical Reaction and Magnetohydrodynamic Effects on Free Convection Flow Past an 87
Inclined Surface in a Porous Medium
M.A. Mansour, N.F. El-Anssary, A.M. Aly, & Rama Subba Reddy Gorla

NUMBER 2
Diffusion of Hydrogen in Porous Silicon-Based Sensors 97

T. Dzhafarov & S.A. Yuksel

Effect of Hall Currents on Interaction of Peristaltic Flow with Pulsatile Magnetofluid 103
through a Porous Medium
N.S. Gad

Porous Structure and Hydric Properties of Cob 111

F. Collet, M. Bart, L. Serres & J. Miriel

Microscopic Modeling of the Two-Temperature Model for Conduction in 125
Heterogeneous Media
D.A.S. Rees

The Stability of Evaporating Fronts in Porous Media 145

O.A. Plumb & A.Y. Klimenko



1120

TECHNICAL NOTES

Viscous Dissipation and Ohmic Heating Effects on Magnetohydrodynamic Mixed 159
Convection along a Vertical Moving Surface Embedded in a Fluid-Saturated
Porous Medium
A.M. Rashad, A.Y. Bakier & Rama Subba Reddy Gorla

Flow through Anisotropic Porous Medium with Multiscale Log-Normal Conductivity 171
O.N. Soboleva & E.P. Kurochkina

Comparison between Different Porous Bed (Porous Filter and Rods Bundle) in 183
Open Channels

E. Keramaris

NUMBER 3
On the Prediction of an Average Droplet Size Evolution during Transport in 195

Homogeneous Porous Media under Laminar Flow Conditions

F.A. Coutelieris

Three-Dimensional Modeling of the Evaporation of Volatile Hydrocarbons from 209
Anisotropic Porous Media
A.G. Yiotis, I.N. Tsimpanogiannis, & A.K. Stubos

A Critical Review of Hygrothermal Models Used in Porous Building Materials 221

J.M.P.Q. Delgado, N.M.M. Ramos, E. Barreira, & V.P. de Freitas

Heat Transfer of Non-Newtonian Fluid Flow in a Channel Lined with Porous 235
Layers under Thermal Nonequilibrium Conditions

M. Abkar, P. Forooghi, A. Abbassi, & M.M. Aghdam

TECHNICAL NOTES

On the Vertical Velocity Component Effects on Sound Wave Propagation of a 249
Stationary or Flowing Fluid in a Cylindrical Tube Filled with a Porous Media
H.M. Dwairi & H.M. Duwairi

Phase Deterministic Modeling of Water Vapor Retention in Porous Media and its 261
Potential in Unsaturated Flow Application
Y. Wang

Mixed Convection of a Composite Porous Medium in a Vertical Channel with 271
Asymmetric Wall Heating Conditions
J.P. Kumar, J.C. Umavathi, & B.M. Biradar

On Heat Transfer Analysis of a Magnetohydrodynamic Sisko Fluid through a 287
Porous Medium
M. Khan & J. Farooq

NUMBER 4
Kinetic Study for the Adsorption of Acetone and Ethanol on Activated Carbon 295

F. Mhiri & A. Jemnia

Radial Vibrations of Thick-Walled Hollow Poroelastic Cylinders 307
M. Tajuddin & S.A. Shah

Permeability Estimation of Nano-Porous Membranes for Nonwetting Fluids 319
S.C. Amouroux, D. Heider, & J.W. Gillespie Jr.



1121

Thermal-Diffusion and Diffusion-Thermo Effects on Mixed Convection Heat 331
and Mass Transfer in a Porous Medium
Sallam N. Sallam

TECHNICAL NOTES

MHD Viscous Flow over a Linearly Stretching Sheet Embedded in a Non-Darcian 349
Porous Medium
N.F.M. Noor & I. Hashim

Explicit Analytical Solution for a Modified Model of Seepage Flow with Fractional 357
Derivatives in Porous Media
M. Esmaeilpour, D.D. Ganji, & A. Sadighi

Water Table Fluctuations in a Sloping Aquifer: Analytical Expressions for Water 365
Exchange between Stream and Groundwater with Surface Infiltration

R.K. Bansal & S.K. Das
A Numerical Analysis of Thermal Conductivity, Thermal Dispersion, and Structural 375

Effects in the Injection Part of the Resin Transfer Molding Process
M. Layeghi, M. Karimi, & H.R. Seyf

Flow and Heat Transfer along an Infinite Horizontal Porous Plate through a Porous 387
Medium in a Rotating System
M. Guria, G. Manna, & R.N. Jana

NUMBER 5

Upscaling Transport of Adsorbing Solutes in Porous Media 395
A. Raoof & S. Majid Hassanizadeh

Resistive Forces Quantification in Polymeric Solutions in Porous Media 409
Martins, A. Waldmann, & G. Massarani

Flow of Suspensions in Two-Dimensional Porous Media with Mobile and Immobile 423
Liquid Zones
B.Kh. Khuzhayorov & J.M. Makhmudov

Effect of Electric Load Parameter on Unsteady MHD Convective Flow of Viscous 439
Immiscible Liquids in a Horizontal Channel: Two-Fluid Model
N.P. Singh, A.K. Singh, & P. Agnihotri

Electrohydrodynamic Instability Conditions for Two Superposed Dielectric 457
Bounded Fluids Streaming with Fine Dust in a Porous Medium
M.F. El-Sayed

TECHNICAL NOTES

Flow Analysis of non-Newtonian Viscoelastic Fluids in Porous Media 477
D. Tong & H. Hu

Local Nonsimilarity Solution on MHD Convective Heat Transfer Flow Past a 487
Porous Wedge in the Presence of Suction/Injection
Muhaimin, R. Kandasamy, I. Hashim, & A.B. Khamis



1122

NUMBER 6

Cocurrent Gas-Liquid Flow in Metal Foam: An Experimental Investigation of 497
Pressure Gradient
J.-P. Bonnet, F. Topin, J. Vicente, & L. Tadristh

Numerical Inspection of Turbulent/Laminar Nonreactive and Laminar Combustive 511
Reactive Flows in Porous Media
A. Yarahmadi, R. Hosseini, & M.R.H. Nobari

Thermal Equilibrium Assumption of Fluid Flow in Porous Channel as Described 529
by a Hyperbolic Heat-Conduction Model
A.F. Khadrawi, M.A. Al-Nimr, & M.A. Hader

Non-Darcy Mixed Convection in a Fluid-Saturated Square Porous Enclosure under 537
Suction Effect: Part I
B.V.R. Kumar, S.V.S.S.N.V.G. Krishna Murthy, V. Sangwan, M. Nigam, & P. Chandra

TECHNICAL NOTES

An Efficient and Reliable Two-Dimensional Patterning of Porous Silicon 557
H. Hajghassem, A. Erfanian, M. Mohtashamifar, M. Aliahmadi,
S.M. Alehashemi, & S.M. Banihashemian

Magnetohydrodynamic Thin Film Flow of a Sisko Fluid in a Porous Space 565
T. Hayat, M. Usman Ashraf, & S. Asghar

Unsteady Magnetohydrodynamic Oscillatory Flow and Heat Transfer Analysis of a 573
Viscous Fluid in a Porous Channel Filled with a Saturated Porous Medium
Mehmood, A. Ali, & T. Mahmood

Variable Viscocity and Chemical Reaction Effects on Non-Darcy Magnetohydro- 579
dynamic Mixed Convective Heat and Mass Transfer Past a Porous Wedge
in the Presence of Suction or Injection
R. Kandasamy, M. Nordin, & A.B. Khamis

NUMBER 7

Nonwetting Phase Residual Saturation in Sand Packs 591

P. Gittins, S. Iglauer, C.H. Pentland, S. Al-Mansoori,
S. Al-Sayari, B. Bijeljic, & M.J. Blunt

Forced Convection with Phase-Lagged Oscillatory Counterflow in a Saturated 601
Porous Channel
D.A. Nield, & A.V. Kuznetsov

Effects of Variable Viscosity and Density Maximum on the Onset of Darcy-Benard 613
Convection Using a Thermal Nonequilibrium Model

I.S. Shivakumara, A.L. Mamatha, & M. Ravisha

Mixed Convection Flow Past a Porous Vertical Plate Bounded by a Porous Medium in 623
a Rotating System in the Presence of a Magnetic Field
N.P. Singh, A.K. Singh, & H. Singh

TECHNICAL NOTES

Experimental Quantification of the Operative Time of a Passive Hvac System Using 637
Porous Covering Materials

J.A. Orosa, A.C. Oliveira, & N.M.M. Ramos



1123

Unsteady Flow of Viscous Fluid through a Porous Medium Bounded by a Porous 645
Plate in a Rotating System
M. Jana, S.L. Maji, S. Das, & R.N. Jana

3-D Numerical Modeling and Experimental Investigation of a Partial Premix–Type 655
Porous Medium Burner Using Liquefied Petroleum Gas Fuel
R.M.N. Muhad, M.Z. Abdullah, A.A. Mohamad, M. Abdul Mujeebu, M.Z. Abu Bakar,
& R. Zakaria

NUMBER 8

Analysis of Pore-Level Phenomena of Dilute Surfactant Flooding in the Presence 671
and Absence of Connate Water Saturation
B. Yadali Jamaloei & R. Kharrat

Parameter Estimation of Soil Hydraulic Functions for Unsaturated Porous Media 691
Using an Inverse Problem and Multistep Outflow Experiment
C. Bnouni, J. Sghaier, H. Sammouda, & F. Lehmann

Numerical Modeling of Evaporation Enhancement of Aviation-Grade Kerosene 707
Spray in Porous Media Combustors
C. Periasamy & S.R. Gollahalli

Flows in a Fractional Generalized Burgers’ Fluid 725
T. Hayat, S. Zaib, C. Fetecau, & C. Fetecau

TECHNICAL NOTES

Modeling the Effect of Osmotic Potential Changes on Deformation Behavior of 743
Swelling Clays
N. Laredj, H. Missoum, & K. Bendani

Effect of Double Dispersion on Mixed Convection Heat and Mass Transfer in 749
Fluid-Saturated Non-Darcy Porous Medium
R.R. Kairi & P.V.S.N. Murthy

Flow Adjacent to a Flat Plate in a Darcy-Brinkman Porous Medium Oscillating 759
with Arbitrary Periodic Oscillation
A. Pantokratoras & T. Fang

NUMBER 9
Kelvin–Helmholtz and Rayleigh–Taylor Instability of Streaming Fluids with 765

Suspended Dust Particles Flowing Through Porous Media

R.P. Prajapati & R.K. Chhajlani

Magnetogravitational Instability of Thermally Conducting Rotating Viscoelastic 779
Fluid with Hall Current in Brinkman Porous Medium
M.F. El-Sayed & R.A. Mohamed

Non-Darcy Mixed Convection in a Fluid-Saturated Square, Porous Enclosure under 799
Suction Effect: Part II

S.V.S.S.N.V.G. Krishna Murthy, B.V. Ratish Kumar, V. Sangwan, M. Nigam,
& P. Chandara

Constitutive Modeling for Plasticity of Metal Powders During Compaction 807
G. Aryanpour & M. Farzaneh



1124

TECHNICAL NOTES

Heat and Mass-Transfer Flow Past a Vertical Porous Wall with Variable Heat 827
and Mass Flux

A.K. Singh

Rotating Flow of a Generalized Burgers' Fluid with Slip Condition 839
T. Hayat, S. Najam, & S. Asghar

Heat-Transfer Analysis of MHD Flow Due to a Permeable Shrinking Sheet 847
Embedded in a Porous Medium with Internal Heat Generation
N. Fadiya Mohd Noor, M. Ismoen, & I. Hashim

NUMBER 10
Modeling Transport in Porous Media by Control Volume Analysis 855

F. Civan

A Numerical Study on the Second Law Analysis of the Flame Stabilization and 875
Optimization in a Porous Burner

M. Bidi, M.R.H. Nobari,  M.S. Avval, & A.Yarahmadi

Dynamic Analysis of Porous Media in Time Domain using a Finite Element Model 895
M.P. Khiavi, A.R.M. Gharabaghi, & K. Abedi

A New Model for Permeability Reduction Rate Due to Calcium Sulfate Precipitation 911
in Sandstone Cores

H.A. Tahmasebi, M. Soltanieh, & R. Kharrat

TECHNICAL NOTES

Linear Stability Analysis of Convective Flow in a Mushy Layer with a Non-uniform 925
Magnetic Field and Permeable Mush–Liquid Interface

M.S. Muddamallappa, D. Bhatta, & D.N. Riahi

Steady and Transient Investigation of Generalized Couette Flow in a Composite 931
Channel with Suction and Injection

M.L. Kauranginil & B.K. Jha

DISCUSSION

Discussion on the Paper: Vortex Instability of Mixed Convection Boundary Layer 945
Flow Adjacent to a Nonisothermal Horizontal Surface in a Porous Medium
with Variable Permeability

D.A.S. Rees & I. Pop

NUMBER 11
Smoothed Particle Hydrodynamics Simulation of Effective Thermal Conductivity 951

in Porous Media of Various Pore Structures

F. Jiang & A.C.M. Sousa

The Performance of Polymer Floods in Partially Fractured Reservoirs 961

A.F. Alajmi, R. Gharbi, & R. Chase

Thin Film Flow of a Non-Newtonian Fluid Down a Vertical Cylinder Through 973
a Porous Medium

S. Nadeem & M. Awais



1125

Cross-Flow Heat Exchanger Embedded within a Porous Medium 981
L.B. Younis

Viscous Dissipation Effect on Natural Convection in a Fluid Saturated 989
Porous Medium

M.F. El-Amin, A. Salama, & I. Abbas

Couette Flow of an Oldroyd-B Fluid with Slip Condition 999

T. Hayat, S. Najam, & C.M. Khalique

TECHNICAL NOTES

Drag on a Porous Sphere Embedded in Another Porous Medium 1009

S. Deo & B.R. Gupta

Mass Transfer in Wood: Identification of Structural Parameters from Diffusivity 1017
and Permeability Measurements

E. Agoua & P. Perré

Nonsimilar Solutions for Mixed Convection of Water at 4°C over a Vertical 1025

Surface with Prescribed Surface Heat Flux in a Porous Medium
W.A. Khan & R.S.R. Gorla

Second-Grade Magnetohydrodynamic Fluid Flow in Porous Media 1033
Muhammad R. Mohyuddin, S. Islam, A. Hussain, & A.M. Siddiqui

NUMBER 12
The Instability of a Developing Thermal Front in a Porous Medium. III 1039

Subharmonic Instabilities
A. Selim & D.A.S. Rees

Buoyancy Opposed Mixed Convection in a Two-Sided Lid-Driven Differentially 1059
Heated Square Cavity Filled with a Porous Medium

E. Vishnuvardhanarao & M.K. Das

Laminar and Turbulent Flow through an Array of Cylinders 1073

J.G.I. Hellström, P.J.P. Jonsson, & T.S. Lundström

New Modeling Approach for Heat and Mass Transfers during Sorption 1087
Phenomena in a Plane Adsorber
A. Zegnani, A. Mhimid, H. Dhahri, & K. Slimi

TECHNICAL NOTES

Implications of Evolutionary Equations in Elasticity of Porous Materials 1103
M. Marin

A Note on the Darcy–Forchheimer–Brinkman Equation for Fully Developed 1111
Flow through a Porous Channel Bounded by Flat Plates
A.R. Ansari & A.M. Siddiqui



1126

JOURNAL OF POROUS MEDIA
AUTHOR INDEX FOR VOLUME 13

Page Range of Issues
Issue 1: 1–96; Issue 2: 97–193; Issue 3: 195–294; Issue 4: 295–399

Issue 5: 395–495; Issue 6: 497–590; Issue 7: 591–669; Issue 8: 671–763
Issue 9: 765–854; Issue 10: 855–949; Issue 11: 951–1037; Issue 12: 1039–1125

Abbas, I., 989
Abbassi, A., 235
Abedi, K., 895
Abdullah, M.Z., 655
Abdul Mujeebu, M., 655
Abkar, M., 235
Abu Bakar, M.Z., 655
Aghdam, M.M., 235
Agnihotri, P., 439
Agoua, E., 1017
Al-Mansoori, S., 591
Al-Nimr, M.A., 529
Al-Sayari, S., 591
Alajmi, A.F., 961
Alehashemi, S.M., 557
Ali, A., 573
Aliahmadi, M., 557
Aly, A.M., 87
Amin, N., 29
Amouroux, S.C., 319
Ansari, A.R., 1111
Aryanpour, G., 807
Asghar, S., 565, 839
Avval, M.S., 875
Awais, M., 973
Bakier, A.Y., 159
Banihashemian, S.M., 557
Bansal, R.K., 365
Barreira, E., 221
Bart, M., 111
Bendani, K., 743
Bhatta, D., 925
Bidi, M., 875
Bijeljic, B., 591
Biradar, B.M., 271
Blunt, M.J., 591
Bnouni, C., 691
Bonnet, J.-P., 497
Chandara, P., 799
Chandra, P., 537

Chase, R., 961
Chhajlani, R.K., 765
Civan, F., 855
Collet, F., 111
Coutelieris, F.A., 195
Das, S.K., 365, 645
Das, M.K., 1059
de Freitas, V.P., 221
Delgado, J.M.P.Q., 221
Deng, S., 39
Deo, S., 1009
Dhahri, H., 1087
Dzhafarov, T., 97
Dwairi, H.M., 249
Duwairi, H.M., 249
El-Amin, M.F., 989
El-Anssary, N.F., 87
El-Kabeir, S.M.M., 75
El-Sayed, M.F., 457, 779
Erfanian, A., 557
Esmaeilpour, M., 357
Fadiya Mohd Noor, N., 847
Fakhar, K., 29
Fang, T., 759
Farooq, J., 287
Farzaneh, M., 807
Forooghi, P., 235
Fetecau, C., 725
Fetecau, C., 725
Gad, N.S., 103
Ganji, D.D., 357
Gharabaghi, A.R.M., 895
Gharbi, R., 961
Gillespie Jr., J.W., 319
Gittins, P., 591
Gollahalli, S.R., 691
Gupta, B.R., 1009
Guria, M., 387
Hader, M.A., 529
Hajghassem, H., 557
Hashim, I., 349, 487, 847

Hassanien, I.A., 53
Hayat, T., 29, 67, 565, 839,

725, 999
Heider, D., 319
Hellström, J.G.I., 1073
Hosseini, R., 511
Hu, H., 477
Hussain, A., 1033
Iglauer, S., 591
Islam, S., 1033
Ismoen, M., 847
Jana, R.N., 387, 645
Jana, M., 645
Jemnia, A., 295
Jeswani, A.L., 13
Jha, B.K., 931
Jiang, F., 951
Jonsson, P.J.P., 1073
Kairi, R.R., 749
Kamiya, S., 1
Kandasamy, R., 487, 579
Karimi, M., 375
Kaurangini1, M.L., 931
Khadrawi, A.F., 529
Khalique, C.M., 999
Khamis, A.B., 487, 579
Khan, W.A., 1025
Khan, M., 29, 287
Kharrat, R., 671, 911
Khiavi, M.P., 895
Khuzhayorov, B.Kh., 423
Klimenko, A.Y., 145
Keramaris, E., 183
Krishna Murthy, S.V.S.S.N.V.G

537, 799
Kumar, J.P., 271
Kurochkina, E.P., 171
Kuznetsov, A.V., 601
Laredj, N., 743
Layeghi, M., 375
Lehmann, F., 691



1127

Lundström, T.S., 1073
Mahmood, T., 573
Maji, S.L., 645
Majid Hassanizadeh, S., 395
Makhmudov, J.M., 423
Mamatha, A.L., 613
Manna, G., 387
Mansour, M.A., 87
Marin, M., 1103
Martins, 409
Massarani, G., 409
Mehmood, A., 573
Mhimid, A., 1087
Mhiri, F., 295
Miriel, J., 111
Missoum, H., 743
Mohamad, A.A., 655
Mohamed, R.A., 779
Mohtashamifar, M., 557
Muddamallappa, M.S., 925
Muhad, R.M.N., 655
Muhaimin, 487
Muhammad R. Mohyuddin, 1033
Murthy, P.V.S.N., 749
Nadeem, S., 973
Najam, S., 839, 999
Nakashima, Y., 1
Nield, D.A., 601
Nigam, M., 537, 799
Nobari, M.R.H., 511, 875
Noor, N.F.M., 349
Nordin, M., 579
Noreen, S., 67

Oliveira, A.C., 637
Orosa, J.A., 637
Pantokratoras , A., 759
Pentland, C.H., 591
Periasamy, C., 691
Perré, P., 1017
Plumb, O.A., 145
Pop, I., 945
Prajapati, R.P., 765
Rama Subba Reddy Gorla, R.S.R.,

87, 159, 1025
Ramos, N.M.M., 221, 637
Ravisha, M., 613
Raoof, A., 395
Rashad, A.M., 75, 159
Rashed, Z.Z., 53
Rathish Kumar, B.V., 537, 799
Rees, D.A.S., 125, 945, 1039
Riahi, D.N., 925
Roux, J.A., 13
Sadighi, A., 357
Saha, D., 39
Sajid, M., 67
Salama, A., 989
Sallam N. Sallam, 331
Sammouda, H., 691
Sangwan, V., 537, 799
Selim, A., 1039
Serres, L., 111
Seyf, H.R., 375
Sghaier, J., 691
Shah, S.A., 307
Shivakumara, I.S., 613

Siddiqui, A.M., 1033, 1111
Singh, H., 623
Singh, N.P., 439, 623
Singh, A.K., 439, 623, 827
Slimi, K., 1087
Soboleva, O.N., 171
Soltanieh, M., 911
Sousa, A.C.M., 951
Stubos, A.K., 209
Tadristh, L., 497
Tahmasebi, H.A., 911
Tajuddin, M., 307
Tong, D., 477

Topin, F., 497
Tsimpanogiannis, I.N., 209
Umavathi, J.C., 271
Usman Ashraf, M., 565
Valluri, S.H., 39

Vicente, J., 497
Vishnuvardhanarao, E., 1059
Waldmann, A., 409

Wang, Y., 261
Wei, Z., 39

Yadali Jamaloei, B., 671
Yarahmadi, A., 511, 875
Yiotis, A.G., 209
Younis, L.B., 981
Yuksel, S.A., 97
Zaib, S., 725
Zakaria, R., 655
Zegnani, A., 1087



1128

JOURNAL OF POROUS MEDIA
SUBJECT INDEX FOR VOLUME 13

Page Range of Issues
Issue 1: 1–96; Issue 2: 97–193; Issue 3: 195–294; Issue 4: 295–399

Issue 5: 395–495; Issue 6: 497–590; Issue 7: 591–669; Issue 8: 671–763
Issue 9: 765–854; Issue 10: 855–949; Issue 11: 951–1037; Issue 12: 1039–1125

adomian decomposition
method, 349
adsorption, 295
air, 221
analytical method, 1111
anisotropy, 1, 171
algorithm, 1139
aquifer, 365

Biot's theory, 307
boundary layer, 375, 847,

1039
break-up, 195
Brinkman equations, 1009
Brinkman model, 53
buoyancy force, 487
Burgers fluid model, 477

calcium sulfate, 911
capillary pressure, 261
capillary trapping, 591
carbon storage, 591
channel, 601

chemical reaction, 75, 87, 579
chemical solution, 743
coalescence, 195
colmatation, 423
combustion, 875
computation, 1073
computational simulation, 13
constant pressure gradient, 973
control volume analysis, 855
convection, 925
convective flow, 439, 925
convective heat transfer, 235
Couette, 931
Couette entry profile, 1111
counter flow, 601
Cr/Au patterning mask, 557
cross flow, 981

Darcy–-Forchheimer–-
Brinkman equation, 1111

Darcy's law deviation, 409

density maximum, 613
desorption, 1087
dielectric fluids, 457
diffusion, 295, 423
diffusion ellipsoid, 1
diffusion tensor, 1
diffusion weighted MRI, 1
diffusivity, 111
dilute surfactant flooding, 671
dispersion, 423, 855
dissipation, 159, 989
double layer theory, 743
drying, 209
dynamic flow modeling, 261

earthquake, 895
eddy-dissipation model, 655
effective parameters, 171
effective thermal conductivity,

951
Ekman layer, 387
electro-hydrodynamics, 457
empirical approach, 743
energy saving, 637
enhanced oil recovery, 961
entropy generation
       minimization, 875

EPTFE membrane, 319
equilibrium, 39
equilibrium adsorption, 395
equilibrium assumptions, 529
equivalent plastic strain, 807
equivalent pore radius, 1017
evaporating front, 125
evaporation enhancement, 707
evolutionary equations, 1103
exact solution, 477, 839, 725,

999
expansive soil, 743

fibrous porous medium, 375
Fik's law, 295

fine dust, 457
finite difference, 53
finite element method (FEM),

743, 799, 989

finite volume, 511
flow laws, 497
flow stability, 925
flows through porous media,

779
fluctuation, 295
fluid flow, 249
fluid instability, 765
fluid mechanics, 1073
forced convection, 601, 981
formation damage, 911
fourth grade fluid, 67
fractional calculus, 725
fractional Jeffrey fluid, 29
fractional, 357
fractured reservoirs, 961
frequency, 307
fully developed region, 249

gas sensor, 97
Gegenbauer functions, 1009
generalized Burgers' fluid, 839

gold catalyst, 97
gradient law of flux, 855

H2 adsorption, 39
hall current, 103, 779
HAM solution, 67, 287
heat, 221
heat exchanger, 981
heat flux, 331,1025
heat recirculation, 875
heat transfer, 75, 573, 827, 981
heat transfer analysis, 287
heavy oil recovery
mechanisms, 671
hollow poroelastic cylinder,

307
homotopy analysis method

(HAM), 973
homotopy perturbation method

(HPM), 357
horizontal channel, 439
hydric, 111
hydrodynamic stability, 457
hydrodynamics, 1073



1129

hydrogen diffusion, 97
hydromagnetic stability, 925
hygro-thermal modeling, 221
hyperbolic heat conduction

model, 529

immiscible fluids, 271
immiscible liquids, 439
impermeable surface, 307
inclined surface, 87
inertial oscillation, 645
interaction, 895
interface, 931
internal heat generation, 847
inverse problem, 691
isosteric heat of adsorption, 39
 

Kelvin–Helmholtz instability,

765
kinetic adsorption, 395
kinetics, 39
k-ε model, 655

laminar, 511
Laplace transform, 365
Levenberg–Marquardt
method, 691
lid-driven cavity, 1059
linear stability theory, 945
linearly stretching, 349
local non similarity, 487
local thermal non-equilibrium,

125
LPG fuel, 655

macroscopic transport
equations, 855

magnetic effect, 477
magnetic effect, 579
magnetogravitational
instability, 779
mass diffusivity, 1017
mass flux, 827
metal foams, 497
metal powder, 807
MHD, 87, 349, 573, 847
MHD flow, 565
MHD fluid, 973
micromodel, 671

micropolar body AMS
classification, 1103

mixed convection, 159, 271,
331, 537, 579, 623, 749,
799, 945, 1025, 1059

mobile and immobile liquid
zones, 423

model, 497

modeling, 125, 807, 1017
modified Bessel functions, 1009
modified Darcy's law, 725
moisture content, 1087
moisture, 221
moving surface, 159
multiphase transport, 195
multistep outflow, 691
mushy layer, 925

natural convection, 989
non similar solutions, 53
non-Darcian porous medium,

349

non-Darcy flow, 579
non-Darcy, 537, 799, 989
non-Darcy porous medium, 749
non-Newtonian fluid, 235, 357,
749
non-Newtonian viscoelastic

fluids, 477
non-reactive, 511
non-uniform permeability, 945

numerical method, 375, 951
numerical model, 743
numerical simulation, 1059,

1087
Nusselt number, 1025

office buildings, 637
ohmic heating, 159
Oldroyd-8 constant fluid, 973
operative time, 637

ordered mesoporous carbon, 39
oscillating plate, 759
oscillatory flow, 601
parameter estimation, 691
passive methods, 637
percolation, 209
peristaltic transport, 103
permeability, 111, 319, 387,

1017

permeability reduction rate, 911
permeable bed, 183

permeable surface, 307
perturbation method, 271
perturbation scheme, 331

plane desorber, 1087
plasticity, 807

Poiseulle entry profile, 1111
polymer flood, 961
polymeric solutions through

porous media, 409
polymer-matrix composites, 13

pore-network model, 209
porescale, 395
porometer, 319
porosity, 111, 1017
porous, 807
porous channel, 511, 573
porous filter, 183
porous materials, 1103
porous media, 87, 195, 235,

357, 457, 477, 591, 707,
855, 875, 895, 951, 1073

porous medium, 67, 75, 103,
159, 249, 271, 287, 331,
387, 537, 601, 613, 623,
645, 759, 765, 799, 827,
973, 981, 989, 1025,
1059

porous silicon, 97
porous space, 29, 565
porous wedge, 487
porousplate, 67
precipitation kinetics, 911
prompt NOx formation, 655
pulsatile flow, 103
pultrusion, 13

radial vibrations, 307
radiation effect, 573
random fields, 171
Rayleigh–Taylor instability,

765
reactive, 511
relative density, 807
relative porous thickness, 183
representative elementary

volume (REV) averaging,
855

reservoir simulation, 961
residual saturation, 591
Resin injection, 13
Resin transfer molding, 375
rheology, 409
rods bundle, 183
rotating flows, 29, 999
rotating system, 623
rotation, 645

sand packs, 591
scaling, 171
secondary instability, 1039
sediment, 895
seepage flow, 357
series solution, 565
shrinking sheet, 847
Si, 557
Sisko fluid, 287, 565
slip condition, 999



1130

slip effects, 29, 725, 839
slops, 365
soft-template, 39
solutal dispersion, 749
solute transport, 395
sorption, 111
sound waves, 249
SPH, 951
spontaneous transfer, 855
stability, 125
stagnation flow, 53
Stokes' problem, 759
stress jump, 931
stress-tensor, 1009
sub-grid modeling, 171
sub-harmonic disturbances,

1039
suction flow, 67
suction/injection, 537, 573,
799, 931

suffosion, 423
surface infiltration, 365
suspended dust particles, 765
suspension, 423
Sγ moment, 195

thermal behavior, 529
thermal conductivity, 779
thermal dispersion, 375, 749
thermal nonequilibrium model,

613
thermal non-equilibrium, 235
thin film flow, 973
three-phase model, 1087
time domain analysis, 895
tortuosity, 1017
turbulence, 1073
turbulent, 511
turbulent flow, 183
two-dimensional PS arrays, 557
two-energy equation model, 707

two-phase model, 1087

unsaturated porous media,
261, 691

unsteady flow, 75, 645

upscaling, 395

vapor concentration, 707
variable suction, 827
variable viscosity, 579, 613
viscoelastic fluid, 779
viscous, 159

viscous fluid, 623
vortex convection, 945

water, 1025
water retention curve, 261
water table, 365

wood, 1017

zeolite, 1087



1131

Reviewers for Volume 13

The Editorial Board of the Journal of Porous Media would like to thank the following
reviewers for their reviews and their help in establishing a high-quality review process.

We add particular thanks to MANY reviewers who did multiple reviews.

Abbasbandy, S.
Abbassi, A.
Abd Elazem, N.Y.
Abd-El Aziz M. Salem
Abdel-Rehim, Z.S.
Abdou, M.M.M.
Ahmad, I.
Alazmi, B.
Al-Bazali, T.
Albouchi, F.
Ali, N.
Al-Khlaifat, A.
Anderson, D.M.
Arabnia, H.R.
Arce, P.
Ari-Gur, P.
Ayvaz, M.T.
Bahloul, A.
Balhoff, M.
Bansod, V.J.
Basagaoglu, H.
Belghith, A.
Bellini da Cunha Neto, J.A.
Ben Nasrallah, S.
Benhamidouche, N.
Bennacer, R.
Bera, P.
Bhattacharyya, S.
Bijeljic, B.
Bishnoi, J.
Biswas, A.
Biswas, G.
Blums, E.
Bokhari, A.H.
Bujurke, N.M.
Bull, J.L.
Buschek, T.
Bokhari, A.H.
Breitkopf, C.
Bujurke, N.M.
Cerbino, R.
Chamkha, A.J.
Chandra, P.
Chen, C.I.
Cherif, B.
Cihat Baytas, A.
Civan, F.

Correia de Sequeira, C.A.
Cortis, A.
Costa, V.A.F.
Coutelieris, F.A.
Damseh, R.
Das, S.K.
Datti, P.S.
De Cesaro Olivesky, R.
Deka, R.K.
Delgado, J.M.P.Q.
Deng, S.
Deping, H.
DiCarlo, D.
Domairry, G.
du Plessis, P.
Dumitru, V.
Duursma, G.
Duwairi, H.
Echekki, T.
El-Amin, M.F.
Eldabe, N.T.
Elgazery, N.S.
El-Kabeir, S.M.M.
El-Sayed, M.F.
Esmaeilzadeh, F.
Ezzat, M.A.
Fetecau, C.
Frizon, F.
Furberg, R.
Ganji, D.D.
Ghesmat, K.
Gollahalli, S.R.
Guba, P.
Haddad, O.M.
Haji-Sheikh, A.
Hayat, T.
Hilfer, R.
Hossain, A.
Huang, H.
Huang, P.-C.
Hussain, M.
Jaroniec, M.
Jha, B.K.
Kara, A.H.
Karahan, H.
Katiyar, V.K.
Kaviany, M.

Keramaris, E.
Khalique, C.M.
Khan, M.
Kimura, S.
Laloui, L.
Li, C.W.
Li, S.
Liao, S.
Liu, C.
Liu, H.-H.
Liu, W.
Magyari, E.
Mahmud, S.
Mahomed, F.M.
Malashetty, M.S.
Marcondes, F.
Marcoux, M.
Marin, M.
Martins, A.
Mazumdar, M.K.
Mehta, M.N.
Miguel, A.F.
Mishra, M.
Misirlioglu, A.
Moatimid, G.M.
Moitsheki, R.
Molenkamp, F.
Momoniat, E.
Morland, L.W.
Morsi, Y.S.
Narasimhan, A.
Nield, D.A.
Nobari, M.R.H.
Pantokratoras, A.
Partap, G.
Philippi, P.C.
Plecas, I
Porter, M.
Postelnicu, A.
Qi, H.-T.
Qu, W.
Rainer, H.
Ramos, N.M.M.
Rashad, A.M.
Rathish Kumar, B.V.
Rees, D.A.S.
Saez, A.E.



1132

Saha, B.B.
Sajid, M.
Salama, A.
Sallam, M.S.N.
Sammouda, H.
Seetharamu, K.N.
Siddheshwar, P.G.
Slimi, K.
Smeulders, D.

Smorodin, B.
Song, Z.
Sonth, R.
Subhas Abel, M.

Taghiyari, H.R.
Tong, D.
Travkin, V.S.
Tyvand, P.A.
Umavathi, J.C.

Veena, P.H.
Viswanathan, H.

Walicki, E.

Ye, S.-R.
Yu, B.

Zeng, Z.-W.
Zhou, C.
Zueco, J.




