Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Heat Transfer Research
IF: 1.199 5-Year IF: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Print: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volume 51, 2020 Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2017015557
pages 969-984

FILM-COOLING CHARACTERISTICS OF UPSTREAM RAMP ENHANCED TURBINE BLADE SURFACE COOLING

Paresh Halder
Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai-600036, India
Abdus Samad
Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai-600036, India
Jun-Hee Kim
Department of Mechanical Engineering, Inha University, 253 Yonghyun-Dong, Incheon, 402-751, Republic of Korea
Kwang-Yong Kim
Department of Mechanical Engineering, Inha University, 100, Inha-Ro, Nam-Gu, Incheon, 22212, Republic of Korea

ABSTRACT

Film cooling is widely used in high-performance gas turbines to reduce the surface heat flux. Placing a ramp upstream of a film-cooling hole improves the film-cooling effectiveness. In this work, the Reynolds-averaged Navier−Stokes equations with the k−ω SST model are solved to simulate heat transfer and fluid flow over an upstream ramp and two rows of injection holes. Three blowing ratios (M = 0.6, 1.0, and 1.6) and three upstream ramp angles (α = 0, 14° to 24°) are tested. It is found from the investigation that the film-cooling effectiveness increases with the upstream ramp angle and blowing ratio. Higher film-cooling effectiveness is noticed downstream of the second row holes than that of the upstream holes in the case without a ramp.


Articles with similar content:

INFLUENCE OF LATERAL ANGLE ON FILM COOLING PERFORMANCE OVER ASYMMETRICAL TURBINE BLADE
Computational Thermal Sciences: An International Journal, Vol.9, 2017, issue 3
Mustapha Benabed
A NUMERICAL INVESTIGATION OF NEW FILM COOLING HOLE CONFIGURATION AT THE LEADING EDGE OF ASYMMETRICAL TURBINE BLADE: PART B
Computational Thermal Sciences: An International Journal, Vol.8, 2016, issue 5
Mustapha Benabed
Influence of Internal Cyclone Flow on Adiabatic Film Cooling Effectiveness
Heat Transfer Research, Vol.42, 2011, issue 2
Heinz-Peter Schiffer, Andreas Lerch
IMPROVING ADIABATIC FILM-COOLING EFFECTIVENESS BY USING AN UPSTREAM PYRAMID
Computational Thermal Sciences: An International Journal, Vol.8, 2016, issue 2
Zineb Hammami, Abbes Azzi, Fadela Nemdili, Zineddine Ahmed Dellil
Numerical Fluid Flow and Heat Transfer Prediction of Rotating Tapered Channel
Journal of Enhanced Heat Transfer, Vol.16, 2009, issue 4
Luai M. Al-Hadhrami, Mehaboob Basha