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A hybrid method using the Laplace transform and the finite difference method has been con-
sidered to determine the wetting profile in a soil submitted to an infiltration process. This
scheme has been applied to the case of a semi-infinite column of sand, satisfying the constant
flux condition at the surface. The numerical results and the experimental water content pro-
files are in good agreement.
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INTRODUCTION

Water movement through an unsaturated, nonswelling soil is mathematically described by
Richards’ equation [1]. The difficulties in solving this equation are due not only to the
nonlinearity involved, but also to time-dependent boundary conditions and to the fitting
of the experimental data for the physical parameters. In view of this, several different tech-
niques of numerical analysis have been presented for solving transient water-movement
problems, such as finite difference, finite element [2], boundary element [3] methods, etc.

These methods, however, present practical limitations, in the sense that it is often nec-
essary to take very small time steps to avoid undesirable numerical oscillations in the solu-
tion. In this work we present a hybrid method using the Laplace transform (with numerical
inversion) to remove the time dependency of the numerical scheme and the finite difference
method (FDM) to approximate the space derivatives in the resulting transformed equation.

This approach was applied to the case of infiltration in an initially air-dried
semi-infinite column satisfying the constant flux condition at the surface. The simulations
exhibited a close approximation to experimental data given in the literature [4].

THEORY

The differential equation governing the one-dimensional movement of water in an unsat-
urated vertical soil column is given as

2 3y T∝ ε
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(1)

where ψ is the soil water tension, K(ψ) the hydraulic conductivity, C(ψ) = dθ/dψ the spe-
cific water capacity, and θ the volumetric water content.

We consider the following boundary conditions

(2)

(3)

and the initial condition

(4)

To remove the time dependence from the governing Eq. (1), we apply the Laplace
transform technique [5] defined as

(5)

with the inversion formula

(6)

where s = v + iw, and v, w ∈ R.
This inversion will be approximated by the Gaussian quadrature formula proposed

by Stroud and Secrest [6]
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A adjustment constant
Ak weights for the summation
c1, c2 adjustment constants
K hydraulic conductivity, m/s
Ks saturated hydraulic conductivity, m/s
Ki

+ conductivity in the discrete equation, m/s
C specific water capacity, 1/m
 Laplace transform operator
 –1 inversion for Laplace transform operator
R mobility matrix

P load vector
pk roots for the summation
t time variable, s
z space variable, m
α adjustment constants
θ volumetric water content
θs saturated water content
θr residual water content
ψ soil water tension, m

soil water tension in the Laplace spaceψ

NOMENCLATURE
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(7)

with the values of Ak (weights) and pk (roots) given in the appendix for the summation of
n = 2, 4, and 8 quadrature points. 

Initially considering the parameters C and K as time independent (invariable within
a time step) and applying the Laplace transform technique to Eq. (1), we obtain

(8)

Discretizing the space variable in intervals ∆z (zi = i∆z, i = 0, 1, . . . , n) and applying
the finite difference method for Eq. (8) results in

(9)

In Eq. (9), the diffusive term has been approximated by the central difference scheme and
the advective term by upwind approximation. The expressions for the linearized terms C
and K appearing in Eq. (9) are given in the appendix. The continuity of the function
between the boundary (z = 0) and the domain (z > 0) was assured by the simultaneous
discretization of Eq. (8) and the transformed Eq. (2) at the surface by using a fictive point
above it.

Equation (9) can be rewritten in a matrix form

(10)

where [R(s)] is an N × N tridiagonal matrix.
The unknown variable ψ can now be determined at a specific time by solving Eq.

(10) n times (s = sk, k = 1, . . . , n), where n is the number of quadrature points used. 
Now we take into account the variation of the parameters C and K by discretizing

the time variable (tj = j∆t, j = 0, . . . , T) and assuming these parameters to be constant over
each time interval so that we can apply the previously discussed method.

Experimental Data

The proposed method has been applied to the case of sand, for which Haverkamp
et al. [4] performed measurements. The initial and boundary conditions of the experi-
ment were
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(11)

The relationships for the hydraulic conductivity, water content, and soil water ten-
sion have been fitted by Haverkamp et al. [4]; the result is the expression

(12)

in which

Ks = 34 cm/h (saturated soil conductivity)

A = 1.175 ×106 (adjustment constant)

c1 = 4.74 (adjustment constant)

and

(13)

in which

θs = 0.287 (saturated water content)

θr = 0.075 (residual water content) 

α = 1.611 × 106 (adjustment constant)

c2 = 3.96 (adjustment constant)

RESULTS

The simulation with the hybrid method has been done for n = 2, 4, and 8 and ∆z = 1 cm.
Figure 1 shows the computed water content profiles simulated with n = 2 and time

intervals of 5 s in comparison with experimental data.
The computed and measured water content profiles agree very well. A closer

approximation can be seen particularly in the region of advance of the wetting front. In
Table 1, the mass balance after 2880 s (0.8 h) of simulation for n = 2, 4, and 8 is shown.
The mass balance is given by the percentile difference between the water in the column
after the simulation and the water theoretically infiltrated through the surface, normalized
by the theoretical value.
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Table 1 shows that the hybrid method exhibits good performance in terms of mass
balance. It should be noted that the dependence on the number of points chosen for the
inversion formula is irrelevant.

Figures 2 and 3 present the water content profiles computed with n = 2 and time
intervals of 10 s and 20 s, respectively. The numerical results are also in good agreement
with the experimental ones.

The mass balance after 2880 s of infiltration, presented in Table 2, shows the influ-
ence of the adopted time step in the results obtained by simulation. It can be seen that for
greater time intervals, we get worse results for the mass balance for any value of n because
of the strong nonlinear dependence of C and K on ψ. 

Fig. 1 Comparison between measured water-content profiles and results computed by Laplace
Transform technique with n = 2 and ∆t = 5 s.

Table 1. Mass Balance (%) after 2880 s of Infiltration Simulated with Time Steps of 5 s

Points of Gauss quadrature

2 4 8

Error % 0.374 0.373 0.373
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CONCLUSION

This article presents a hybrid method involving the Laplace transform and the FDM for
simulation of transient, nonlinear, diffusive problems. To demonstrate the reliability of this
scheme, the numerical results obtained are compared with experimental data provided in
the literature.

In the literature, it is commonly established that the Laplace transform should not
be applied to nonlinear partial deferential equations (PDEs). With this work, we show
that this statement is not necessarily correct. Close agreement between the computed and
experimental water-content profiles shows that this approach is reliable and efficient
despite the nonlinearity of the governing equation. 

Table 2. Mass Balance after 2880 s of Infiltration Simulated with Time Steps of 10 s and 20 s

Intervals
Points of Gauss quadrature

2 4 8

10 s 0.635 0.671 0.694
20 s 1.052 1.049 1.049

Fig. 2 Comparison between measured water-content profiles and results computed by Laplace
Transform Technique with n = 2 and ∆t = 10 s.
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The major advantage of this method lies in the fact that there is no time-step limita-
tion due to numerical instability, because the proposed approximated solution has a con-
tinuous dependence on time. However, the time interval has to be determined by taking
into account the dependence of C and K on ψ to reach the desired accuracy. Consequently,
this hybrid method is more appropriate for soils with a smooth variation of conductivity.

Comparison of the proposed method with existing numerical methods to confirm
its superiority is an important step in its popularization, and we intend to address it in
future works. The superiority of the proposed method will appear in cases where the
changes in the nonlinear term are smooth, thereby allowing larger time steps than would
be possible for the traditional time-marching schemes (e.g., explicit and implicit finite dif-
ferences) schemes.

APPENDIX

1. Expressions for the linearized terms of Eq. (7).

( ) ( )iif    f   f i zz= = ∆

Fig. 3 Comparison between measured water-content profiles and results computed by Laplace
Transform Technique with n = 2 and ∆t = 20 s.
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2. Weights and roots for the Gaussian quadrature in complex space, from Stroud and
Secrest [6].

(a) Weights
Re Ak Im Ak

n = 2
0.500000000000000 1.414213562373095

n = 4
1.201377135377056 12.15505645082921
–.7013771353770559 –2.839866120892252
1.201377135377056 –12.15505645082921
–.7013771353770559 2.839866120892252

n = 8
–39.79528773006955 1338.78390214722
70.02048005466929 –641.9332467967155

–34.2426429574756 127.8087478207435
4.517450632875858 –6.142474951003654

–39.79528773006955 –1338.78390214722
70.02048005466929 641.9332467967155

–34.2426429574756 –127.8087478207435
4.517450632875858 6.142474951003654

(b) Roots
Re pk Im pk

n = 2
2.000000000000000 1.414213562373095

n = 4
4.787193103128466 1.567476416895208
3.212806896871534 4.773087433276642
4.787193103128466 –1.567476416895208
3.212806896871534 –4.773087433276642

n = 8
10.16944600665751 1.649201796822228
9.40637121369074 4.969217287623294
7.738688146830548 8.370879306237983
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4.685494632821197 12.01057859981379
10.16944600665751 –1.649201796822228
9.40637121369074 –4.969217287623294
7.738688146830548 –8.370879306237983
4.685494632821197 –12.01057859981379
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In this work, three different turbulence closure models, based both on a prognostic trans-
port-diffusion equation and a diagnostic equation, are implemented in the fluid-dynamical
model RAMS to simulate a neutral flow in a wind tunnel. The first closure model (E-l)
solves the equation for turbulent kinetic energy only, whereas in the second (E-ε) and third
(E-ε-l) models both the turbulent kinetic energy equation and the one for its dissipation
rate ε are solved. In the E-l model, ε is provided by a diagnostic equation as a function of E
and the mixing length l. The E-ε and E-ε-l models differ in the definition of the diffusion
coefficient for the momentum Km. E-ε closure prescribes Km by means of the prognostic
values of E and ε, whereas the E-ε-l model uses the mixing length concept. Different values
for the empirical constants defining the mixing length are adopted. The turbulence models
are tested against observed data on flat terrain. An example of application over a
two-dimensional valley (U.S. Environmental Protection Agency–RUSVAL experiments) is
also shown. Mean wind and turbulent kinetic energy vertical profiles both measured and
calculated are shown and compared.

INTRODUCTION

Key parameters in all the atmospheric numerical models at the regional or local scale are
the diffusion coefficients of momentum, heat, and energy. The fact that the last two coef-
ficients are generally considered proportional to the first stresses the importance of the dif-
fusion coefficient of momentum and of evaluating the accuracy of a numerical model for it.

In previous works [10, 11], we discussed the results obtained when simulating the
flow over a two-dimensional valley by using the circulation model RAMS [7] and differ-
ent turbulence closure models. The main result we found is the inability of the 2.5 approx-
imation of the Mellor and Yamada model [6] to accurately reproduce the flow and
turbulence fields inside the valley. A simpler diagnostic K model [9] or more complex E-l
and E-ε models, in which Km is calculated by solving prognostic equations and accounting

2 3y T∝ ε
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for the mixing length concept, gave better results. Whereas E-l closure solves the turbu-
lent kinetic energy (TKE) prognostic equation only, the E-ε model takes into account
even the equation for the TKE dissipation rate ε. Here we consider both a standard ver-
sion of the E-ε model, where the prognostic values of E and ε are used to calculate the
momentum diffusion coefficient Km, and what we define as an E-ε-l model, where a diag-
nostic equation based on the mixing length concept is introduced.

The transport and diffusion equations, both for TKE and ε, depend on a number of
constants, which are to be determined by considering the physical parameters of the par-
ticular case studied. Most values found in the literature are given for engineering
flows—see, for instance, Detering and Etling [2] and Rodi [8]—and have been tested in
many studies. On the contrary, in the case of atmospheric boundary layer (ABL) simula-
tions, the values are not yet well assessed.

In this article we present a sensitivity analysis of the constants defining the different
turbulence closures and compare the values that we have estimated with some sets of val-
ues widely adopted in the literature. This analysis is carried out by considering the flow
characteristics in flat terrain. The resulting best set is then used to compare the different
closure models in the case of complex terrain.

The models are tested against the wind tunnel experiment RUSVAL [1,4] carried
out by the U.S. Environment Protection Agency (EPA) Laboratory, where a simulated
flow, both over flat terrain and over gentle topography, was reproduced and accurately
measured. It is worth noting that in the experiment, turbulence developed analogously as
in a real ABL. We estimated the tunnel Reynolds number value as ReTUNNEL ≅ 2.5 · 105,
whereas for the actual boundary layer we obtained ReABL ≅ 1.5 · 108. The critical Reynolds
number defining the turbulent regime in a wind tunnel is generally estimated to be on the
order of 103. This allows us to conclude that in both cases there is a regime of fully devel-
oped turbulence.

The section entitled Turbulence Models describes the turbulence models applied in
this study. A brief description of the flow model is given as well. The Wind Tunnel Exper-
iment presents the laboratory experiments and the measurement database used for the
comparison and discusses the choice of scales and similarity criteria. Results and Discus-
sion is devoted to the discussion of the results, and Conclusions provides some concluding
remarks.

TURBULENCE MODELS

The three turbulence models were coupled to the RAMS circulation models. All models
solve a transport-diffusion equation for the TKE, and two of them solve a transport-diffu-
sion equation for ε as well. Except for E-ε closure, a parameterized mixing length is also
used for calculating the diffusion coefficient.

The E-l Model 

The prognostic equation for the TKE in a neutrally stratified flow in the standard
E-l closure model that we adopted reads as:
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(1)

where  is the shear production, with 

The dissipation rate is defined by the Kolmogorov relationship:

(2)

where ld is the dissipation length and the diffusion coefficient Km is given by the
Prandtl-Kolmogorov hypothesis:

(3)

where lm is the mixing length. It is generally assumed that ld = lm = l.
The mixing length l adopted in RAMS simulations is that of Blackadar:

(4)

where its asymptotic value l∞, is estimated according to Ying [12]. Following the scaling
procedure adopted in this work, described in The Wind Tunnel Experiment, the Ying
value is l∞ =201.6 m.

Eddy viscosity coefficient for TKE is defined as: 

(5)

where αe is an empirical constant.

The E-ε and E-ε-l models

In these closures, a prognostic transport-diffusion equation for the rate of TKE dis-
sipation ε is joined to Eq. (1):

(6)
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The relationship between the constants reads as:

(7)

where k is the von Karman constant and αε is a constant here taken equal to 0.77; see, for
example, Detering and Etling [2]. The empirical constants cµ, c1ε , and c2ε are to be deter-
mined.

The E-ε-l and E-ε models calculate Km in different ways. In the first model, the
same Eq. (3) of the E-l model is used with the Blackadar mixing length. In the second
model, Km is defined as [2]:

where (8)

THE WIND TUNNEL EXPERIMENT

The wind tunnel experiment we chose to test the numerical model is the EPA-RUSVAL
experiment carried out in by the U.S. Environment Protection Agency Laboratory [4]. A
neutral flow either on flat terrain or over a two-dimensional valley was simulated. The
following characteristics of the vertical wind profiles were measured: roughness length z0 =
0.16 · 10–3 m, friction velocity u* = 0.19 m/s, and free stream velocity u∞ = 4 m/s.

The standard deviation of the three components of the wind fluctuation in the case
of the flat terrain were σu = 2.5u* , σv = 1.2u* , and σw = 1.8u* , respectively. The maximum
valley depth was H = 0.117 m and the valley width was 2a, where a = 0.936 m. Hence, the
aspect ratio a/H was 8. Other experiments, not accounted for in this work, were per-
formed with the aspect ratio equal to 5 and 3.

A rich data set was measured during the wind tunnel experiment. Vertical profiles of
mean wind velocity and Reynolds stress components σu, σv , σw, and —u′w′— were measured
along the x axis (longitudinal direction of the tunnel) at 5 different locations in the
flat-terrain experiment and at 15 locations upwind, inside, and downwind of the valley
(referred to by means of the ratio x/a). It is worth noting that the flow was essentially
two-dimensional because of the symmetry with respect to the x–z plane. The velocity
components along the y axis (crosswind direction) were assumed to be zero.

Because we are interested in assessing the accuracy of a closure model for ABL sim-
ulation and we used RAMS as our circulation model, the wind tunnel experiment was
scaled in the numerical simulation to the dimension of real atmosphere. A scaling factor
(600:1) for lengths was chosen because the authors of the EPA experiments, referring to
the RUSHIL simulation [3] performed in the same tunnel, determined that the wind tun-
nel ABL (1 m) corresponded to a 600-m actual neutral ABL. In this way, the maximum
depth of the valley was H = 70.2 m and the roughness length z0 = 0.096 m. The scaled val-
ues of the five measuring locations in flat terrain are x = –645 m, –105 m, 285 m, 2295 m,
and 4215 m.

2
1 2 2c c k

c
ε

ε ε
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Accounting for the similarity theory of the neutral surface layer, we adopted a loga-
rithmic law, in which the parameters u* and z0 were determined by fitting the measured
profile:

(9)

where k is the von Karman constant (k = 0.4). Because of the nondimensional form of this
profile, no scaling on the velocities had to be done. Consequently, the time scale was the
same as that for the lengths.

The horizontal simulation domain was 6000 × 500 m2 with grid size ∆x = ∆y = 50
m. In the vertical direction, a stretched grid was used to improve the resolution in the
lower layers. The minimum vertical grid size was 10 m and the maximum 60 m.

RESULTS AND DISCUSSION

The basic aim of this work was to search for a set of constants defining the different clo-
sures able to provide good performances in simulating a neutral ABL. We performed many
simulations with the three turbulence models and different values of these constants,
selected from the literature or calculated by us in previous works. Here we produce a selec-
tion of the results obtained, summarized in the following tables. Table 1 shows the values
considered for the E-l closure. In the first simulation (El_1), the two empirical constants
are based on the calculation by Ying [12] applied to the RUSHIL case, whereas in the
second simulation (El_2) the empirical constants are the values calculated by our group in a
previous work [11]. Table 2 refers to simulations with the E-ε and E-ε-l closures. In both
cases, we consider two tests. The first test concerns a set of standard constants evaluated
from laboratory data [5] and widely used in engineering flow problems (Eε_1 and Eεl_1),
compared with a similar set (Eε_2 and Eεl_2) partially calculated by our group [11]. The
second test adopts the set of constants proposed by Detering and Etling [2] for ABL calcu-
lations (Eε_3 and Eεl_3). Even in this case, they were compared with a similar set where
some values are substituted by the constants that we estimated (Eε_4 and Eεl_4).

In the case of the flat-terrain experiment, the first inflow measurement locations, at
the beginning of the tunnel, showed a large variability in the observed profiles, whereas
the profiles at the last two locations, which were in the middle of the tunnel and quite far
from each other, show qualitatively the same behavior. This means that probably in the
experiment the flow needed to cover a certain distance to reach its equilibrium and to let

0

1
ln

u z
u k z∗

 =   

Table 1. E-l Closure Simulations, Set of Constants

Simulation Study Empirical constants

El_1 Ying [12] cε = 0.17
cµ = cε

1/3 = 0.55
El_2 Trini Castelli et al. [11] cε = 0.08

cµ = 0.42
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turbulence develop fully. Hence, the last measurement points are to be considered more
meaningful when comparing simulation results with observed data. For this reason, we
present the results obtained at the two last locations.

In Fig. 1, the normalized horizontal wind velocity component and TKE vertical pro-
files obtained on flat terrain by the El_1 (dotted line) and El_2 (solid line) simulations are
depicted. Although there are no differences regarding the mean wind in the two simulations,
a significant improvement is found for the TKE profile using the second set of values (El_2).
This result can probably be related to the adopted cµ—that is, cµ = u* / E

1/2 [11]—calculated
by using experimental values for u* and surface layer TKE.

Figure 2 shows the results of the comparison between the Eε_1 and Eε_2 simula-
tions, based on the laboratory set of constants. Even in this case, the agreement with the
observed data is better when adopting the values that take into account surface layer
parameters in Eε_2, because the TKE maximum value doubles with respect to Eε_1 and
there is no underestimation in the lower layer. We recall that c1ε depends upon cµ , per Eq.
7. Differences in the wind horizontal component profiles are negligible.

The Eε_3 and Eε_4 simulations, based on the ABL set of constants, give equivalent
results, as can be seen in Fig. 3. This is the result of the very small differences in the values
of the constants (see Table 2). The quality of the results is comparable to the best simula-
tion (Eε_2) in Fig. 2 at the lower layer, whereas in the middle levels a slightly worse agree-
ment with measured data is observed. A small improvement in the mean wind is shown by
Eε_4 at x = 4215 m with respect to the previous measurement location (x = 2295 m).

Figure 4 is the same as Fig. 2 except for E-ε-l closure. Even in this case there is an
evident improvement for the Eεl_2 simulation with respect to Eεl_1, but an underestima-
tion of TKE values appears at both the higher and lower levels.

A better result is found in both simulations Eεl_3 and Eεl_4 by using the ABL sets
in the E-ε-l closure, both for the TKE and mean wind profiles, as shown in Fig. 5. As
seen in Fig. 3, the simulations have very similar agreements, probably because of the simi-
lar values of the constants. A comparison of Figs. 1–5 shows that best results of the differ-
ent closures are of comparable quality.

Taking into account the best results found in the case of the flat-terrain experiment,
we selected the sets of constants and the closure models to perform the simulations in the
case of the valley V8. Specifically, we chose the set El_2 for the E-l closure, Eε_2 for the
E-ε closure, and Eεl_4 for the E-ε-l closure. In Figs. 6–8, the plots correspond to 5 differ-

Table 2. E-ε and E-εl Closure Simulations, Set of Constants

Simulation Study Empirical constants

Eε_1
Eεl_1

Launder-Spalding [5] cµ = 0.55
c1ε = 1.44, c2ε = 1.92
αe = 1.0, αε = 0.77

Eε_2
Eεl_2 

Trini Castelli et al. [11]
Launder and Spalding [5]

cµ = 0.42, c1ε = 1.22
c2ε = 1.92, αe = 1.0, αε = 0.77

Eε_3
Eεl_3

Detering and Etling [2] cµ = 0.40
c1ε = 1.13, c2ε = 1.90
αe = 1.35, αε = 0.77

Eε_4
Eεl_4

Trini Castelli et al. [11]
Detering and Etling [2]

cµ = 0.42, c1ε = 1.22
c2ε = 1.90, αe = 1.35, αε = 0.77
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Fig. 1 Comparison of El_1 (dotted line) and El_2 (solid line) simulations (ref. Table 1) against
EPA-RUSVAL measured data (crosses) on flat terrain: u and TKE normalized profiles.

Fig. 2 Comparison of Eε_1 (dotted line) and Eε_2 (solid line) simulations (ref. Table 2) against
EPA-RUSVAL measured data (crosses) on flat terrain: u and TKE normalized profiles.
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ent positions, from upwind to downwind of the valley, normalized by the valley’s half
width a (x/a = –2, x/a = –0.5, x/a = 0, x/a = 0.5, and x/a = 2).

In Figs. 6 and 7, respectively, the vertical profiles of normalized horizontal and vertical
wind velocity components are plotted versus the normalized height. The agreement of all the
simulations with the different closures can be considered good at all the locations.

In Fig. 8, normalized TKE vertical profiles are depicted at the same five locations.
As a general result, the best agreement is obtained with the E-l model. From a more
detailed perspective, at the higher levels the underestimation of the measured values is less
than that found with the other two models. This underestimation, shown by all the clo-
sures, may be related to the fact that all the constants have been estimated on the basis of
surface-layer parameters and evaluated for flat terrain. Some adjustments of the constants
are probably needed to account for the characteristics of the whole boundary layer.

At the valley bottom (x/a = 0), the TKE maximum is better captured by the E-l and
E-ε closures than by the E-ε-l closure. At the second point (x/a = –0.5), all three models
show a maximum smaller than the measured one, whereas at the third point (x/a = 0.5) an
underestimation occurs.

The E-ε closure seems to give slightly better results than the E-ε-l closure, but the
former needs a much longer simulation time to attain its equilibrium. This is probably
related to a small initial instability of the diffusion coefficient defined as proportional to
the ratio between TKE and its dissipation rate. These last two quantities, resulting from
prognostic equations, can experience some fluctuations.

Fig. 3 Comparison of Eε_3 (dotted line) and Eε_4 (solid line) simulations (ref. Table 2) against
EPA-RUSVAL measured data (crosses) on flat terrain: u and TKE normalized profiles.
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Fig. 4 Comparison of Eεl_1 (dotted line) and Eεl_2 (solid line) simulations (ref. Table 3) against
EPA-RUSVAL measured data (crosses) on flat terrain: u and TKE normalized profiles.

Fig. 5 Comparison of Eεl_3 (dotted line) and Eεl_4 (solid line) simulations (ref. Table 3) against
EPA-RUSVAL measured data (crosses) on flat terrain: u and TKE normalized profiles.
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CONCLUSIONS

In this work, a sensitivity analysis compared three different turbulence closure schemes
implemented and applied in the flow model RAMS. The three closure models were based
on a prognostic equation for TKE and, respectively, a diagnostic equation for the mixing
length (E-l model), a prognostic equation for the dissipation rate (E-ε model), or on both
equations (E-ε-l model).

The influence of the empirical constants defining the closures on the ability of the
models to simulate flow and turbulence fields was evaluated. To investigate the accuracy of
these values, we selected two relative sets of constants widely used in literature applica-
tions—one for laboratory experiments and the other for the ABL. For all the closures, we
compared the results obtained by using the chosen sets with those obtained by using new
values of the constants, which we prescribed in previous works.

The data set adopted for the comparison was collected during the EPA-RUSVAL
wind tunnel experiment, where a neutral flow on flat terrain and over a two-dimensional

Fig. 6 Comparison of El_2 (solid line), Eε_2 (dotted line), and Eεl_4 (dashed line) simulations
against EPA-RUSVAL measured data (crosses) over the valley V8: u normalized profiles.
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valley was simulated. In the simulations with the fluid-dynamical model RAMS, the tun-
nel boundary layer was reported to the scale of an actual boundary layer. 

Our modified set of constants was estimated according to the similarity theory and
surface layer concepts for the neutral stratification and taking into account the turbulence
measured in the wind tunnel. The comparison was made in terms of vertical profiles of the
horizontal velocity and turbulent kinetic energy.

In the case of flat terrain, the analysis showed that simulations with our set gave
much better results with respect to the laboratory set and comparable results in the case of
the atmospheric set, in which the values were more similar to ours. All the closures
showed good agreement with the observed flow. Turbulence profiles in the surface layer
were also well reproduced, whereas some discrepancies appeared at the upper layers. In
general, the E-l model gave better results than the E-ε-l and E-ε closures. This result was
confirmed when the sets providing the best simulations in the flat-terrain analysis were
used in the case of the valley. 

Always keeping in mind the schematic characteristics of the simulated experiment, a
simpler model, like the E-l, which is defined by two constants only, seemed to be more
robust than more refined models, where more empirical constants have to be defined and

Fig. 7 Comparison of El_2 (solid line), Eε_2 (dotted line), and Eεl_4 (dashed line) simulations
against EPA-RUSVAL measured data (crosses) over the valley V8: u normalized profiles.
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estimated. As a consequence, the increased complexity of the closure models might affect
their reliability. Moreover, the difficulty of expressing several terms appearing in the TKE
dissipation rate ε differential equation is a very crucial topic in turbulence modeling and at
the present is still an open problem.

This analysis shows that estimating the constants by means of known physical quan-
tities of the surface layer was successful in improving the quality of the simulations because
it adapts the closure to the specific case. On the basis of this conclusion, and looking at the
discrepancies between observed and predicted profiles at the higher levels, further
improvement of this method should be possible by considering the physical characteristics
of the whole boundary layer.
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This article discuses the application of the second-order perturbation, third probabilistic
moment approach in the hybrid stress-based finite element analysis. The approach is demon-
strated through the example of the linear elastic heterogeneous medium, where the additional
stochastic finite element method discretization is based on the Airy, Prandtl, and Goursat stress
functions. The numerical examples shown in the article illustrate the probabilistic stress state in
some engineering structures with randomly varying material and geometrical parameters. The
results obtained in the computational experiments can be directly used in the third-order reliabil-
ity method analyses of various engineering problems having any closed-form mathematical or
approximative numerical solutions. 

KEYWORDS: stress-based finite element method, second-order third moment stochastic per-
turbation method, Airy and Prandtl functions, Monte Carlo simulation, stochastic finite ele-
ment method

INTRODUCTION

The equilibrium problems of solids and structures with random parameters or under
random excitations have been studied very extensively by numerous authors in the con-
text of probabilistic static and dynamic response in both linear and nonlinear ranges tak-
ing into account the formulation and verification of various reliability criteria [9, 14, 18].
The technique is to use the Monte Carlo simulation (MCS) technique, stochastic spec-
tral approaches, stochastic weighted residuals methods, or, alternatively, stochastic per-
turbation techniques [10, 12, 15]. Because of the computational time savings in compar-
ison with simulation methods, especially in the case of large-scale engineering systems
discrete modeling, and taking into account the opportunity of spatial discretization of
random probabilistic characteristics fields, the second-order perturbation, second proba-
bilistic moment method is used with its numerical implementation, called the stochastic
finite element method (SFEM). The method has been successfully applied in the dis-
placement-based finite element method [23] in elastostatic [21], elastodynamic analyses
as well as in inelastic and transient heat transfer problems [12] for both homogeneous
and heterogeneous media. Its extension to the random equilibrium stress analysis is dis-
cussed in this article.

The main motivation behind the extension of the traditional stochastic second-order,
second-moment (SOSM) approach to the third probabilistic moment method (SOTM) is

The author would like to acknowledge the financial support of the Foundation for Polish Science for his postdoc-
toral research at Rice University in Houston, Texas
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the general lack of a skewness parameter in the first approach. This lack practically elimi-
nates most probabilistic engineering problem solutions where nonsymmetric random vari-
ables or processes appear. Considering the fact that the same perturbation order is used in
both methods, zero-, first-, and second-order solutions of the original problem are exactly
the same; however, the formulas for the second- and third-order probabilistic moments are
decisively extended in comparison with the corresponding SOSM equations. Therefore, by
implementing the methodology described here, one can use the results of stochastic struc-
tural SOSM-based computations or those obtained for heat transfer in randomly uncertain
media, finally, to determine the third-order coefficients without substantial modifications
of the numerical approach. The application of the Weibull probability density function
(PDF)-based SOTM in conjunction with the stress-based finite element method [22] may
be especially valuable in stochastic reliability analysis where Weibull variables as well as
stress-based reliability limit functions are frequently used. 

As is demonstrated in numerical analysis, the third-order probabilistic moment
method is more accurate than the SOSM method and is more relevant for application in
Weibull-based reliability analysis. At the same time, the output results depend on the
individual interrelations between probabilistic characteristics up to the third order. The
limitations of this approach must be precisely determined with respect to all these coeffi-
cient values. Because many reliability criteria are defined in terms of allowable and actual
stresses, further implementations of and numerical experiments with the SOTM method-
ology may be a very promising area of modern computational engineering.

GOVERNING EQUATIONS

Deterministic Stress Equilibrium Problem

Let us consider the set Ω ⊂ ℜ3 bounded by a regular and sufficiently smooth bound-
ary ∂Ω and assume that there is a heterogeneous linear elastic medium in Ω built from n
homogeneous and coherent components. The compliance tensor is introduced as a func-
tion of engineering constants, that is, Young’s moduli and Poisson’s ratios of the structural
components

for i, j, k, l = 1,2; a = 1, . . . , n (1)

with

(2)

and

κ = 0, 1 (3)
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for the plane stress/strain analysis.
Next, the following equilibrium problem is considered

(4)

(5)

(6)

(7)

(8)

where

(9)

(10)

Let us introduce the statically admissible stresses space S0 such that

(11)

Multiplying Eq. (6) by δσij and integrating over Ω, we arrive at

(12)

The complementary energy principle is obtained for any δσij ∈ S0

(13)

or, alternatively

(14)
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which, after minimization, leads to the real stress field being a solution for the equilibrium
problem, Eqs. (4)–(10).

The preceding equations make possible the solving of the boundary problem with
deterministic or random coefficients by using the second-order perturbation, second
probabilistic moment method as is shown in the next paragraph. It should be empha-
sized that the method is quite general in character and makes possible the randomiza-
tion of any differential or algebraic equations with respect to perturbations up to the
second order of the problem parameters as well as probabilistic moments up to the sec-
ond order of all the state variables.

An analogous formulation may be proposed for torsion of a linear, isotropic, and
homogeneous medium formulated in terms of a warping function ϕ

(15)

where Q(x, y) represents any external load. The stress tensor components can be intro-
duced as

(16)

and the constitutive relation can be rewritten as

(17)

in the case of an externally applied twisting moment Q(x, y) = –2θ where Ψ is a warping
function. Finally, the complementary energy necessary to finite element discretization can
be expressed as

(18)

As is known, the torsion problem as a so-called field problem is equivalent to various
related physical phenomena characterized by the same Laplace partial differential equation
as the heat conduction analysis, for example [8].

Second-Order Perturbation Third Probabilistic Moment Approach

Let us denote random variables of the problem in the form of a {br(x; ω)} and its
probability density as g(br) and g(br, bs) respectively, where r, s = 1, 2, . . . , R. The expected
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values, cross-covariances, and skewness of this vector components are calculated as follows
[7, 20]

(19)

(20)

(21)

In further applications, the Weibull distribution is used with its probability density function

(22)

where β is the Weibull shape parameter, λ denotes the scale parameter, and  is the loca-
tion parameter, which indicates the smallest value of the random variable x for which the
probability density function is positive. Starting from this definition, the Weibull PDF has
been used for general mechanical applications where many random variables must be non-
negative (Young modulus, some geometrical parameters, for example) and, especially, for
composite failure and fatigue modeling. Let us note that if discrete representation of ran-
dom variable b(x; ω) is used, then statistical estimators may be applied to approximate any
order probabilistic moments of this variable [1].

Next, the following stochastic Taylor series expansion is applied [15–17]

(23)

where θ is a given small perturbation, θ�br1 denotes the first-order variation of �br1

about its expected value E[br1], and F(n)(x; ω) represents the nth-order partial derivatives
with respect to the random variables evaluated at their expected values. To obtain either
SOSM or SOTM model (or both) for the stress-based FEM, Eq. (13) is rewritten in the
following form

(24)
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Therefore, up to the second-order variational statements are obtained in conjunction with
Eq. (23), as:

• Zero-order (ε0 terms, one equation)

(25)

• First-order (ε1 terms, R equations)

(26)

• Second-order (ε2 terms, one equation)

(27)

Note that the second-order equation is obtained here by multiplying the R-variate proba-
bility density function pR(b1, b2, . . . , bR) by the ε2-terms and integrating over the domain
of the random field variables b(xk). It holds that

=

= (28)

Next, Eq. (25) is solved for ; then Eq. (26) is solved for the first-order terms of
σkl ; and, finally, Eq. (27) is solved for . The probabilistic third-moment characteriza-
tion of the equilibrium state functions starts from the expected value of the stress tensor
components
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(29)

which finally gives

(30)

where ε = 1 is applied; further improvements of the perturbation method with respect to
the perturbation order and parameter are shown in Elishakoff et al. [5].

The next two probabilistic moments are obtained in a quite similar manner as

(31)

and

(32)

To determine the first two probabilistic moments for the strain tensor components, the
second-order perturbations are inserted into the constitutive relation (1) as

(33)
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Weibull Second-Order, Third-Moment Reliability Analysis

Having computed the first three probabilistic moments of contact stresses (expected
values, standard deviations, and skewness coefficients), the random field of limit function
g(z; ω) must be proposed. Usually, it can be introduced as a difference between allowable
and actual stresses σz(z; ω) in the specimen as

(34)

Let us underline that allowable stresses are most frequently analyzed as random variables,
whereas actual stresses are random fields, and that is why the computational analysis is
carried out here for the specific value of the vertical coordinate z. The random allowable
stresses σall(ω) are specified by the use of the first three probabilistic moments E[σall(ω)],
Var[σall(ω)], and S[σall(ω)].

The corresponding probabilistic characteristics of the limit function are calculated as

(35)

(36)

and

(37)

Inserting the limit state function g from Eq. (34) into Eqs. (35)–(37) and assuming
that the random variable of allowable stresses and the random field of actual stresses are
uncorrelated, we obtain

(38)
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(39)

and, finally

(40)

Comparing the second-order, second-moment approach with the second-order,
third-moment approach, it is apparent that the expected values are described by exactly
the same equation, whereas standard deviations (or variances) have some extra compo-
nents connected with skewness of the analyzed PDF; third-order parameter of the proba-
bilistic output is introduced in the SOTM-based analysis. Finally, the parameters x(g),
λ(g), and β(g) of the equivalent Weibull PDF are derived from the following system of
equations

(41)

(42)

(43)

where the gamma function is defined as
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(44)

It should be mentioned that the symbolic computations approach is the most effective
method of solving these equations and computing the equivalent Weibull distribution
probabilistic parameters. Finally, the structural reliability index R [9, 14, 18] of a limit
function g is calculated from the following formula

(45)

The values of this index should behave like the classical probability function—not less than
0 and not greater than 1. 

STRESS-BASED FINITE ELEMENT METHOD

Deterministic Approach

The following approximation of the stress tensor components by the use of Airy
functions is applied in the case of two-dimensional problems to discretize variational
statement (13)

(46)

where function F(x, y) may be represented as follows

(47)

with the value of parameter α depending on the stress-based finite element type being
used. Next, the interpolation function N is introduced with the degrees of freedom vector
a, which makes possible the introduction of the following representation
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(48)

Defining the prescribed displacements vector  for x ∈ ∂Ωu and the matrix

(49)

where nx and ny denote the components of the unity vector normal to ∂Ω and directed
externally to Ω, Eq. (13) may be rewritten as

(50)

and hence

(51)

where

(52)

Finally, it can be written that

K a = F (53)

where K is a system compliance matrix defined as

(54)

Note that in the general case the stress tensor components may be rewritten as
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(55)

where Φrs denotes the Maxwell-Morera function components or, using the Goursat func-
tion, we have

(56)

Therefore, the stress tensor components are defined analogously as for the classical Airy
function, so that one can obtain these stresses as

(57)

where ϕ(z) and χ(z) are taken as

(58)

Finally, the Hu-Washizu principle [2, 13] is applied in this case to obtain the variational
formulation of the equilibrium problem.

The FEM discretization of the torsion problem outlined above—compare Eqs.
(15)–(18)—is accomplished by using the constant stress triangular finite elements, where
the following discretization for ϕ is applied

(59)

Therefore, the complementary energy can be represented as

(60)

Minimization of the functional Σ(ϕ) crucial for the FEM formulation gives
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where

(62)

for a homogeneous region characterized by Kirchhoff modulus G and an external load vec-
tor given in terms of the twisting angle 2θ as

(63)

Stochastic Stress-Based Finite Elements

Let us consider a space discretization of Ω by a typical finite element mesh to intro-
duce the matrix equations for the second-order and second-moment stochastic analysis.
First, the input vector of random variables br(x) is discretized in terms of some point values
by using the following spatial representation

r = 1, . . . , R; α = 1, . . . , N (64)

where α is the shape function for the αth node, N is the number of nodal points in the
mesh, and brα is the matrix of random parameter nodal values. Then, the expected values
and cross-covariances are interpolated as

(65)

(66)

where

(67)

(68)

 and  are the random value vector and covariance matrix of the vector, respectively.
It should be emphasized that the node spatial discretization of random fields can be intro-
duced as equivalent to the nodal points of the original mesh. Alternatively, the random
fields spatial discretization may be carried out by using the additional averaging method
(the random variable is defined as the spatial average of the random field over the finite
element domain), the midpoint method (the random variable is defined as the value of the
random field at the centroid of the element), and, finally, the series expansion method,
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where the random field is modeled as the series of shape functions with random coeffi-
cients and any field discretization [16]. Next, all material properties and the state variables
are expanded by using the same shape functions, as illustrated through the example of the
compliance tensor

ρ = 1, . . . , R (69)

Next, the Taylor series expansion for the nodal random variables is employed in the form of

(70)

and, from both of these equations, it holds that:

(71)

The perturbations up to the second order of the compliance tensor are equal to

(72)

(73)

(74)

Applying the preceding finite element approximations into zero-, first-, and second-order
variational statements, the following hierarchical equilibrium equations are obtained:

• Zero-order (ε0 terms, one system of N linear simultaneous algebraic equations for
, α = 1, . . . , N)

(75)

• First-order (ε1 terms, R systems of N linear simultaneous algebraic equations for
, ρ = 1, . . . , R; α = 1, . . . , N)

(76)
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• First-order (ε2 terms, one system of N linear simultaneous algebraic equations for
)

(77)

with

(78)

Solving these equations for the zero-, first-, and second-order stress tensor fields and
applying the extension

(79)

the expected values and cross-covariances can be calculated as

(80)

(81)

Using analogous methodology, the expected values of strain tensor components are derived
as follows

(82)

At the same time, the first-order strain tensor components cross-covariance has the fol-
lowing form
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Starting from the equations posed previously, the computational implementation of
the stress-based SFEM based on the Hsieh-Clough-Tocher triangular or the Bogner-
Fox-Schmit rectangular finite elements can be done. Further considerations dealing with
extension of the presented method to stochastic nonlinear statics or dynamics may be car-
ried out by using the corresponding displacement-based SFEM models.

NUMERICAL ILLUSTRATIONS

Cantilever Beam Solution By Second-Order Airy Functions 

The general capabilities of the probabilistic second-order and third-moment
approach are displayed through the classical example of a homogeneous steel cantilever
beam with the unit thickness loaded by the transverse force P. Starting from the classical
Airy functions theory, the stress tensor components can be expressed as

(84)

where 2c is the beam height. The solution of this problem can be obtained alternatively by
using Goursat complex functions following analysis presented by Kawai [13]. The first
three probabilistic moments of the stress components are determined here by using the
perturbation methodology implemented in the mathematical package MAPLE [3] analo-
gously to those obtained for the beams with spatially varying stochastic stiffness [6]. The
beam height is treated here as an input random variable with the following parameters:
E[c] = 0.10 m, σ(c) = 0.01 m, S(c) = 0.10, whereas the other design variables are taken as L
= 0.50 m, P = 10 kN, E = 209 GPa, and υ = 0.3. The results of the analysis are presented
in Figs. 1–4 (probabilistic moments of the longitudinal stresses: expected values, variances
in second-moment approaches, variances in third-moment approaches, and skewness) and
in Figs. 5–8 (the additional moments of transverse stresses). It should be emphasized that
the MAPLE visualization is very useful because the input random variable induces various
random fields at the output.

As is shown in Figs. 1 and 4, the expected values of stresses have shapes relatively
similar to and well known from deterministic analyses. Especially valuable is a comparison
of the variances resulting from the SOSM and SOTM approaches. In both cases (longitudi-
nal and transverse stresses), the second-order probabilistic characteristics are a little greater
for the SOSM computations than in a third-moment analysis. This is a promising result,
taking into account a comparison of the perturbation methodology with the MCS
results—the coefficients of variation of the random output are greater for the SOSM tech-
nique than those resulting from MCS analysis. Therefore, if the SOTM gives results
between those obtained by these two methodologies, it is clear that by increasing the per-
turbation order and probabilistic moment in the analyzed approach, the final results will be
closer to the exact result obtained by the simulation.

Finally, as is known, the third-order probabilistic moments can be interpreted as a
measure of the nonsymmetry of the output probability density function. Hence, compar-
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ing third-order moments with second-order probabilistic characteristics, it is clear that
both surfaces have their extreme values in the same regions; however, they can have differ-
ent signs (variances maxima may correspond to the skewness maxima and minima at the
same time). Because third-order moments characterize the lack of symmetry, they deter-
mine the error of assumption made frequently in second-moment analyses, which is that
the random process at the output can be of the Gaussian type. Clearly, for the regions of a
beam essential to its reliability, the stress components cannot be treated as Gaussian ran-
dom field types, and, therefore, the following inequality [16]

(85)

can no longer be valid; this result is important because of numerous previous analyses pub-
lished by Liu et al. [16] as well as the general approach to the stochastic reliability analysis.

Deterministic Torsion of a Rectangular Composite Beam

The main idea of the next computational experiment is to determine the convergency
of the stress-based finite element method for heterogeneous media. The experiment is car-
ried out by using the example of a quarter of the square periodicity cell with centrally located
square reinforcement. The volume ratio of the reinforcing element is 25% of the entire ele-
ment, and the composite is subjected to torsion in the central point of a cell. The composite
parameters are taken as follows: G1 = 2.0E7, G2 = 1.0E7; and the representative volume ele-
ment (RVE) length is taken as a = 4.0. The results of computations are collected for discret-
ization of 2n (n = 3, 4, 5, 6, 7) elements in Figs. 9–13, and the stresses scale is shown for all
graphs in Fig. 14. The boundary conditions for the Prandtl function are taken as equal to 0
on the external boundaries of the RVE and are constant at the interface between composite

[ ] ( ) [ ] ( )3 3kl kl kl kl klE Eσ − σ σ ≤ σ ≤ σ + σ σ

Fig. 9 Stresses in 8-element analysis. Fig. 10 Stresses in 16-element analysis.
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components, which is achieved by using Lagrange multiplier-based linear boundary stress
finite elements.

What we can observe in all these experiments is that the stress scale is exactly the
same for all cases; the only one general difference is that the smoothness of the high-den-
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Fig. 11 Stresses in 32-element analysis. Fig. 12 Stresses in 64-element analysis. 

Fig. 13 Stresses in 128-element analysis. 

1: 4.00E-02 2:  1.20E-01 3:  2.00E-01 4:  2.80E-01 5:  3.60E-01
6: 4.40E-01 7:  5.20E-01 8:  6.00E-01 9:  6.80E-01 10:  7.60E-01

Fig. 14 Stress scale in computational experiments.
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sity mesh problem is decisively greater. More significant variations of these solutions are
presented in Table 1 for the case of the overall stresses on the RVE area as well as for the
total strain energy of the composite.

Probabilistic Patch Test for Rectangular Homogeneous Beam

The stochastic finite element method implementation aspects are explained in detail
through the example of torsion of a square bar shown in Fig. 15 and presented in a deter-
ministic context by Desai [4]. The discretization through the use of the constant strain tri-
angle (CST) finite elements of a cross-section quarter is presented in Fig. 15. 

The Kirchhoff modulus is defined by its expected value E[G] and variance Var(G); the
twisting angle is taken as θ = 1. To illustrate the accuracy of the second-order approach, the
variances of ϕ1 and ϕ5 are compared with corresponding values computed by the use of the
MCS technique and corresponding maximum-likelihood statistical estimators [2]. The
results for E[G] = 10.0 and 103, which are the total number of the MCS random samples,
are presented in Fig. 16 (denoted by y1 and y5) as a function of Var(G) in the range corre-
sponding to the coefficient of variation from the interval (0.0; 0.5). 

According to the results of previous computational experiments, the coefficients of
variation obtained for the MCS are generally greater than those computed in the SOSM

Table 1. Convergence Test for Stress-Based Finite Element Method in Heterogeneous Media

FE number Nodes number <σx> <σy> Strain energy Twisting moment

8 = 23 9 –0.17803 0.17803 0.98485E-08 0.11919E+01
16 = 24 13 –0.16500 0.16500 0.80833E-08 0.10067E+01
32 = 25 25 –0.14295 0.14295 0.71943E-08 0.85351E+00
64 = 26 41 –0.12969 0.12969 0.63417E-08 0.76101E+00

128 = 27 81 –0.11636 0.11636 0.57212E-08 0.67892E+00

                                                  Y 
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Fig. 15 Cross-section of the bar under torsion.
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perturbation analysis. These differences are negligible for α(G) ≤ 0.2; however, because
these coefficients tend to 0.5, the differences can be as big as 25%. Considering that, the
SOSM method may be used in further computations with the restriction on its usage with
respect to the coefficient of input random variables. As was mentioned previously, the
SOTM technique gives more accurate results; however, the accuracy of stochastic compu-
tations depends on the interrelations between probabilistic moments up to the third order.
Further demonstration of the SFEM equations solution is presented in Figs. 17–22. 

The analyzed probabilistic moments (i.e., expected values—Figs. 17, 20; standard
deviations—Figs. 18 and 21; skewness—Figs. 19 and 22) are shown on the vertical axes of
these graphs. The standard deviations of Kirchhoff moduli (in percents) are presented on
the horizontal axes together with the skewness parameter of the output ϕ1 and ϕ5. As can
be observed, all the moments depend mainly on the second-order probabilistic moments.
Third-order probabilistic characteristics do not influence expected values at all. The influ-
ence of input skewness is visible in the standard deviations of the output functions but by
about one order less than in the case of input standard deviations. The contribution of
third-order probabilistic characteristics is decisive only for third-order moments of the
analyzed ϕi.

As can be determined from these pictures, the ranges of output probabilistic
moments is almost the same as for the input ones. The only exception is obtained for
third-order probabilistic characteristics where input positive and negative skewness
parameters result in negative output values only, which can have absolute values three
times greater than the original parameters.

Weibull Third-Order Reliability Method (W-TORM) 
in Contact Problem Analysis

Computational experiments are conducted by using the symbolic computations sys-
tem MAPLE, where the W-SOTM reliability analysis for the contact problem [19] has
been implemented. The set of input data is given in Table 2 for the contact problem
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Fig. 16 Comparison of the SOSM and MCS.
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shown in Figs. 23–24, where the following description is adopted: α = E1/E2 and β =
R1/R2. The Weibull PDF of the limit function is determined together with its probabilis-
tic moments up to the third order (compare Table 2) obtained by the symbolic computa-
tional solution of the nonlinear integral equation system, Eqs. (41)–(43). The PDF of a
limit function is presented in Fig. 25; probabilistic vertical stresses are shown on the hori-
zontal axis, and the probability density function on the vertical axis.

First, it is clear that even for a relatively small input coefficient of variation for input
parameters (not greater than 0.1), the randomness level of the output function is about
18% of the relevant expected value; that is why the proposed third-order approach is more

Table 2. Probabilistic Input and Output for Reliability Study

Parameter Value

E2 2.0E6
ν1 0.3
ν2 0.2
R2 1.8
P 5.0E2
z –0.018

σ(E2) 0.2E6
S(E2) 0.0
σ(R2) 0.018
S(R2) 0.0
σall –4.0E5
α 10.0
β 1.01

E[g] –211378.33
σ(g) 38213.61838 (α = 0.18)
S(g) 5.158577

Fig. 23 Contact problem geometry.
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    inclusion                                                   matrix 

accurate for the analyzed contact problem. Furthermore, we observe that even for input
skewnesses equal to 0, the corresponding third-order probabilistic characteristics differ
from 0, which reflects the differences in algebraic combinations of lower order characteris-
tics. In further analysis it is necessary to verify the sensitivity (in both the deterministic
and stochastic contexts) of output Weibull PDF probabilistic moments with respect to all
input mechanical parameters and their random characteristics; the cross-correlation func-
tion of contact stresses Cov[σ(z1), σ(z2)] can be symbolically computed by using the same
program or, alternatively, by using the systems MATHCAD or MATLAB.

CONCLUDING REMARKS

The stochastic second-order, third-moment, and stress-based finite element method is a
very efficient numerical tool in general analysis of random heterogeneous media. As dem-
onstrated previously in various engineering problems, stochastic third-order stress analysis

Fig. 24 Three-dimensional view of particle-reinforced composite in contact.

Fig. 25 Weibull limit probability density function.
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is very suitable in third-order reliability method studies worked out very recently. The
third-order approach gives more accurate results than the well-known second-order sec-
ond-moment methodology; thus, it is recommended for further computational implemen-
tations of perturbation-based stochastic methods. Furthermore, thanks to the third proba-
bilistic moment analysis, the validity of some inequalities proposed in the second-order
approach can be verified and corrected. Finally, we observe that the symbolic computations
packages such as MAPLE are very convenient for stochastic perturbation analysis if only a
closed-form deterministic solution is theoretically available.

Starting from the SOSM and SOTM equations for the stress-based SFEM, we can
build up, using the classical Hsieh-Clough-Tocher triangular or the Bogner-Fox-Schmit
rectangular finite elements, the corresponding general computer program. Because the
SOSM extension of the deterministic finite element method does not need any interven-
tion within the finite elements subroutines, the existing stress-based computer programs
can be used for the second-order stochastic implementation proposed. On the other hand,
by analogy to the considerations presented in this article, the second-order perturbation
second probabilistic moment approach to torsion or related field problems can be intro-
duced by using the stress method proposed previously or the so-called flux method; both
SOSM formulations may be useful in stochastic homogenization of composites [11]. 

Taking into account the computational experiments presented in this article, it is
observed that the more popular displacement-based finite element method can be recom-
mended for computation of the displacement field probabilistic moments. The expected
values, cross-covariances, and third probabilistic moments of stresses are more efficiently
computed by using the proposed approach, which is very useful in reliability analysis, as
demonstrated here. Analogously to the displacement-based finite element method, the
maximum value of any input coefficient of variation need not be larger than 0.2; however,
significant time savings are obtained with comparison to the MCS, whereas spatial dis-
cretization of random fields is possible contrary to the stochastic spectral techniques [9].
Because the SOTM method gives smaller values of the variances than the SOSM-based
computer programs, this criterion is not so restrictive for approaches based on higher
probabilistic moments. 
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A NEW NUMERICAL TECHNIQUE FOR 
TRANSPORTATION OF AIRBORNE PARTICLES

S. D. Wright
The School of the Environment, University of Leeds, Leeds, LS2 9JT, England
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It is great of importance to be able to predict the trajectories of airborne particles that are released
from exhaust systems into the atmospheric boundary layer. These particles may disperse under
favorable weather conditions, but under certain weather conditions, or as a result of the local
topography, potentially hazardous levels of contamination may occur. In this article, the differen-
tial equations that govern the transport of these particles within the atmospheric boundary layer
are considered and a numerical algorithm is devised to solve them efficiently. It will be shown
that, unlike the transportation of particles over small scales, the efficient integration of the equa-
tions of motion is nontrivial without making certain simplifying assumptions.

INTRODUCTION

Many authors have investigated the motion of particles within the atmosphere. Particle tra-
jectory models include those of Thompson [14] and Joynt and Blackman [2], who developed
random walk models based on particles with uncorrelated velocities at successive time steps
(namely, a Weiner process). The Langevin equation has also been well used in calculating
particle trajectories that allow correlations between the particle velocities at successive time
steps. Numerous authors have adopted this approach, including, for example, Ley [3], Van
Dop [17], and Monti and Leuzzi [4]. Thompson [11, 12, 13] showed how the statistical
properties of the atmosphere could be incorporated in a rigorous mathematical manner, and
Sawford [6], Rodean [5], and Wilson and Sawford [19] have reviewed this work.

Underwood [16] has proposed an alternative approach. He represented elements of
pollution as particles and envisaged that they experience collisions with the turbulent eddies
governed by the Lagrangian time scale. At each collision, all memory of the prevailing tur-
bulent velocity is lost, whereas between collisions, perfect correlation is retained. Under-
wood [15] showed that this method gave good results compared with the results of Taylor
[10] for the root mean square displacement of particles within homogeneous turbulence
and for modeling dispersion within a neutral atmosphere.

In the present work, the pollutant of interest is of a particulate nature; hence, the use
of a particle-tracking model is not aimed at representing a gaseous plume.

GOVERNING EQUATIONS

The drag force acting on a body, which is moving relative to the fluid, is the net result of
the distribution and magnitude of the local pressure field and shearing forces over the sur-

2 3y T∝ ε
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face of the body. For very slow flow, Stokes [9] calculated the drag force on a spherical
particle to be

(1)

where d is the diameter of the particle, µ is the viscosity of the fluid, u the velocity of the
fluid, and up the velocity of the particle. Equation (1) is valid only when the particle Rey-
nolds number is much less than unity, that is

(2)

where ρ is the density of the fluid. The domain where Eq. (2) is valid is widely known as
the Stokes regime. In general, Eq. (1) is written in terms of a drag coefficient, CD, which is
defined as

(3)

where A is the projected area of the particle in its direction of travel. Thus, for the Stokes
regime, Eq. (1) can be written in the form

(4)

and

(5)

Many authors have modified the drag coefficient, either through theoretical calculations or
experimental investigations, so that it is valid over a reasonably large range of particle Rey-
nolds numbers. Hence, the drag coefficient that will be used in this study was that given
and also employed by Shuen et al. [8], namely

(6)

Given the modified drag coefficient, Eq. (4) is valid for all values of the particle Reynolds
number; for example, see Vincent [18]. At small values of Rep the drag coefficient, CD, is
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inversely proportional to Rep, whereas at large values of Rep the presence of a separated
turbulent wake causes a drag crisis in CD. In vector notation, the governing equation of
motion of an airborne particle of mass m is given by

(7)

where FD is the drag force on the particle, as given in Eq. (4), C is the Coriolis force, and
 is the gravitational force. Thus, assuming that the particle is spherical, the equations of

motion that govern the transport of particles are given by

(8a)

(8b)

(8c)

where ρp is the particle density, u1p, u2p, and u3p are the velocity components in the x1, x2,
and x3 directions, respectively, α is the angle the x1 axis makes with the east–west direction,
ϕ the latitude, and f the Coriolis parameter. 

Further, on nondimensionalizing Eqs. (8a–8c), using the scalings

(9)

where G is a horizontal velocity scaling, L and H are suitable horizontal and vertical length
scales, and W = GH/L is a vertical velocity scale, Eqs. (8a)–(8c) become
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(10b)

(10c)
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where St = ρpd 2G/18µL is the Stokes number, Fr = G2/gH is the Froude number, Ro = G/fL
is the Rossby number, Q = H/L, and ( 1p, 2p, 3p) is the nondimensional position vector of
the particle. The Stokes number represents the ability of a particle to follow the streamlines,
and the extent by which the airflow and particle trajectory patterns differ is largely due to the
magnitude of the Stokes number. In general, the larger the Stokes number of an airborne
particle, the more the particle will diverge from the streamlines of the fluid. Conversely, for a
very small Stokes number, a particle is likely to follow the streamlines of the fluid very closely.

THE SOLUTION OF THE GOVERNING DIFFERENTIAL EQUATIONS

If Eqs. (10a)–(10c) are to be solved, then numerical techniques must be used to integrate
the governing equations of motion with respect to time. One standard technique that
could be used is an explicit method, such as the fourth-order Runge-Kutta method. For a
particle traveling in a fluid at rest, with the Coriolis force neglected, then for such a
numerical scheme to be stable for Eqs. (10a)–(10c), the time step ∆t needs to satisfy the
inequality ∆t < 2.785 · St For small-scale flows, for example L = 1 m, with a particle of
diameter d = 100 µm, density of ρp= 1000 kg/m, velocity scale G = 20 m/s and the viscosity
for air given as µ = 1.3 · 10–5 kg/m·s, then the previously mentioned constraint becomes
∆t < 8.4 · 10–2 This is an acceptable time-step for small-scale flows because the usual dura-
tion of the simulation is quite small; hence, a reasonable number of time-steps is required.
However, within the atmosphere, the length scale L of a typical size of a hill or town is
much larger, say L = 8000 m—see Wright et al. [20]—and this length scale has to be used
in both the calculation of the fluid flow and in the particle trajectory simulation. Thus, for
the explicit Runge-Kutta scheme to be stable, ∆t < 1.05 · 10–5. The maximum time step
also decreases as the square of the particle diameter; thus, the smaller the particle diameter,
the smaller the maximum time step that can be taken. 

The explicit Runge-Kutta scheme described previously is of little use for solving the
governing differential Eqs. (10a)–(10c) in their present form because the length scale L
used in calculating the fluid flow needs to be introduced in the evaluation of the Stokes
number. This makes the equations stiff and is the reason why such a small time step is
required in the stability criterion. Physically, a small time scale is associated with the parti-
cle because of its small relaxation time.

Butcher (1964) considered the accuracy of an n stage implicit scheme as compared
with an n stage explicit scheme. The general two-stage implicit scheme he considered was
as follows

(11a)

(11b)

(11c)

where 
–
yn is an approximation to the solution of the differential equation (10). By expand-

ing Eq. (11) in a Taylor series and comparing with the Taylor series expansion of 
–
yn + 1 in
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powers of 
–
yn, it is easy to show that all the terms up to and including the terms in ∆t4 can

be made to match by choosing

(12)

thereby producing the numerical scheme of Eq. (11) that is fourth-order accurate. This
numerical scheme is A-stable. Defining n to be the number of time steps, Dahlquist
(1963) then defined an A-stable scheme to be one in which “all the solutions tend to zero,
as n → ∞, when the method is applied with a fixed positive ∆t~ to any differential equation
of the form dy/dt = λy with ℜe(λ) < 0.” The implicit Runge-Kutta method given by Eqs.
(11a)–(11c) is stable, although not necessarily accurate for arbitrary large values of ∆t~,
when applied to Eqs. (10a)–(10c). However, because the scheme is fourth-order accurate,
time steps much larger than that given by the explicit scheme can be used without a signif-
icant loss of accuracy.

Although the implicit Runge-Kutta method in Eq. (11) is A-stable, this stability
arises from the need to solve a system of nonlinear algebraic equations at each time step
because Eqs. (11b) and (11c), in general, are nonlinear in k1 and k2, respectively. For the
system of O.D.Es Eqs. (10a)–(10c), 12 nonlinear algebraic equations in 12 unknowns
must be solved at each time step; that is k1 and k2 each have 6 unknown components.
Unless this can be achieved efficiently, then the extra work required to accomplish this
task outweighs the benefits gained from the method being A-stable, and the explicit
Runge-Kutta scheme may just as well be employed with a small ∆t~.

One method for solving a system of equations of the form

F(x) = 0 (13)

is the Newton method. This method has the advantage that it gives quadratic convergence
of Eq. (13) from the initial guess xo to the solution xs. The solution to this system, if one
exists, can be found iteratively from an initial guess xo by first solving the linear system of
equations for x

(14)

where J(x) is the Jacobian of F(x) and further setting x1 = xo + x and then iterating until
convergence; see, for example, Burden and Faires (1989). However, a significant weakness
of this method is that for a system of n equations, then at every iteration (n2 + n) evalua-
tions of the vector F(x) are required. Further, the evaluation of the Jacobian matrix, if F is
complicated, and the subsequent solution of the system of linear equations, if n is large, for
each Newton iteration is computationally expensive. Solving a system of linear equations
involves O(n3) operations; thus, for just one iteration O(n3) arithmetic operations are
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required. Hence, a more efficient method of solving Eq. (14) is sought by introducing an
approximation matrix to the Jacobian J(x1), given that x1 has been obtained by the Newton
method. An approximation to the Jacobian, J(x1) is given by

(15) 

where A is an n × n matrix. In general, Eq. (15) does not uniquely define the matrix, A,
because no information is available on how the matrix A operates on vectors that are
orthogonal to x1 – xo. Hence, it is also required that

whenever (16)

This specifies that all vectors that are orthogonal to (x1 – xo) are unaffected by the update
of the Jacobian matrix, J, to the approximate matrix A. Dennis and Moré (1977) showed
that Eqs. (15) and (16) uniquely define the matrix A to be

 (17)

and this matrix can then be used in the Newton method in place of J(x1) to determine x2.

Hence, in general, an iterative scheme for obtaining xk + 1 is given by:

(18)

(19)

where si = xi + xi – 1 and  = F(xi) – F(xi – 1). This reduces the number of scalar function
evaluations of F from (n2 + n) to n per iteration. However, this method still requires the
inversion of the matrix A at every iteration; thus, it is still far too computationally expen-
sive. A significant improvement in the calculation of the inverse of the matrix Ai can be
achieved by considering the matrix inversion formula of Sherman and Morrison [7],
namely

(20)
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A = Ai – 1 (21)

(22)

 = si (23)

and using Eq. (19), along with identity Eq. (20), yields, after some algebraic manipulation

(24)

which eliminates the need to solve the linear system of equations at each iteration. Instead,
the iterative method in Eq. (19) can be used, with the matrix Ai

–1 at each iteration being
updated from the previous iteration by using the formula of Eq. (24). Hence, the number
of scalar function evaluations has been reduced from (n2 + n) to n, and the number of arith-
metic evaluations required to calculate the inverse Jacobian matrix (in the form of solving a
linear system) has been reduced from O(n3) to O(n2) per iteration. This is because Eq. (24)
involves matrix multiplication only and is computationally more efficient than solving a
system of linear equations to invert the matrix Ai. As a consequence, the quadratic conver-
gence of the Newton method has been reduced to superlinear convergence, which is an
acceptable trade-off in most applications. This approach uses the stability of the implicit
method in Eqs. (11a)–(11c) to overcome the inherent stiffness of the governing equations
(10a)–(10c), which arises because of the different characteristic time scales that govern the
motion of the fluid and the particle. For the fluid, the characteristic time scale is given by

(25)

whereas the characteristic time scale of the particle is the relaxation time, namely

(26)

See Vincent [18]. The ratio of these two time scales, in the limit of the particle Reynolds
number tending to zero, yields:

(27)

and hence this ratio determines how closely the particle follows the streamline. For small
values of τp/τF, the particle will follow the streamlines closely because the Stokes number
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will be small, whereas for large values of τp/τF the particle is relatively slow to respond to
flow distortions and the particle tends not to follow the fluid movement. For reasonably
small particles, the particle relaxation time is at least two orders of magnitude smaller than
τF. Therefore, the Stokes number is small and the governing equations of motion are stiff.

PARTICLES IN LOCAL EQUILIBRIUM IN THE ATMOSPHERE

To overcome the stiffness in the governing equations of motion (10a)–(10c), an implicit
scheme has been derived. This scheme allows the use of a time step of arbitrary size and
hence larger than the particle relaxation time.

Another approach that can overcome the inherent stiffness in the governing Eqs.
(10a)–(10c) is to assume that the particle is in constant local equilibrium with its sur-
roundings. This approximation neglects the acceleration of the particle, because the accel-
eration occurs over a time scale equivalent to the relaxation time, which can be quite small
for small particles. This approximation is equivalent to the limit of particle relaxation time
and hence corresponds to the Stokes number tending to zero.

In general, the smaller the particle, the smaller both the Stokes number and the par-
ticle relaxation time and thus the more accurate the approximation. Using this approxima-
tion, the governing equations of motion (10a)–(10c) reduce to, on also neglecting the
Coriolis force

(28a)

(28b)

(28c)

and hence the term local equilibrium is used to indicate that the particle velocity is equal to
the fluid velocity at all positions in space and time, except for an extra sedimentation veloc-
ity imposed on the particle in the x3 direction as a result of the effects of gravity. For the
solution of Eqs. (28a)–(28c), only one initial condition is required: the particle’s starting
position. No information about the particle’s initial velocity can be specified because it is
assumed to have the velocity of the fluid at the position from which it is released into the
atmospheric boundary layer. Before solving Eqs. (28a)–(28c), a method is required to cal-
culate an approximation to the particle Reynolds number. Using Eq. (2) and assuming that
the particle is in local equilibrium results in

(29)

where ws is the sedimentation velocity of the particle and is given by
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(30)

Hence, on combining Eqs. (29) and (30), a nonlinear equation for the particle Reynolds
number is given by

(31)

and this can be solved by an iterative method. To solve the equations of motion
(28a)–(28c), the stiffness of the original system of Eqs. (10a)–(10c) has been removed.
Therefore, an explicit Runge-Kutta scheme can be implemented.

The physical interpretation of the stability of the implicit Runge-Kutta scheme in
Eqs. (11a)–(11c) for time steps larger than the relaxation time can now be given; that is, for
large values of ∆t~, the effects of the sharp acceleration of the particle over time scales of the
order of the relaxation time become smoothed by the scheme. This gives stability; thus, as
∆t~ → ∞, Eqs. (10a)–(10c), neglecting the Coriolis force, reduce to Eqs. (28a)–(28c). This is
because in the limit of ∆t~ → ∞ the implicit Runge-Kutta scheme of Eqs. (11a)–(11c) effec-
tively implements the conditions of local equilibrium on the full governing Eqs. (10a)–(10c).
Hence, in the limit ∆t~ → ∞, the explicit Runge-Kutta scheme, along with the equations of
motion (28a)–(28c), is equivalent to the implicit Runge-Kutta scheme of Eqs. (11a)–(11c),
along with the equations of motion (10a)–(10c), with the Coriolis force neglected.

COMPARISON OF THE FULL EQUATIONS 
AND THOSE ASSUMING LOCAL EQUILIBRIUM

To analyze the theory presented previously, the motion of particles released into an Ekman
boundary layer over flat topography are considered. The effects of increasing the integra-
tion time step, in addition to approximating the full equations by assuming that the parti-
cles are in local equilibrium with the fluid flow, are investigated.

For a constant kinematic eddy viscosity ν, where ν = νo + nt , with molecular viscosity,
νo, and eddy viscosity, νt , Ekman [1] was able to present a solution to the Navier-Stokes
equations, subject to the no-slip boundary condition at the ground and the geostrophic
boundary condition at a large distance from the ground, namely:

(32a)
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where  and (u1, u2) and (u1g, u2g) are the horizontal fluid and geostrophic
wind velocities, respectively. Hence, Eqs. (32a) and (32b) are taken for the fluid flow com-
ponents in the numerical solution of the particle trajectory Eqs. (10a)–(10c).

Table 1 shows, for a range of particle sizes, the value of the particle Reynolds num-
ber, Rep, assuming local equilibrium; the Stokes number, St; the nondimensional parame-
ter, a; and the Froude number, Fr. For all the calculations that follow, for a given particle
diameter, the parameters shown in Table 1 are employed. In addition, because there are no
natural length scales for the Ekman boundary layer over flat topography, these have been
taken to be unity.

Table 2 shows the particle landing position (x1, x2) obtained from solving the full
governing Eqs. (10a)–(10c) for successively smaller time steps of a 50 µm particle released
from a height x3 = 100 m into the mean Ekman boundary layer over flat topography. As
the time step decreases, the landing position of the particle converges to a constant value;
however, Table 2 also indicates that a relatively large time step can be taken without a sig-
nificant loss in accuracy, thereby justifying the use of an implicit scheme.

a 1/2Roν=

Table 1. Value of Particle Reynolds Number, Rep ; Stokes number, St; Parameter, a; and Froude number, 
Fr, for a Range of Particle Sizes

Particle diameter 
(µm)

Particle Reynolds 
number, Rep

Stokes number, St Froude number, Fr

1000 334.7 3.63 · 100 0.008 0.102
750 193.8 2.04 · 100 0.008 0.102
500 87.96 9.08 · 10–1 0.008 0.102
250 20.87 2.27 · 10–1 0.008 0.102
100 2.34 3.63 · 10–2 0.008 0.102
75 1.08 2.04 · 10–2 0.008 0.102
50 0.35 9.08 · 10–3 0.008 0.102

a 1
2Roν
--------------=

Table 2. Particle Landing Position for Particle Released at Height of 
X3 = 100 m into Mean Ekman Boundary Layer over Flat Topography 
with Parameters Given in Table 1 for Successively Smaller Time Steps

Time step
(s)

Particle landing position (x1, x2)
(m)

500.0 8919.6633 5470.2812
200.0 8943.9460  5495.2361
50.00 8989.8770 5546.3087
30.00 8993.0531 5549.4626
10.00 9005.6433 5555.7229

5.000 9005.7698  5555.8492
1.000 9005.7908 5555.8702
0.500 9005.7913 5555.8708
0.100 9005.7950 5555.8709
0.050 9005.7915 5555.8709
0.010 9005.7915 5555.8709
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To investigate the effects of assuming that the particles are in local equilibrium with
the fluid flow, particles of various sizes have been released from a height of x3 = 100 m into
the mean Ekman boundary layer over flat topography and the landing positions of the
particles calculated by using both the full and approximated equations of motion, that is,
Eqs. (10a)–(10c) and (28a)–(28c), respectively.

Table 3 shows the landing positions of particles of various sizes with the parameter
a = 0.008, calculated by using the fully implicit scheme and a small time step. Hence, the
difference in the solutions, calculated by using the full Eqs. (10a)–(10c) compared with the
approximate Eqs. (28a)–(28c), is solely due to the approximations made in obtaining Eqs.
(28a)–(28c). Table 3 shows that there is a very small relative error between the two solu-
tions for particles of small diameter but an increasing relative error for particles of larger
diameter. This is as one would intuitively expect given that the larger the diameter of the
particle, the larger the Stokes number and, thus, the more the particles deviate from the
fluid streamlines. The results presented in Table 3 suggest that for small particles it is valid
to assume that the particles are in local equilibrium with the surrounding fluid.

Table 3. Particle Landing Position for Particles of Various Sizes Released at Height of X3 = 100 m into Mean 
Ekman Boundary Layer over Flat Topography with Parameters Given in Table 1, Calculated Using Full 
Equations (10a)–(10c) and Approximate Equations (28a)–(28c)

Table 4. Particle Landing Position for Particles of Various Sizes Released at Height of X3 = 100 m into 
Turbulent Ekman Boundary Layer over Flat Topography with Parameters Given in Table 1, Calculated Using 
Full Equations (10a)–(10c) and Approximate Equations (28a)–(28c)

Particle
diameter (µm)

Particle landing position
(xF1, xF2)

(m)

Particle landing position
(xL1, xL2)

(m)

Error

(m)

Relative error % 

1000 226.83 133.62 187.46 115.71 42.97 19.5
750 276.97 165.56 242.79 149.86 37.36 13.0
500 384.72 233.14 356.62 220.12 30.77 7.34
250 772.43 473.64 751.48 463.85 22.97 2.60
100 2701.80 1665.00 2684.10 1656.70 19.37 0.61
75 4356.10 2686.10 4338.00 2677.60 19.83 0.39
50 9005.70 5555.80 8986.10 5546.60 21.61 0.20

Particle diameter 
(µm)

Particle landing position
(xF1, xF2)

(m)

Particle landing position
(xL1, xL2)

(m)

Error

(m)

Relative error % 

1000 232.46 137.00 188.09 115.98 48.86 22.10
750 281.89 166.80 239.78 147.33 46.11 16.40
500 392.55 242.12 341.86 211.90 59.00 14.70
250 819.47 512.22 748.34 471.29 82.01 9.27
100 2667.10 1618.80 2579.70 1571.10 99.52 3.29
75 4165.10 2513.60 4046.70 2450.10 134.20 2.84
50 8908.00 5298.90 8822.80 5256.10 95.08 0.93

xF xL– xF xL–

xL

-------------------

xF xL– xF xL–

xL

-------------------
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To further investigate the approximations made in deriving Eqs. (28a)–(28c), the
calculations were performed once more, but this time a turbulent fluctuation was added to
the mean fluid flow. It was assumed that the eddy sizes are proportional to the mixing
length, λm, with the magnitude of the turbulent fluctuations being 10% of the mean fluid
flow. Table 4 shows the landing positions of particles of various sizes, calculated by using
the fully implicit Runge-Kutta scheme and a small time step.

Again a similar pattern occurs; that is, for particles of smaller diameter, the relative
difference between the two solutions is small, but an increasing relative error exists for par-
ticles of larger diameter. The relative error between the two solutions for a given particle
size is larger than for the mean fluid flow field. This is easy to understand because every
time a particle enters a turbulent eddy, it will take a finite time for its velocity to adjust to
the new fluid velocity. Hence, a small error is encountered by assuming that the particle
instantaneously adjusts to this new velocity—that is, that the particle is in local equilib-
rium with the surrounding fluid. This adjustment time is of the order of magnitude of the
relaxation time of the particle; thus, the larger the particle the larger the error.

The preceding discussion suggests that for large particles, the full equations must be
solved, but because of the relatively large Stokes numbers, this can be accomplished by
implementing an explicit Runge-Kutta scheme. For small particles, small relative errors
are introduced by assuming the particles are in local equilibrium with the fluid flow, thus
still allowing the approximate Eqs. (28a)–(28c) to be solved by using an explicit Runge-
Kutta scheme.

However, for highly turbulent fluid flows and for medium sized particles—that is,
particles of diameter d of about O(200 µm)—the relative error introduced by using Eqs.
(28a)–(28c) may be unacceptably large. Therefore, the implicit Runge-Kutta scheme has
to be implemented to solve Eqs. (10a)–(10c).

CONCLUSIONS

In this article, the numerical techniques needed to solve the equations governing the trans-
port of particles within the atmospheric boundary layer have been studied. The accuracy of
the numerical techniques presented was investigated by using Eqs. (32a) and (32b) to rep-
resent the fluid flow within the atmospheric boundary layer. It was shown that as the time
step was reduced, the landing position of the particles converged and that an accurate solu-
tion could be obtained by using a relatively large time step, thereby justifying the use of the
implicit Runge-Kutta scheme. For small particles, the relative difference in calculating
their trajectories from the full governing Eqs. (10a)–(10c) and the approximate governing
Eqs. (28a)–(28c) was small, with this difference being slightly larger for turbulent fluid
flow. Hence, for small particles, the approximate Eqs. (28a)–(28c) should be solved by
using an explicit time-stepping scheme.

For large particles, the full equations must be solved; however, because of the larger
Stokes number, an explicit time-stepping scheme can be employed for the integration.on
the other hand, for intermediate sized particles, say O(200 µm), in turbulent flow, the full
Eqs. (10a)–(10c) need to be solved. This can be efficiently accomplished only by using an
implicit numerical algorithm, as presented in this article. It is envisioned that these tech-
niques will have a broad range of applicability across the engineering field.
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A LINEAR PROGRAMMING MODEL FOR BOTTLENECK 
IDENTIFICATION IN CELLULAR MANUFACTURING

L. G. Azevedo Filho
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Federal University of Rio de Janeiro, Brazil
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Brazil

The objective of this work is to demonstrate the error in assuming that exceptional elements
(EEs) constitute bottlenecks in cellular manufacturing. This is achieved by developing a linear
programming model and applying it to an example from industry.

INTRODUCTION

For more than two decades, there has been a transition ongoing in manufacturing from
process-based to product-based fabrication and assembly of parts. Process-based manufac-
turing involves a functional layout of machines; for example, milling machines are grouped
separately from drilling machines, and so forth. On the other hand, product-based manu-
facturing involves a cellular layout of machines; for example, cylindrical part types are man-
ufactured together in a group of machines including, drilling, milling, finishing, etc. The
principles and methods of cellular manufacturing have been established for some time; see,
for example, Refs. [1–3].

Be that as it may, there exist a number of open questions related to the configuration
and operation of manufacturing cells. One of these questions concerns the so-called
exceptional elements (EEs), which are machines or parts that are shared by more than one
cell. Vannelli and Kumar [4] and Kumar and Vannelli [5] were the first to model this
problem. More recently, Kenn and Wei [6] and Shafer et al. [7] have contributed to the
discussion on how to deal with EEs in cellular manufacturing. In all the work completed
so far, it has been implicitly assumed that EE machines constitute bottlenecks and have to
be treated as such. In this article, we show that this assumption is incorrect; that is, EE
machines may or may not be bottlenecks. Towards this end, we employ the theory of con-
straints (TOC) as a framework for analysis and develop a linear programming model to
identify bottlenecks in a cellular manufacturing system. An industrial example of the fab-
rication and assembly of mechanical precision components is used to illustrate the applica-
tion of the model.

One of the authors (RYQ) wishes to thank CNPq for the award of a research scholarship. The other author
(LGAF) wishes to thank the Department of Mechanical Engineering, School of Engineering, Federal University
of Rio de Janeiro, Brazil, for financial support of his final-year undergraduate project, which constitutes part of
the work reported in this article.
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THEORY OF CONSTRAINTS

In the last decade, the TOC has been increasingly implemented as a manufacturing man-
agement technique in industry. The TOC is centered on the concept of a bottle-
neck—technically referred to as a capacity-constrained resource (CCR). In a manufactur-
ing system, a CCR is defined as any machine or operation for which the processing
capacity is less than or equal to the demand placed upon it. Naturally, the first and most
important step in the implementation of the TOC consists of correctly identifying CCRs
in the manufacturing system under consideration. It has been shown that linear program-
ming provides an elegant and efficient tool for this purpose [8, 9]. For the reader interested
in TOC concepts, Rahman [10] presents an up-to-date review.

CCR IDENTIFICATION MODEL IN CELLULAR MANUFACTURING

Consider a set of manufacturing cells that share a number of machines. These are the EEs.
Now we introduce the following notation:

i Index for cells; i ∈ I
j Index for machines; j ∈ Ji
k Index for part families; k ∈ K
m Index for part types; m ∈ MK
Dm Demand for part type m
Fm Unit profit margin of part type m
Pmj Unit processing time of part type m in machine j
Qm Production quantity of part type m
Rj Available time of machine j
Sj Idle time of machine j

To identify CCRs in the cellular manufacturing system presented previously, the fol-
lowing linear programming (LP) model may be formulated:

Maximize (1)

subject to (2)

(3)

(4)

The objective function (1) represents total profit of the cellular manufacturing system
under consideration. The constraints (2) represent machine capacity limitations. The con-
straints (3) ensure that production does not exceed demand for any part type. The con-
straints (4) ensure nonnegativity of the production quantity of any part type.

m m

m M

F Q
∈

∑

mj m j j

m M

P Q S R
∈

+ =∑ ,ij J i I∀ ∈ ∈

m mQ D≤ ,km M k K∀ ∈ ∈

0mQ ≥ ,km M k K∀ ∈ ∈
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Upon solving the LP model, any machine with Sj = 0 constitutes a CCR. Further-
more, if a CCR belongs to more than one cell, that CCR is also an EE.

INDUSTRIAL EXAMPLE

The LP model presented previously has been applied to a fabrication/assembly system for
mechanical precision components. The system under consideration, which has been con-
sidered as part of a study in an industrial company performed by the authors, consists of
two cells and two part families. Each cell consists of a number of machines and manual
operations. For modeling purposes, machines and manual operations are considered to be
equivalent. With a part type, we associate a unit processing time. With a machine, we
associate an idle time and an available time. Information related to part families and
machine cells is presented in Tables 1–3. The number of EEs is four; that is, machines 34,
45, 46, and 58. 

Table 1. Part Type Demands and Profit Margins

Observations:
Maximum demanded of part type A family = 10000.
Maximum demanded of part type B family = 450.

Part type
Minimum 
demand

Profit Margin Part type
Minimum 
demand

Profit Margin

A1 100 25.11 B1 10 36.8
A2 100 25.11 B2 10 36.8
A3 100 25.11 B3 10 36.8
A4 100 25.11 B4 10 36.8
A5 100 25.11 B5 10 36.8
A6 100 25.11 B6 10 36.8
A7 100 25.11
A8 100 25.11

Table 2. Part Type Processing Times

Part type
Minimum/
operation

Processing 
time

A1-A8 1 0.12
B1-B6 2 0.42
A1-A8 3 0.68
A1-A8 4 0.10
B1-B6 5 0.03
A1-A8 6 0.02
B1-B6 7 0.12
A1-A8 8 0.04
B1-B6 9 0.19
B1-B6 10 0.17

A1-A8 11 0.15
B1-B6 12 0.001
B1-B6 13 0.69
B1-B6 14 0.23
B1-B6 15 1.11
B1-B6 16 0.02
A1-A8 17 1.40
B1-B6 18 4.29
B1-B6 19 0.32
B1-B6 20 0.23

Part type
Minimum/
operation

Processing 
time
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B1-B6 21 0.11
B1-B6 22 0.40
A1-A8 23 0.37
A1-A8 24 0.65
B1-B6 25 0.28
B1-B6 26 0.97
B1-B6 27 0.14
B1-B6 28 0.07
B1-B6 29 0.10
B1-B6 30 0.16
B1-B6 31 0.24
B1-B6 32 0.10
A1-A8 33 0.28

A1 34 0.12
A2 34 0.126
A3 34 0.132
A4 34 0.138
A5 34 0.114
A6 34 0.096
A7 34 0.108
A8 34 0.102
B1 34 0.001
B2 34 0.015
B3 34 0.16
B4 34 0.016
B5 34 0.013
B6 34 0.011

A1-A8 35 0.12
B1-B6 36 0.47
B1-B6 37 0.43
B1-B6 38 0.58
B1-B6 39 0.30
B1-B6 40 7.5
B1-B6 41 8.57
B1-B6 42 0.23
B1-B6 43 0.16
B1-B6 44 2.73

A1 45 0.12
A2 45 0.126
A3 45 0.132
A4 45 0.138
A5 45 0.114
A6 45 0.096
A7 45 0.108
A8 45 0.102
B1 45 0.05
B2 45 0.0525
B3 45 0.055

Part type
Minimum/
operation

Processing 
time

B4 45 0.0575
B5 45 0.0475
B6 45 0.04
A1 46 0.15
A2 46 0.1575
A3 46 0.165
A4 46 0.1725
A5 46 0.1425
A6 46 0.12
A7 46 0.135
A8 46 0.1275
B1 46 0.17
B2 46 0.175
B3 46 0.183
B4 46 0.192
B5 46 0.158
B6 46 0.133

A1-A8 47 0.09
B1-B6 48 0.88
B1-B6 49 0.20
B1-B6 50 0.11
B1-B6 51 0.001
B1-B6 52 0.18
B1-B6 53 0.02
A1-A8 54 0.76
A1-A8 55 0.02
B1-B6 56 0.28
B1-B6 57 0.60

A1 58 0.12
A2 58 0.126
A3 58 0.132
A4 58 0.138
A5 58 0.114
A6 58 0.096
A7 58 0.108
A8 58 0.102
B1 58 0.12
B2 58 0.123
B3 58 0.129
B4 58 0.135
B5 58 0.11
B6 58 0.094
B1 59 10.0
B2 59 10.5
B3 59 11.0
B4 59 11.5
B5 59 9.5
B6 59 8.0

Part type
Minimum/
operation

Processing 
time

Table 2. Continued
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A1 60 0.77
A2 60 0.808
A3 60 0.846
A4 60 0.886
A5 60 0.731
A6 60 0.615
A7 60 0.692
A8 60 0.654

A1-A8 61 0.15
A1-A8 62 0.15
A1-A8 63 0.38
A1-A8 64 0.55
A1-A8 65 0.48
A1-A8 66 0.78
A1-A8 67 0.52
A1-A8 68 0.47
A1-A8 69 0.41
A1-A8 70 0.21
A1-A8 71 0.83
A1-A8 72 0.83

Part type
Minimum/
operation

Processing 
time

Table 2. ContinuedTable 2. Continued

A1-A8 73 0.83
A1-A8 74 0.83
A1-A8 75 0.08
A1-A8 76 0.48
B1-B6 105 1.0
B1-B6 106 1.0
B1-B6 107 0.7
B1-B6 108 0.67
B1-B6 109 0.3
B1-B6 110 0.74
B1-B6 111 0.42
B1-B6 112 0.56
B1-B6 113 0.32
B1-B6 114 0.38
B1-B6 115 0.09
B1-B6 116 0.24
B1-B6 117 0.1
B1-B6 118 0.1
B1-B6 119 0.05

Part type
Minimum/
operation

Processing 
time

Table 3. Machine/Operation Available Time

Machine/
operation 

Available 
time

Machine/
operation 

Available time
Machine/
operation 

Available 
time

1 8320 25 9600 49 7735
2 9600 26 9600 50 8400
3 7460 27 9600 51 9600
4 8400 28 9600 52 9600
5 9600 29 8400 53 9535
6 8400 30 9600 54 9600
7 9600 31 9600 55 7330
8 8345 32 8400 56 8400
9 9600 33 9600 57 8400

10 9600 34 9575 58 8225
11 8105 35 9600 59 8400
12 9600 36 9600 60 7895
13 9600 37 9600 61 8095
14 9600 38 9600 62 8045
15 9600 39 9600 63 8065
16 8155 40 9600 64 8215
17 9600 41 9600 65 8255
18 9600 42 8400 66 9460
19 8400 43 9600 67 9235
20 8400 44 9600 68 8165
21 9600 45 9410 69 9540
22 8280 46 9400 70 9180
23 9595 47 7755 71–119 9600
24 9600 48 9600
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We solved the CCR identification LP model for this industrial example by using
MATHEMATICA [11]. Results summarized in Table 4 show that there is only one
CCR—machine number 60. Thus, the CCR in this case is not an EE.

Table 4. Machine/Operation Idle Time

Machine/
operation

Idle time
Machine/
operation

Idle time
Machine/
operation

Idle time

1 7120 41 5744 81 600
2 9411 42 8296 82 8400
3 660 43 9528 83 8400
4 6400 44 8372 84 2000
5 9586 45 8190 85 9456
6 8200 46 7827 86 9470
7 9546 47 6855 87 9595
8 7945 48 9204 88 9578
9 9515 49 7645 89 9524

10 9524 50 8351 90 9497
11 6605 51 9600 91 9465
12 9600 52 9519 92 9497
13 9290 53 9526 93 9420
14 9492 54 2000 94 9515
15 9101 55 7130 95 9465
16 7955 56 8274 96 9411
17 8970 57 8130 97 9546
18 7670 58 6973 98 9595
19 8256 59 3895 99 9578
20 8296 60 211 100 9519
21 9550 61 6595 101 9082
22 4280 62 6545 102 9555
23 5895 63 4265 103 9559
24 9308 64 2715 104 9559
25 9474 65 3455 105 9150
26 9164 66 1660 106 9150
27 9537 67 4035 107 9285
28 9569 68 3465 108 9299
29 8355 69 5440 109 9465
30 9528 70 7080 110 9267
31 9492 71 1300 111 9389
32 7400 72 1300 112 9456
33 9474 73 1300 113 9456
34 8373 74 1300 114 9078
35 8400 75 8800 115 9559
36 9389 76 4800 116 9492
37 9406 77 9300 117 9510
38 9339 78 8800 118 9510
39 9465 79 6600 119 9578
40 6225 80 8400
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CONCLUSIONS

The assumption that a bottleneck and an EE are necessarily one and the same has been
shown to be invalid by applying a linear programming model to an industrial example.
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Scheduling is an important process widely used in manufacturing, production, management,
computer science, and so on. Appropriate scheduling not only reduces manufacturing costs but
also reduces possibilities for violating due dates. Finding good schedules for given sets of jobs
can thus help factory supervisors effectively control job flows and provide solutions for job
sequencing. In simple flow shop problems, each machine operation center includes just one
machine. If at least one machine center includes more than one machine, the scheduling prob-
lem becomes a flexible flow shop problem. Flexible flow shops can thus be thought of as gen-
eralizations of simple flow shops. In the past, Sriskandarajah and Sethi [6] proposed a heuris-
tic algorithm for solving flexible flow shop problems for two machine centers. In this article,
we extend their algorithm to solve flexible flow shop problems for more than two machine
centers. The heuristic Gupta algorithm is adopted as the kernel for achieving this purpose.
Because this problem is a nondeterministic-polynomial (NP)-complete problem, optimal
solutions seem unnecessary, especially when the number of jobs is large.

KEYWORDS: scheduling, flexible flow shop, LPT scheduling, Gupta scheduling

INTRODUCTION

In simple flow shop problems, each machine center has just one machine. If at least one
machine center has more than one machine, the problem is called a flexible flow shop
problem [2]. Flexible flow shops are thus generalizations of simple flow shops. Scheduling
jobs in flexible flow shops is considered a non-deterministic-polynomial (NP)-complete
problem [1, 5]. 

In the past, Sriskandarajah and Sethi [6] proposed a heuristic algorithm for solving
flexible flow shop problems for two machine centers. In this article, we extend their algo-
rithm to solve flexible flow shop problems for more than two machine centers. A schedul-
ing algorithm, which combines the longest processing time (LPT) and Gupta algorithms,
is proposed for flexible flow shops with more than two machine centers. The LPT method
is first used to assign jobs to each machine group (flow shop). The Gupta algorithm is
then used to deal with job sequencing. Experimental results show that our proposed
method can efficiently solve large-sized scheduling problems, although the obtained

The authors would like to thank the anonymous referees for their very constructive comments.
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makespans may be a little larger than the optimal solutions. The method is thus more suit-
able for real applications.

The remainder of this article is organized as follows. First, we present the assump-
tions and notation used in this article. Next, we propose an algorithm for a flexible flow
shop with more than two machine centers and give an example to illustrate the proposed
scheduling algorithm. Then we describe experiments for verifying the performance of the
proposed heuristic algorithm. Finally, we give our conclusions.

ASSUMPTIONS AND NOTATION

The assumptions and notation used in this article are presented in this section.

Assumptions
• Jobs are not preemptive.
• Each job has m (m > 2) tasks with processing times executed, respectively, on each of

m machine centers.
• Each machine center has the same number of homogeneous machines.

Notation
n The number of jobs
m The number of tasks in each job
mci The ith machine center, i = 1, 2, . . . , m
p The number of machines in each machine center
Fi The ith allocated machine group (flow shop), i = 1 to p
Fji The jth machine of the flow shop Fi , j = 1 to m
fi The completion time of the ith flow shop
cfij The completion time of the ith machine in the jth flow shop
Tij The ith task for the jth job, i = 1, 2, . . . , m and j = 1, 2, . . . , n
tij The execution time of Tij
ttj The total execution time of the jth job
QFi

The group of jobs executed on the ith flow shop
ff The final completion time of the whole schedule

THE FLEXIBLE FLOW SHOP ALGORITHM 
FOR MORE THAN TWO MACHINE CENTERS

Sriskandarajah and Sethi [6] have proposed a scheduling algorithm for two machine cen-
ters. Here, we generalize that algorithm to solve flow shop problems of more than two
machine centers. The flexible flow shop algorithm for more than two machine centers is
based on the LPT [4, 5] and the Gupta [3], [5] algorithms to manage job scheduling. The
flexible flow shop algorithm is decomposed into three parts. The first part forms the
machine groups, each of which contains a machine from each center. The second part uses
the LPT method to assign jobs to each machine group (flow shop). The third part deals
with job sequencing and timing using the Gupta algorithm. The proposed flexible flow
shop algorithm is stated next.
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A Gupta-Based Flexible Flow Shop Algorithm
Input: A set of n jobs, each having m (m > 2) tasks, to be executed respectively on each of

m machines centers with p homogenous machines
Output: A schedule with a completion time

Part 1: Forming the Machine Groups
Step 1: Form p machine groups, each of which contains one machine from each machine

center. Each machine group can be thought of as a simple flow shop F1, F2, . . . ,
Fp.

Step 2: Initialize the completion time of each flow shop f1, f2, . . . , fp to zero.
Step 3: For each job Jj, 1≤ j ≤ n, find its total execution time ttj = t1j + t2j + . . . + tmj.

Part 2: Assigning Jobs to Machine Groups
Step 4: Sort the jobs in descending order of processing time ttj ; if any two jobs have the

same ttj values, sort them in an arbitrary order.
Step 5: Find the flow shop Fi with the minimum processing time fi among all the flow

shops; if two flow shops have the same minimum fi value, choose one arbitrarily.
Step 6: Assign the first job Jj in the sorted list to the chosen flow shop Fi that has the

minimum completion time fi among all m flow shops.
Step 7: Add the total time ttj of job Jj to the required total time of the chosen flow shop,

Fi ; that is:

fi = fi + ttj

Step 8: Remove job Jj from the job list.
Step 9: Repeat Steps 5 through 8 until the job list is empty.

After Step 9, jobs are clustered into p groups and are allocated to the p machine
groups (flow shops).

Part 3: Dealing with Job Sequencing in Each Flow Shop
Step 10: For the ith group of jobs (i = 1 to p), form the subgroup of jobs Ui that take less

time on the first machine than on the last, such that Ui = {k |t1k < tmk, Jk ∈ the ith
group of jobs}.

Step 11: For the ith group of jobs (i = 1 to p), form the subgroup of jobs Vi that take less
time on the last machine than on the first or that take equal time on both
machines, such that Vi = {j |tmj ≤ t1j , Jj ∈ the ith group of jobs}.

Step 12: For each job Jh in Ui , find the minimum of (tkh + t(k+1)h) for k = 1 to m – 1;
restated, set:

Step 13: For each job Jr in Vi , find the minimum of (tkr + t(k + 1)r) for k = 1 to m – 1;
restated, set:

( )
( 1)

( 1)
1

min
m

h kh k h
k

t t
−

+
=

= +π
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Step 14: Sort the jobs in Ui in ascending order of πh’s; if two or more jobs have the same
value of πh, sort them in an arbitrary order.

Step 15: Sort the jobs in Vi in descending order of πr’s; if two or more jobs have the same
value of πr, sort them in an arbitrary order.

Step 16: For each flow shop Fi , schedule the jobs in the sorted order of Ui and then in the
sorted order of Vi ; denote the job list scheduled in Fi as QFi

.
Step 17: In each flow shop Fi , set the initial completion time of the machines cfgi (g = 1 to

m, i = 1 to p) to zero.
Step 18: For each flow shop Fi , assign the first job Jj in QFi

 to the machines such that J1j is
assigned to F1i, J2j is assigned to F2i, . . . , Jmj is assigned to Fmi .

Step 19: Add the processing time t1j to the completion time of the first machine cf1i; that is:

cf1i = cf1i + t1j

Step 20: Set cf(k + 1)i = max(cfki , cf(k + 1)i)+ t(k + 1)j , for k = 1 to (m – 1).
Step 21: Remove job Jj from QFi

.
Step 22: Repeat Steps 19 through 21 until QFi

 is empty.
Step 23: Set the final completion time of each flow shop fi = the completion time of the

mth machine cfmi .
Step 24: Find the maximum final completion time ff among the completion time of all the

flow shops.

After Step 24, scheduling is finished and a total completion time ff has been found.

AN EXAMPLE

Assume that eight jobs, J1 to J8, each having three tasks (J1j , J2j , J3j), are to be scheduled for
execution in three operations. Each operation is executed by a machine at the correspond-
ing machine center. Each machine center includes three homogeneous machines. Assume
the execution times of these jobs are as listed in Table 1. The algorithm then proceeds in
three parts.

Part 1: Forming the Machine Groups
Step 1: Form three machine groups, F1, F2, F3, each of which is thought of as a

three-machine flow shop. Without lose of generality, we may assume the flow
shops are constructed as follows:

F1 → {m11 + m12 + m13}

F2 → {m21 + m22 + m23}

F3 → {m31 + m32 + m33}

where mij is the ith machine in the jth center.

( )
( 1)

( 1)
1

min
m

r kr k r
k

t t
−
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Step 2: Initialize f1 = f2 = f3 = 0, where fi is the initial completion time of Fi.
Step 3: For each job Jj, j = 1 to 8, find its total execution time ttj = t1j + t2j + t3j. For exam-

ple, the total processing time of Job 1 is calculated as:

tt1 = t11 + t21 + t31 = 8 + 12 + 4 = 24

The total processing times of the other jobs can be similarly found; the results are
listed in Table 2.

Part 2: Assigning Jobs to Machine Groups
Step 4: Sort the jobs J1 to J8 in descending order of the total processing time (ttj). The

following results are obtained:

Job list = { J3, J4, J6, J7, J1, J2, J5, J8}

Step 5: Find the minimum fi among all the flow shops F1 to F3. Because the total pro-
cessing time of all the flow shops is equal to zero, any one of them can be chosen
arbitrarily. Without lose of generality, assume F1 is chosen.

Step 6: Assign the first job J3 in the sorted list to the chosen flow shop F1.

Table 1. Processing Times for the Eight Jobs

Job
Execution time

t1j t2j t3j

J1 8 12 4
J2 6 8 9
J3 12 14 17
J4 17 11 5
J5 4 6 11
J6 11 9 8
J7 9 8 8
J8 2 8 3

Table 2. Total Processing Times of the Eight Jobs

Jobj Total processing time ttj

J1 24
J2 23
J3 43
J4 33
J5 21
J6 28
J7 25
J8 13
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Step 7: Add the total processing time tt3 of job J3 to the required total time of the chosen
flow shop F1. Thus:

f1 = f1 + tt3 = 0 + 43 = 43

After Step 7, the results of allocating jobs to flow shops are shown in Table 3.

Step 8: Remove the job J3 from the job list. After J3 is removed, the job list is then as fol-
lows:

job list = { J4, J6, J7, J1, J2, J5, J8}

Step 9: Repeat Steps 5 through 8 until the job list is empty.

After Step 9, jobs are clustered into three groups and are respectively allocated to the
three flow shops. Results are shown in Table 4.

Part 3: Dealing with Job Sequencing in Each Flow Shop
Step 10: Form the three subgroups of jobs Ui that take less time on the first machine than

on the last. Results are as follows:

U1 = { J2, J3}

U2 = { J8}

U3 = { J5}

Step 11: Form the three subgroups of jobs Vi that take less time on the last machine than
on the first or that take equal time on both machines. Results are as follows:

Table 3. Flow Shops with Allocated Jobs and Total Processing Time

Flow shopi Allocated jobs Total processing time

F1 J3 43
F2 Empty 0
F3 Empty 0

Table 4. The Job Set of Each Flow Shop

Flow shopi Jobs allocated

F1 J3, J2

F2 J4, J1, J8

F3 J6, J7, J5
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V1 = {}

V2 = { J1, J4}

V3 = { J6, J7}

Step 12: For each job Jh in Ui , find the value πh as:

    

Therefore, in U1, π2 = min{14, 17} = 14, and π3 = min{26, 31} = 26. Similarly, in U2,
π8 = min{10, 11} = 10, and in U3, π5 = min{10, 17} = 10.

Step 13: Similarly, in V2, π1 = min{20, 16} = 16 and π4 = min{28, 16} = 16; in V3, π6 =
min{20, 17} = 17 and π7 = min{17, 16} = 16. 

Step 14: Sort the jobs in U as:

U1 = { J2, J3}

U2 = { J8}

U3 = { J5}

Step 15: Sort the jobs in V as:

V1 = {}

V2 = { J4, J1}

V3 = { J6, J7}

Step 16: For each flow shop Fi, schedule the jobs in the sorted order of Ui and then in the
sorted order of Vi. The scheduled flow shops QF1, QF2, QF3 are formed as follows:

Flow shop 1: QF1 = { J2, J3}

Flow shop 2: QF2 = { J8 , J4, J1}

Flow shop 3: QF3 ={ J5, J6, J7}

Step 17: In each flow shop Fi, set the initial completion time of each machine (cfji) to zero.
Step 18: For each flow shop F1, F2, and F3, assign the first jobs J2, J8, J5 in QF1, QF2, QF3 to

the machines, respectively.
Step 19: Add the processing time t12, t18, t15 to the completion time of the machine cf11,

cf12, cf13. Results are as follows:

( 1)

( 1)
1

1 2 2 3

min ( )

min(( ), ( ))

m

h kh k h
k

h h h h

t t
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Flow shop 1: cf11 cf11 + t12 = 0 + 6 = 6

Flow shop 2: cf12 = cf12 + t18 = 0 + 2 = 2

Flow shop 3: cf13 = cf13 + t15 = 0 + 4 = 4

Step 20: Calculate the completion time of Jobs J2, J8, J5 on other machines. As mentioned
previously, in flow shop problems, jobs are processed by series of machine centers
in exactly the same order. That is, one machine center does the first operation on
each job, another does the second, and so on. However, the processing start time
of the second operation is the maximum between the current completion time of
the first operation and the last completion time of the second operation. Results
are as follows:

Flow shop 1:

cf21 = max(cf11, cf21) + t22 = 6 + 8 = 14

cf31 = max(cf21, cf31) + t32 = 14 + 9 = 23

Flow shop 2:

cf22 = max(cf12, cf22) + t28 = 2 + 8 = 10

cf32 = max(cf22, cf32) + t38 = 10 + 3 = 13

Flow shop 3:

cf23 = max(cf13, cf23) + t25 = 4 + 6 = 10

cf33 = max(cf23, cf33) + t35 = 10 + 11 = 21

Table 5. Completion Time of Each Machine

Flow shop 1:

Flow shop 2:

Flow shop 3:

Jobj cf11 cf21 cf31

J2 6 14 23
J3 18 32 49

Jobj cf12 cf22 cf32

J8 2 10 13
J4 19 30 35
J1 27 42 46

Jobj cf13 cf23 cf33

J5 4 10 21
J6 15 26 34
J7 24 32 40
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Step 21: Remove J2, J8, and J5 from QF1, QF2 and QF3, respectively.
Step 22: Repeat Steps 10 through 21 for the other jobs. The results are then as shown in

Table 5.
Step 23: Set the final completion time of each flow shop fi = the completion time of the

mth machine cfmi. Thus, f1 = cf31, f2 = cf32, and f3 = cf33.
The results are as shown in Table 6.

Step 24: Find the maximal final completion time ff among the completion time of all the
flow shops. We can thus get

ff = 49

ff is then output as the final total completion time, and the resulting schedule is
shown in Fig. 1.

EXPERIMENTS

This section describes experiments conducted to show the performance of the proposed
heuristic algorithm. The experiments were implemented by using Visual C++ on a Pen-

Table 6. Completion time of each flow shop

Flow shopi Completion time (fi)

F1 49
F2 46
F3 40

Fig. 1 The final scheduling result in the example.
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tium III 500 PC. Also presented are experiments made to compare the time required by
the proposed heuristic algorithm with that required by the dynamic programming
approach. Five sets of problems were tested, respectively, for 3 to 7 jobs. Each job had
three tasks and each machine center had two homogeneous machines. The execution time
of each task was randomly generated in the range of 5 to 50. Each set of problems was
executed for 20 tests and the makespans and computation times were measured. The
dynamic programming approach did not work for more than seven jobs in our environ-
ments because of the large amount of computation time.

The dynamic programming approach considered all possible combinations and used
pruning techniques to increase its efficiency. The makespans obtained from the dynamic

Fig. 3 Makespans of 20 tests for four jobs.
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Fig. 2 Makespans of 20 tests for three jobs.
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programming approach were optimal. The makespans for problems of three to seven jobs
obtained by our proposed method and by the dynamic programming approach are shown,
respectively, in Figs. 2 to 6. 

The average execution times for problems of three to seven jobs are shown in Fig. 7.
The average execution times for problems of 8 to 12 jobs by our proposed algorithm are
also shown there.

Fig. 4 Makespans of 20 tests for five jobs.

Fig. 5 Makespans of 20 tests for six jobs.
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From the preceding figures, it is easily seen that our proposed algorithm obtained
slightly larger makespans than did the dynamic programming approach. The computa-
tional time needed by the dynamic programming approach was, however, much larger
than that needed by our proposed algorithm, especially when the job number was large.
Actually, because the flexible flow shop problem is an NP-hard problem, the dynamic pro-
gramming approach can work only for a small number of jobs. Our proposed algorithm
can solve this problem, thus being more suitable for real applications.

Fig. 6 Makespans of 20 tests for seven jobs.

Fig. 7 The average CPU times for processing different numbers of jobs.
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CONCLUSION

Appropriate scheduling can not only reduce manufacturing costs but also reduce the possi-
bility of violating due dates. Finding good schedules for given sets of jobs can thus help
factory supervisors control job flows and provide for nearly optimal job sequencing.

Scheduling jobs in flexible flow shops has long been known as an NP-complete
problem. In this article, we have proposed a heuristic scheduling algorithm for scheduling
jobs in flexible flow shops with more than two machine centers. The scheduling results
can help system managers have broader views of scheduling, so that they may conduct
appropriate analyses. In the future, we will consider other task constraints, such as setup
times, due dates, and priorities.
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A number of techniques, intended to accelerate convergence of eigenseries solution, are inves-
tigated. The test problem describes transient temperature distribution along fins of constant
profile. The solutions are presented in a form that permitted to work with time independent
functions. For any solution are used as many terms as necessary to obtain 5 significant digits.
It is shown that the splitting-up solution offers ideal convergence in contrast to the slowly
convergent classical integral transform solution. The convergence of single filter solution, dou-
ble filter solution, integral balance solution, and combined filtering and integral balance solu-
tion are acceptable for practical applications. It is demonstrated that the Shanks transforma-
tion may considerably accelerate the convergence of eigenseries solution.

INTRODUCTION

The generalized integral transform technique (GITT) is well documented [1–3] and widely
used to solve linear as well as non-linear diffusion and convection-diffusion models. A major
aspect in the practical implementation of GITT is the need for improving the convergence
behavior of the resulting eigenfunction series by splitting up the original problem [4, 5].
However, the expressions so developed are limited to linear problems with time-dependent
source functions represented by exponentials and q-order polynomials. For this reason differ-
ent filtering schemes were employed in the related literature. The corresponding references
are given in [2], where a number of convergence acceleration schemes are investigated. All
such convergence acceleration efforts are made in order to increment the rate of convergence
by extracting partial sums of the series in a closed form expression.

Another possible way, only mentioned in [2], is to employ special techniques to
directly enhance the summation itself, such as Shanks transformations [6], Lanczos σ fac-
tor [7] or other manipulations of the series [8].

This article is prepared by using the Mathematica software system [9]. The goal is
twofold: to investigate again all acceleration schemes used in [2] and to apply the Shanks
transformation [6]. 

As a test the following solutions of the transient fin problem are used:

• splitting-up solution,
• classical integral transform solution, 
• single filter solution,
• double filter solution,
• integral balance solution,
• combined filtering and integral balance solution.

2 3y T∝ ε
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The above solutions are rewritten in an unified form that permitted to investigate
the convergence of time independent functions. In contrast to [2] here we use for any
solution as many terms as necessary in the expansions to obtain the results with 5 con-
verged significant digits.

It is then demonstrated that the Shanks transformation accelerates considerably the
convergence of eigenseries solutions.

TEST PROBLEM

As a test case we select the same dimensionless problem as in [2, pp. 51–58, pp. 359–340]. 
The problem describes the temperature distribution along a fin of constant profile

(1)

The boundary conditions express the base’s temperature decay following a shutdown
operation of the associated heat transfer equipment

(2)

(3)

As an initial condition the steady-state temperature profile for constant temperature
at the fin’s base is adopted

(4)

The different convergence improving strategies, proposed in [2], give different solu-
tions written in the unified form

(5)

where the eigenvalues are given by

(6)

The classical integral transform solution [2, p. 53] coincides with Eq. (5) when
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(7)

Since the eigenvalue problem is homogeneous, the solution (7) cannot reproduce the
non-homogeneous boundary condition (2). This fact markedly affects the convergence
behavior of the solution, particularly at points approaching ξ = 0.

The single filter solution [2, p. 55] gives

(8)

The double filter solution [2, p. 57] yields

(9)

The integral balance solution [2, p. 58] gives

(10)

The combined filtering and integral balance solution [2, p. 58] yields

(11)

The splitting-up solution [2, p. 340] gives:

(12)
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SEQUENCE SUM

Let S be a sequence (n = 1, 2, . . .) of numbers or functions, for example

S = {A1, A2, A3, A4, A5, A6, A7, A8, A9} (13a)

Let k be a positive integer and

∆An = An + 1 – An (13b)

The following non-linear operator gives a new sequence for n = k + 1, k + 2, . . . called the
kth transform of S [6]

(14)

where n > k, n + k ≤ Length[S], and k < Length[S]/2. Here Length[S] gives the number of
elements in the sequence S.

The Shanks transformation (14) is useful in finding a sum of a slowly convergent
sequence using a limited number of partial sums. The best prediction, called Shanks sum, is
given when n = Ceiling[Length[S]/2] and k = n – 1. Here Ceiling[x] gives the smallest inte-
ger greater or equal to x. Our Mathematica rule computing Shanks sum is given in [10].

RESULTS

We select the same numerical values for a comparative convergence behavior used in [2,
11], with M = 0.1, τ = 0.1, and b = 10.

The splitting-up solution (12) is shown in Table 1.
The results for θ[ξ, τ] are the same as those given in the “Exact” column of [2, Table

3.1]. The sum in Eq. (5) is the fastest convergent since not more than 3 terms are neces-
sary to obtain 5 correct significant digits.

The excellent convergence behavior is because the splitting-up scheme introduced in
[4] gives f [ξ] in closed form. Since the splitting-up approach is applicable only when the
source terms of the problem are exponentials or polynomial functions, other alternative fil-
ters are proposed in [2]. 
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In contrast to [2], were θ[ξ, τ] is computed, we here directly investigate the filters
given by Eqs. (8)–(11). 

The following table gives the number of terms used in the expansions to obtain the
last column of the Table 1 above.

At ξ = 0 all sums in Eqs. (7)–(11) become zero. Therefore Eq. (7) gives wrong
results, f [0] = 0, while all other filters give the correct result, f [0] = 1.

The best convergence performance is, as expected, that obtained through the split-
ting-up procedure, Eq. (12), which is not shown in Table 2 since it is represented by an
exact formula.

The worst performance is demonstrated by the formal solution, Eq. (7), without any
convergence acceleration scheme. Even using 105 terms, the last significant digit
requested, as in Table 1, is not fully recovered. 

All the other convergence enhanced expressions, Eqs. (8)–(11) are acceptable for
practical application.

Table 3 gives f [ξ] obtained from Eq. (7) by Shanks transformation formula and the
number of partial sums used.

Taking into account the very slow convergence of the solution (7), Shanks summa-
tion gives astonishing accurate results. 

Table 1. The Solution (5) Using (12) for M = 0.1, τ = 0.1, and b = 10

ξ θ[ξ, τ] n f [ξ]

0.0 0.36788 0 –1.00000
0.2 0.67699 3 –0.81805
0.4 0.85531 2 –0.31996
0.6 0.94196 3 –0.30180
0.8 0.97670 2 –0.80691
1.0 0.98541 3 –1.00018

Table 2. Number of Terms Required in the Filters to Obtain 5 Converged Digits

ξ Eq. (7) Eq. (8) Eq. (9) Eq. (10) Eq. (11)

0.2 105 116 17 116 17
0.4 105 81 13 81 12
0.6 105 76 13 76 13
0.8 105 51 11 51 12
1.0 105 22 11 51 11

Table 3. Shanks Sums of Eq. (7) and the Number of Partial Sums Used

ξ f [ξ] n

0.2 –0.81801 19
0.4 –0.31999 15
0.6 –0.30179 13
0.8 –0.80691 11
1.0 –1.00018 9
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Table 4 gives f [ξ] obtained from Eq. (8) by Shanks transformation formula and the
number of partial sums used.

Again Shanks transformation gives accurate results, providing the expected conver-
gence acceleration.

CONCLUSIONS

The splitting-up procedure [4] offers an essentially ideal convergence behavior. It should
be remembered though that this approach is not applicable to more involved problems.

The classical integral transform technique can readily solve non-homogeneous
problems, but the obtained solutions in series form may have slow convergence. However,
the convergence acceleration schemes described in [2] and here reviewed are acceptable for
practical applications.

The Shanks transformation recently implemented in Mathematica [10] is very
promising for the combined use with the generalized integral transform technique
(GITT) [1–3], because it is universal and easily applicable to many different problems,
whether linear or nonlinear.
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We describe a hybrid spectral nodal method applied to one-speed SN eigenvalue problems in
X, Y-geometry for nuclear reactor global calculations. To solve the transverse-integrated SN

nodal equations, we generalize the spectral diamond (SD) method that we developed for
numerically solving slab-geometry SN eigenvalue problems with no spatial truncation error. In
the present generalization, we approximate the transverse leakage through the edges of each
spatial node by constants, so we call our method the SD-constant nodal (SD-CN) method,
which we use in the fuel regions of the nuclear reactor core. In the nonmultiplying regions, for
example, reflector and baffle, we use the spectral Green’s function-constant nodal (SGF-CN)
method; hence the hybrid characteristic of our method. To converge the numerical solution for
each SN fixed source problem (inner iterations) in each outer iteration (power method), we use
the one-node block inversion (NBI) scheme. We show numerical results for two typical model
problems to illustrate the method’s accuracy in coarse-mesh calculations and to justify the
hybrid characteristic of the numerical algorithm.

KEYWORDS:  hybrid method, spectral nodal method, discrete ordinates, neutron transport, 
nuclear reactor physics

INTRODUCTION

Deterministic computational modeling of physical phenomena generally requires three
major steps: (1) We need to choose a mathematical model that usually consists of a set of
differential equations supposedly representing approximately the physical phenomenon we
want to analyze; (2) we need to choose a convergent and accurate numerical scheme to
approximate the mathematical model we have chosen in Step (1); and (3) we need to write
an efficient algorithm to solve on a digital computer the discretized equations that we are
left with by applying the numerical scheme that we have chosen in Step (2).

This work was developed by the Deterministic Computational Neutronics (DCN) research team, sponsored by
CNPq and FAPERJ—Brazil. The authors acknowledge the fruitful help provided by Marcos Pimenta de Abreu
(IPRJ/UERJ) José Humberto Zani (IPRJ/UERJ—DCN), Todd Wareing (Los Alamos National Laboratory),
and Yousry Azmy (Oak Ridge National Laboratory) during the development of this work.

2 3y T∝ ε



96 H. ALVES FILHO ET AL.

Before embarking on details associated with the computational modeling described
in this article, getting a glimpse of the overall picture would be helpful. Nuclear reactor
global calculations (eigenvalue problems) provide the effective multiplication factor (dom-
inant eigenvalue k) and the stationary neutron flux distribution (fundamental mode) at
selected times during the lifetime of the core. The effective multiplication factor is
required to establish the nuclear composition and configuration that satisfy criticality and
control requirements. The steady-state flux distribution must be known to calculate reac-
tor rates and power distributions that are needed for the thermal, mechanical, and shield-
ing design of the nuclear reactor, as well as for evaluating refueling requirements [1].

In this article, we present a deterministic computational modeling of neutron trans-
port for nuclear reactor global calculations. We use the discrete ordinates (SN) formulation
[2] of the steady-state, one-speed, first-order form of the neutron transport equation in X,
Y-geometry as the mathematical model (compare with Step 1, noted previously). As with
the numerical method (compare with Step 2, noted previously) practical limitations on
computer storage and execution time have motivated the development of coarse-mesh
methods for SN problems. Therefore, we describe a hybrid spectral nodal method for
coarse-mesh nuclear reactor SN calculations. To solve the transverse-integrated SN nodal
equations, we generalize the spectral diamond (SD) method that we developed for numer-
ically solving slab-geometry SN eigenvalue problems with no spatial truncation error [3].
In the present generalization, we approximate the transverse leakage through the edges of
each spatial node by constants, so we call our method the SD-constant nodal (SD-CN)
method, which we use in the fuel regions of the nuclear reactor core [4]. In the nonmulti-
plying regions, for example, reflector and baffle, we use the spectral Green’s function-con-
stant nodal (SGF-CN) method [5]; hence the hybrid characteristic of the present
SD-SGF-CN method. To converge the numerical solution for each SN “fixed source”
problem (inner iterations) in each outer iteration (power method), we use the one-node
block inversion (NBI) iterative scheme (compare with Step 3, noted previously) [5].

At this point, we present an outline of the remainder of this article. In the next section
we present the mathematical model. Furthermore, we describe the SD-CN method that we
use in the multiplying regions of the domain and the SGF-CN method that we use in the
nonmultiplying regions of the domain to build the present hybrid spectral nodal method.
Then we describe the NBI iterative scheme and, in conclusion, present some numerical
results for two typical problems with a brief discussion.

MATHEMATICAL MODEL

Let us consider the SN equations in a rectangular domain D of width X and height Y with
isotropic scattering

(1)
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where

m = 1:M with M = N(N + 2)/2

N order of the angular quadrature set
ψm angular flux
σT total macroscopic cross section
σS0 zero-th order component of the differential scattering cross section
σf fission macroscopic cross section
k eigenvalue
ν average number of neutrons emitted in each fission event

At this point, let us consider an arbitrary spatial grid ΩxI × ΩyJ on D, where each
spatial cell is termed node Di, j of width hi (i = 1:I) and height kj (j = 1:J), as shown in Fig.
1. Each node Di, j has constant cross sections σTi, j, σS0i, j , σFi, j.

To obtain the “one-dimensional” transverse-integrated SN nodal equations, we fol-
low the standard procedure [6]. By applying the transverse integration operator
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Fig. 1 Spatial grid ΩxI × ΩyJ.
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to Eq. (1), we obtain the “one-dimensional” transverse-integrated SN nodal equation for
the x direction

(2)

Here we have defined the zero-th order y-moment of the angular flux

(3)

and similarly, the zero-th order y-moment of the source

(4)

Now we apply the transverse integration operator

to Eq. (1), and we obtain the “one-dimensional” transverse-integrated SN nodal equation
for the y direction

(5)

where we have defined the zero-th order x-moment of the angular flux
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and the zero-th order x-moment of the source

, , , , 1/ 2 1/ 2( ) ( ) ( ) [ ( , ) ( , )]m
m m j Ti j m j m j m j m j

j

d
x x S x x y x y

dx k + −
ηµ ψ + σ ψ = − ψ − ψ%% %

1/ 2

1/ 2

,
1

( ) ( , )
j

j

y

m j m
j

y

x x y dy
k

+

−

ψ ≡ ψ∫%

, 0 , , ,

1

( ) [ ] ( )
M

m j S i j Fi j n j n

n

S x x
k

=

ν≡ σ + σ ψ ω∑% %

1/ 2

1/ 2

1
( )

i

i

x

i
x

dx
h

+

−

∫ o

, , ,ˆ ˆ( ) ( )m m i Ti j m i
d

y y
dy

η ψ + σ ψ , , 1/ 2 1/ 2
ˆ ( ) [ ( , ) ( , )]m
m i i j m i m i

i
S y Q x y x y

h + −
µ= + − ψ − ψ

1/ 2

1/ 2

,
1ˆ ( ) ( , )

i

i

x

m i m
i

x

y x y dx
h

+

−

ψ ≡ ψ∫



HYBRID SPECTRAL NODAL METHOD 99

(7)

Equations (2) and (5) are exact; thus far, we have made no approximations. How-
ever, for each spatial node Di, j and together with the node boundary conditions, that is,
using estimations or prescribed values for the node incident quantities

(8)

and

(9)

Eqs. (2) and (5) form a system of 2M ordinary differential equations in 6M unknown
quantities. Therefore, to obtain a unique solution, besides the node boundary conditions,
given by Eqs. (8) and (9), we need to consider approximations that relate the angular flux
ψm(x, y) to its zero-th order x- and y-moments in the transverse leakage terms. In this
article we consider constant approximations for the transverse leakage terms. That is

(10)

and

(11)

The general solutions of Eqs. (2) and (5) in Di, j with flat approximations for the transverse
leakage terms are given by
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Here the superscript p indicates the particular solution that depends upon the approxima-
tions we make in the transverse leakage terms. The superscript h indicates the homoge-
neous component of the solution, which satisfies the homogenous equation associated
with Eqs. (2) and (5). By substituting Eq. (10) into Eq. (2), we seek a spatially constant
particular solution to the resulting equation. Therefore, we obtain

(14)

where

A similar expression is obtained for the particular solution of Eq. (5). To obtain the homo-
geneous components of the general solutions, we perform a spectral analysis of the homo-
geneous equations associated with Eqs. (2) and (5). This spectral analysis is described in
detail in Ref. [7]. Combining the particular solution (14) with the homogeneous solution
that we obtain from the spectral analysis

(15)

where βk, k = 1:M are arbitrary constants, we use Eq. (12) to write down the general solu-
tion of Eq. (2). To find the general solution in the y variable, given by Eq. (13), we proceed
similarly.

THE HYBRID NUMERICAL SCHEME

Let us integrate the one-speed X, Y-geometry SN equations with isotropic scattering (1)
over an arbitrary node Di, j . The result is the familiar spatial balance equation

(16)

where the node-average angular flux is defined as
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(17)

The balance equation (16) combined with appropriate continuity conditions on the node
edges and boundary conditions imposed on the outer boundaries of the domain form an
underdetermined system; therefore we need auxiliary equations to obtain the same number
of equations as unknowns. In the nonmultiplying regions of the domain, for example, reflec-
tor and baffle, we use the SGF auxiliary equations [5]. In the fuel regions, we use the non-
standard SD auxiliary equations. Further, we describe these two types of auxiliary equations.

The SGF Auxiliary Equation

In the nonmultiplying regions of the domain, for example, reflector and baffle, we
use the SGF auxiliary equation, which we define as

(18a)

and

(18b)

where m = 1:M. In Eq. (18a), θm, n and G
^

m,i,j are to be determined by requiring that the
general solution of Eq. (2) with flat leakage approximation, given by Eq. (12) combined
with Eqs. (14) and (15), where σFi, j = 0, have node-average and node-edge average angular
fluxes that, for all values of βk, satisfy Eq. (18a). Following a similar procedure, we obtain
γm, n and G

~
m,i,j. We note that for nonmultiplying regions, σFi, j = 0, and hence co, i, j < 1,

namely, Eq. (14); therefore, the M2 values of θm, n(γm, n) in Eqs. (18a,18b) are fixed and
depend only upon the cross sections and width hi (height kj) of node Di, j . This good fea-
ture of the SGF auxiliary Eqs. (18a, 18b) can be used to determine SN albedo matrices to
substitute approximately the nonmultiplying media around nuclear reactor cores in global
calculations. The implementation of this idea must, however, await future work.

The SD Auxiliary Equation

In the fuel regions of the domain, we use the SD auxiliary equations, which we write as

1/ 2 1/ 2

1/ 2 1/ 2

, ,
1

( , )
i j

i j

x y

m i j m
i j

x y

x y dxdy
h k

+ +

− −

ψ ≡ ψ∫ ∫

0 0

, , , , 1/ 2, , , 1/ 2, , ,
ˆ

n n

m i j m n n i j m n n i j m i jG

µ µ> <

− +ψ = θ ψ + θ ψ +∑ ∑% %

1 / 2 1 / 2

0 0

, , , , , , , , , ,ˆ ˆ

n n

m i j m n n i j m n n i j m i jG
− +

η η> <

ψ = γ ψ + γ ψ +∑ ∑ %
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(19a)

and

(19b)

where m = 1:M. Here the quantities θm, n , γm, n and the expressions for  and 
are to be determined by following similar steps as for the SGF auxiliary equations. It is
important to point out, however, that for each estimate of the dominant eigenvalue k in the
outer iterations, we need to calculate the M2 quantities θm, n and γm, n by solving linear sys-
tems that we obtain for the cases co, i, j < 1 or co, i, j > 1.

At this point we remark that, unlike the SGF auxiliary equations (18a, 18b), which
relate the node-average angular flux in a given direction to the node-edge average angular
fluxes in the incoming directions, the SD auxiliary equations (19a, 19b) relate the node-
average angular flux in a given direction to the node-edge average angular fluxes in all
directions, including the exiting directions. This characteristic of the SD auxiliary equa-
tions is convenient for active zones because it indicates that an interior neutron source
(due to fission) exists inside node Di, j .

ITERATIVE ALGORITHM

The power method is traditionally used to converge the dominant solution of SN eigenvalue
problems [8]. For each estimate of the dominant eigenvalue k in the outer iterations, we solve
a “fixed-source” SN problem by using inner iterations. The one-node block inversion (NBI)
scheme iterates on the node-edge average angular fluxes by performing node-block inver-
sions. That is, the NBI scheme uses the best estimates available for the incoming node-edge
average angular fluxes to evaluate the exiting fluxes, which constitute the incoming fluxes for
the adjacent nodes in the directions of the transport sweeps. To illustrate this concept, let us
consider Fig. 2, representing an arbitrary spatial node Di, j with the node-edge average angu-
lar fluxes. Each arrow in Fig. 2 represents N(N + 2)/8 directions in each quadrant. For the
sweep indicated (from SW to NE), the outward arrows (thicker arrows) in the north and east
of Di, j represent the outgoing node-edge average angular fluxes that we need to calculate,
because they form the incoming node-edge average angular fluxes for the adjacent nodes in
this sweep. The inward arrows (medium arrows) represent the incoming node-edge average
angular fluxes, which are known, or at least we use the best estimates available for them.
Finally, the outward arrows (thinner arrows) in the south and west of Di, j represent the
node-edge average angular fluxes, which can be calculated but which are not needed for this
sweep. They represent the outgoing quantities that are needed for the NE to SW sweep. An
analogous convention is followed for the NW to SE and SE to NW transport sweeps. As we
see, we need to iterate only on the node-edge average angular fluxes. Therefore, unlike the

, , , , 1/ 2, , 1/ 2, , ,

1
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conventional source iteration (SI) scheme [2], the NBI scheme needs to store the node-edge
average fluxes in all directions. For coarse-mesh calculations, however, this storage require-
ment is very much alleviated, apart from the fact that the convergence rate of the NBI
scheme is higher than the convergence rate of the SI scheme for coarse spatial grids. We are
now working on different versions of the NBI iterative scheme, looking forward to parallel-
izing the algorithm and to simplifying the numerical scheme of the SGF-LN method, which
we plan to develop soon [11].

NUMERICAL RESULTS AND DISCUSSION

In this section, we perform two numerical experiments to illustrate the accuracy of the
present hybrid SD-SGF-CN method for coarse-mesh eigenvalue SN calculations. Figure 3
shows 1/4 of a two-dimensional x, y nuclear reactor core cut perpendicular to its z-axis; its
material zones have the one-energy group data listed in Table 1.

Table 2 shows the dominant eigenvalue (effective multiplication factor, keff ) gener-
ated by the conventional constant-constant nodal (CCN) method [9], the conventional
linear nodal (LN) method [6] and the present SD-SGF-CN method with the S4 level
symmetric angular quadrature set [2] on various spatial grids. The reference result has
been generated by the traditional diamond difference (DD) method [2] on a very fine
grid, composed of 64 spatial cells per region in each spatial direction (x and y).

Fig. 2 SW to NE transport sweep.
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As we see, the SD-SGF-CN method is more accurate than the CCN method,
although in both methods, we consider flat approximations for the transverse leakage
terms and we deal only with zero-th order spatial moments of the transverse-integrated SN
equations. On the other hand, the SD-SGF-CN method generated numerical results for
the effective multiplication factor that were about as accurate as the LN results, except for
very coarse grids, in which case the SD-SGF-CN method generated more accurate
results, although in the LN method we consider linear approximations for the transverse
leakage terms and deal with zero-th and first order spatial moments of the transverse-inte-
grated SN equations. At this point, we remark that the companion nonhybrid SGF-CN
method showed numerical instability for the coarsest spatial grid listed in Table 2 and
simply did not converge the problem. Furthermore, Fig. 4 shows the relative deviations
(%) of the average power density distribution within the domain represented in Fig. 3, as
generated by the CCN, the LN and the SD-SGF-CN methods with respect to the
fine-grid reference results generated by the DD method.

According to Fig. 4 (spatial grid composed of 1 node per region), the maximum
deviation turned out to be 34.58% in region h, as generated by the CCN method. On the

Fig. 3 Model Problem No. 1 (1/8—symmetric domain).

Table 1. Nuclear Data for Model Problem No. 1

aRead as 2.22589 · 10–1.

Zone number σT σs0 νσF

1 2.22589E-1a 2.20563E-1 2.83283E-3
2 2.16566E-1 2.10697E-1 1.04347E-2
3 3.01439E-1 2.96069E-1 5.13036E-4
4 2.52250E-1 2.50794E-1 0.0
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same spatial grid, the maximum deviation generated by the LN method was 11.54% in
region h and the maximum deviation generated by the hybrid SD-SGF-CN method was
8.61% in region e. As with the efficiency of the proposed SD-SGF-CN method for
coarse-mesh calculations, let us consider the following gedankenexperiment. In perform-
ing nuclear reactor global calculations, let us suppose that the user considers that relative
deviations in the effective multiplication factor greater than 5%, with respect to the refer-
ence result, are not acceptable. In this case, according to Table 2, the CCN method satis-
fies the user’s demand on a spatial grid composed of 8 × 8 nodes per region, whereas the
SD-SGF-CN method satisfies the same condition on a spatial grid composed of 1 × 1
node per region. Therefore, considering that we ran both methods on the same machine
with the NBI scheme in the inner iterations, it is fair to compare the CPU execution
times. The CCN code generated the dominant eigenvalue within 2.77% in 3484 seconds.
In contrast, the SD-SGF-CN code generated the dominant eigenvalue within 0.67% in

Table 2. Numerical Results for Model Problem No. 1

a 2n/4 spatial nodes per region in each spatial direction. 
b Constant-constant nodal method.
c Linear nodal method.
d Spectral Green’s function-constant nodal method.
e Spectral diamond-spectral Green’s function-constant nodal method.
f Diamond difference method.
g Relative deviation with respect to the DD fine-mesh solution.

Spatial grid Γn
a Numerical method (keff ) Relative deviation (%)g Total number of 

transport sweeps

Γ2

CCNb

LNc

SGF-CNd

SD-SGF-CNe

0.62134357
0.93844318
—————
0.96865121

35.42
2.46

—————
0.67

247
998

————–
607

Γ3

CCN
LN

SGF-CN
SD-SGF-CN

0.77330886
0.95868309
0.96395583
0.96395579

19.63
0.37
0.18
0.18

510
1010
1002
1028

Γ4

CCN
LN

SGF-CN
SD-SGF-CN

0.88168998
0.96182392
0.96273336
0.96273334

8.37
0.04
0.06
0.06

1025
1007
1605
1662

Γ5

CCN
LN

SGF-CN
SD-SGF-CN

0.93553854
0.96217276
0.96235350
0.96235346

2.77
0.00
0.02
0.02

1801
1013
2272
2336

Γ6

CCN
LN

SGF-CN
SD-SGF-CN

0.95479778
0.96220192
0.96224373
0.96224372

0.77
0.00
0.00
0.00

2653
1016
2922
2940

Γ7

CCN
LN

SGF-CN
SD-SGF-CN

0.96029527
0.96220398
0.96221464
0.96221464

0.19
0.00
0.00
0.00

9666
1019
3433
3442

Γ8 DDf 0.96220092
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43 seconds. Because the LN code has been implemented with a different iterative scheme,
that is, the SI scheme, we do not think it is fair to compare execution time of the LN code
with the execution times of the CCN and SD-SGF-CN codes.

Our second model problem consists of a 60 × 60 cm heterogeneous domain, composed
of three different material zones, namely, Fig. 5. Table 3 gives the nuclear data for the three
zones: two active zones (Pu239) and one reflector (H2O) around the core [12].

Fig. 4 Relative deviations (%) in the average power density distribution generated on a spatial grid
composed of 1 node per region for model problem No. 1.

Fig. 5 Model problem No. 2 (critical system, keff = 1.0).
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Table 4 lists the dominant eigenvalue (keff ) generated by both the nonhybrid SGF-CN
method, for those cases for which it converged, and the hybrid SD-SGF-CN method with
the S4 level symmetric angular quadrature set on various spatial grids. As with the first model
problem, the reference result has been generated by the traditional DD method on a spatial
grid composed of 64 spatial cells per region in each spatial direction.

Again, the nonhybrid SGF-CN method showed some numerical instability and did
not converge for the spatial grids composed of 1 × 1 and 8 × 8 nodes per region. However,
upon convergence, the SGF-CN and the hybrid SD-SGF-CN methods generated the
same results within acceptable deviations. We note that the hybrid SD-SGF-CN method
did not show numerical instability and hence converged model problems No. 1 and No. 2
on all the spatial grids considered.

Moreover, we consider the following gedankenexperiment. In performing criticality
calculations, let us suppose that the research team demands that the relative deviations in the
average power density distribution cannot exceed 2% with respect to the reference results.
Figure 6 shows that the critical system represented in Figure 5 has maximum relative devia-
tion in the average power density equal to 1.82% in region b with respect to the reference
fine-grid DD results. Therefore, the research team’s demand is fulfilled by using a spatial
grid composed of only 1 node per region in the proposed hybrid SD-SGF-CN method.

Before closing, we list a number of general conclusions and suggestions for future
work: (1) the hybrid characteristic of the SD-SGF-CN method seems to be necessary,
because the companion nonhybrid SGF-CN method showed numerical instability in
coarse-mesh calculations. This drawback of the SGF class of methods for SN eigenvalue
problems had already been reported in Ref. [3] for slab geometry calculations. On the
other hand, using the SGF-CN method in the nonmultiplying regions of the domain is
convenient because the SGF auxiliary equations are much simpler than the SD auxiliary
equations for the calculations of SN albedo matrices—a topic that we intend to work on in
near future; (2) the SD-SGF-CN method, as described in this article, is much more accu-
rate than the conventional CCN method for coarse-mesh calculations, although in both
methods we consider flat leakage approximations; (3) the SD-SGF-CN method gener-
ated numerical results for the first test problem that were, roughly speaking, as accurate as
the LN results. However, this good feature seems to be problem dependent, and for future
work, we suggest developing the companion SD-SGF-LN method and comparing it
more fairly with the LN method; (4) we also suggest extending the present one-speed
SD-SGF-CN method to multigroup SN problems; this should be quite straightforward
[3]. Moreover, the extension to three-dimensional SN problems with linearly anisotropic
scattering should not create any substantial theoretical difficulties.

Table 3. Nuclear Data for Model Problem No. 2

a 3.26400 · 10–1.
b The numerical values given in Ref. [12] have been divided by 2.3008 to obtain a critical system (keff = 1.0).

Zone number σT σs0 νσF
b

1 3.26400E-1a 2.25216E-1 0.11491
2 3.26400E-1 2.25216E-1 0.10070
3 3.26400E-1 2.93760E-1 0.0
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Table 4. Numerical Results for Model Problem No. 2

a 2n/4 spatial nodes per region in each spatial direction. 
b Spectral Green’s function-constant nodal method.
c Spectral diamond-spectral Green’s function-constant nodal method.
d Diamond difference method.
e Effective multiplication factor with fixed number of inner iterations (5) in each outer iteration.
f Total transport sweeps.
g Relative deviation with respect to the DD fine-mesh solution.

Spatial grid
Γn

a Numerical method (keff )e Relative deviation (%)g

Γ2

SGF-CNb

SD-SGF-CNc

————
(—)

1.00382542
(150)f

————
(—)
0.39

Γ3

SGF-CN

SD-SGF-CN

1.00142263
(970)

1.00142255
(245)

0.15

0.15

Γ4

SGF-CN

SD-SGF-CN

1.00048251
(255)

1.00048253
(285)

0.05

0.05

Γ5

SGF-CN

SD-SGF-CN

————
(—)

1.00015363
(270)

————
(—)
0.02

Γ6

SGF-CN

SD-SGF-CN

1.00005179
(270)

1.00005177
(270)

0.01

0.01

Γ7

SGF-CN

SD-SGF-CN

1.00002322
(275)

1.00002322
(275)

0.00

0.00

Γ8 DDd 0.99994868

Fig. 6 Relative deviation (%) in the average power density distribution (W/cm3) generated on a
spatial grid composed of 1 node per region for model problem No. 2.
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