Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Critical Reviews™ in Therapeutic Drug Carrier Systems
IF: 2.9 5-Year IF: 3.72 SJR: 0.736 SNIP: 0.818 CiteScore™: 4.6

ISSN Print: 0743-4863
ISSN Online: 2162-660X

Volumes:
Volume 37, 2020 Volume 36, 2019 Volume 35, 2018 Volume 34, 2017 Volume 33, 2016 Volume 32, 2015 Volume 31, 2014 Volume 30, 2013 Volume 29, 2012 Volume 28, 2011 Volume 27, 2010 Volume 26, 2009 Volume 25, 2008 Volume 24, 2007 Volume 23, 2006 Volume 22, 2005 Volume 21, 2004 Volume 20, 2003 Volume 19, 2002 Volume 18, 2001 Volume 17, 2000 Volume 16, 1999 Volume 15, 1998 Volume 14, 1997 Volume 13, 1996 Volume 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.v27.i4.20
pages 313-370

Inhalational Therapy for Pulmonary Arterial Hypertension: Current Status and Future Prospects

Vivek Gupta
Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
Fakhrul Ahsan
Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, USA

ABSTRACT

This review summarizes the pathophysiology and current therapeutic and drug delivery strategies for pulmonary arterial hypertension (PAH), a rare but devastating disorder of the pulmonary circulation affecting 50,000 to 100,000 persons in the United States. Chief clinical features of PAH include increased mean pulmonary arterial pressure (>25 mm Hg) and right ventricular and smooth muscle hypertrophy. A wide variety of agents have been studied for use as anti-PAH drugs, including prostacyclin analogues, endothelin receptor antagonists, and phosphodiesterase-5 inhibitors, to name a few. However, a major shortcoming of anti-PAH medications is their short half-lives, requiring them to be administered via parenteral routes, which lead to undesirable side effects, including systemic vasodilation. Inhalational delivery of anti-PAH drugs provides an attractive alternative to conventional routes, with ease of administration and minimal systemic vasodilation. Recently, the U.S. Food and Drug Administration approved inhalable iloprost (Ventavis®), a prostacyclin analogue, for PAH treatment. Other drugs being studied for their potential in inhalable PAH therapy include PGE1, treprostinil, vasoactive intestinal peptide, and fasudil. Controlled-release inhalable delivery systems for anti-PAH medications have also been proposed to facilitate long-term and selective vasodilation of pulmonary arteries. Extensive studies are warranted to develop safe and effective drug delivery systems that will provide a better quality of life to patients.


Articles with similar content:

Emerging Role of Vesicular Carriers for Therapy of Visceral Leishmaniasis: Conventional versus Novel
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.27, 2010, issue 6
Navneet Kumar, Suresh P. Vyas, Anuradha Dube, Swati Gupta
Review Article: Fabricated Microparticles: An Innovative Method to Minimize the Side Effects of NSAIDs in Arthritis
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.33, 2016, issue 5
Shaivad Shabee Hulhasan Abadi, Afrasim Moin, Gangadharappa Hosahalli Veerabhadrappa
Pancreatic Cancer: Recent Advances in Nanoformulation-Based Therapies
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.36, 2019, issue 1
Preshita Desai, Jeffrey Wang, Sunil Prabhu, David Ann
Expanding the domain of drug delivery for HIV prevention: exploration of the transdermal route
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.34, 2017, issue 6
Wei Zhang, Arunprasad Sivaraman, Meredith R. Clark, Ajay K. Banga, Ashana Puri
Enhancement of Transdermal Delivery of Heparin by Various Physical and Chemical Enhancement Techniques
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.26, 2009, issue 6
S. S. Lanke, Ajay K. Banga, J. G. Strom