Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.28 SNIP: 0.421 CiteScore™: 0.9

ISSN Print: 2150-766X
ISSN Online: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.v6.i6.70
pages 775-791

GAP DISTANCE EFFECT ON BURNING RATE OF TWO OPPOSING JA2 PROPELLANT GRAINS

Peter J. Ferrara
Department of Mechanical and Nuclear Engineering, The Pennsylvania State University University Park, PA 16802

ABSTRACT

The combustion process of gun propellants packed in high loading density conditions can differ significantly from those burning individually in the same pressure and temperature environment. More specifically, burning rates and flame-spreading processes for a propellant charge are not only functions of pressure and initial temperature, but are also a function of the loading density. An experimental study has been conducted to investigate the influence of gap space between propellants on propellant regression rates. In the experimental setup, two opposing strands of JA2 gun propellant were burned in a double-ended windowed strand burner (DEWSB) with a novel control system. A series of tests was conducted for a pressure range from 0.69 to 3.45 MPa, and a gap distance ranged from 0.5 to 12 mm. Comparing regression rate data of JA2 propellant burned in the double-end configuration to that of a single strand, an increase in the regression rate of about 30% was observed for the pressure range tested. This increase occurred for a certain gap-width range, which was found to be a function of pressure. The enhancement of the burning rate is believed to be caused by the geometric confinement of the flame, which supplied a greater energy feedback to the burning propellant surface.


Articles with similar content:

COMBUSTION MECHANISM OF TETRA-OL GLYCIDYL AZIDE POLYMER AND ITS APPLICATION TO HYBRID ROCKETS
International Journal of Energetic Materials and Chemical Propulsion, Vol.8, 2009, issue 6
Nobuyuki Tsuboi, Kiyokazu Kobayashi, Makihito Nishioka, Keiichi Hori, Yoshio Seike, Yutaka Wada, Toru Shimada, Katsuya Hasegawa
COMBUSTION AND PERFORMANCE STUDIES OF GLYCIDYL AZIDE POLYMER AND ITS MIXTURES AS HYBRID ROCKET FUEL
International Journal of Energetic Materials and Chemical Propulsion, Vol.14, 2015, issue 3
Motoyasu Kimura, Hideo Nakayama, Akshay Garg, Po-Jul Chang, Keiichi Hori, Yutaka Wada
SURFACE HEAT RELEASE OF HTPB-BASED FUELS IN OXYGEN RICH ENVIRONMENTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
H. Stephen Jones, Grant A. Risha, George C. Harting, Joseph P. Arves, Arie Peretz, Donald E. Koch
EFFECTS OF NANO-METRIC ALUMINUM POWDER ON THE PROPERTIES OF COMPOSITE SOLID PROPELLANTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.14, 2015, issue 4
Xu Huixiang, Li Yonghong, Luigi T. DeLuca, Liu Fangli, Wei Qiang Pang, Zhao Fengqi, Fan Xuezhong, Xie Wuxi
EFFECT OF MAGNESIUM-COATED BORON PARTICLES ON BURNING CHARACTERISTICS OF SOLID FUELS IN HIGH-SPEED CROSSFLOWS
International Journal of Energetic Materials and Chemical Propulsion, Vol.2, 1993, issue 1-6
Vigor Yang, K. K. Pace, T. A. Jarymowycz