Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Journal of Porous Media
IF: 1.49 5-Year IF: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Print: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2018021864
pages 447-466

EFFECT OF CAPILLARY PRESSURE ON SEISMIC VELOCITIES AND ATTENUATION

Khemraj Shukla
Boone Pickens School of Geology, 105 Noble Research Center, Oklahoma State University, Stillwater, OK, 74078
José M. Carcione
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42c, 34010 Sgonico, Trieste, Italy; School of Earth Science and Technology, Hohai University, Nanjing, 211100, China
Priyank Jaiswal
Boone Pickens School of Geology, 105 Noble Research Center, Oklahoma State University, Stillwater, OK, 74078
Juan Enrique Santos
CONICET, Instituto del Gas y del Petróleo, Facultad de Ingeniería, Universidad de Buenos Aires, Av. Las Heras 2214 Piso 3, C1127AAR Buenos Aires, Argentina; Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana, 47907-2067, USA; Universidad Nacional de La Plata, Argentina
Jing Ba
School of Earth Science and Technology, Hohai University, Nanjing, 211100, China

ABSTRACT

Biot's theory allows incorporation of permeability and viscosity in computing seismic amplitudes for a porous medium that is fully saturated with a single-phase fluid. In its original form, Biot's theory does not explicitly account for capillary effects; for example, the surface tension between the wetting and nonwetting fluids. This paper uses a model to quantify capillary effects on velocity and attenuation. Studies that have attempted to extend Biot's poroelasticity to include capillary effects found changes in fast P-wave velocity of up to 5% between the sonic and ultrasonic frequency ranges. Simulations of wave propagation at varying capillary pressure in a rock saturated with multiphase fluid are also presented. The poroelastic equation for multiphase fluid is solved by using spectral methods with Fourier grids as collocations points in space and the Runge-Kutta scheme for numerical integration. The numerical simulations show the presence of three compressional (P)-waves, one fast and two slow compressional waves corresponding to the wetting and nonwetting phases. The results show that the slow P-wave amplitude is significantly affected by capillary pressure variations.

REFERENCES

  1. Allard, J. and Atalla, N., Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, Hoboken, NJ: JohnWiley & Sons, 2009.

  2. Auriault, J.L., Lebaigue, O., and Bonnet, G., Dynamics of Two Immiscible Fluids Flowing through Deformable Porous Media, Transp. Porous Media, vol. 4, no. 2, pp. 105–128, 1989.

  3. Berryman, J.G., Confirmation of Biot’s Theory, Appl. Phys. Lett., vol. 37, no. 4, pp. 382–384, 1980.

  4. Biot, M.A., Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range, J. Acoust. Soc. Am., vol. 28, no. 2, pp. 168–178, 1956a.

  5. Biot, M.A., Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range, J. Acoust. Soc. Am., vol. 28, no. 2, pp. 179–191, 1956b.

  6. Biot, M.A., Mechanics of Deformation and Acoustic Propagation in Porous Media, J. Appl. Phys., vol. 33, no. 4, pp. 1482–1498, 1962.

  7. Cai, J., Wei, W., Hu, X., and Wood, D.A., Electrical Conductivity Models in Saturated Porous Media: A Review, Earth-Science Reviews, vol. 171, pp. 419–433, 2017.

  8. Cai, J. and Yu, B., A Discussion of the Effect of Tortuosity on the Capillary Imbibition in Porous Media, Transp. Porous Media, vol. 89, pp. 251–263, 2011.

  9. Cai, J., Yu, B., Zou, M., and Luo, L., Fractal Characterization of Spontaneous Co-Current Imbibition in Porous Media, Energy Fuels, vol. 24, no. 3, pp. 1860–1867, 2010.

  10. Carcione, J., Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media, Amsterdam: Elsevier Science, 2014.

  11. Carcione, J.M., Cavallini, F., Santos, J.E., Ravazzoli, C.L., and Gauzellino, P.M., Wave Propagation in Partially Saturated Porous Media: Simulation of a Second Slow Wave, Wave Motion, vol. 39, no. 3, pp. 227–240, 2004.

  12. Carcione, J.M., Herman, G.C., and Ten Kroode, A., Seismic Modeling, Geophys., vol. 67, no. 4, pp. 1304–1325, 2002.

  13. Carcione, J.M. and Quiroga-Goode, G., Some Aspects of the Physics and Numerical Modeling of Biot Compressional Waves, J. Comput. Acoust., vol. 3, no. 4, pp. 261–280, 1995.

  14. Carcione, J.M. and Seriani, G., Wave Simulation in Frozen Porous Media, J. Comput. Phys., vol. 170, no. 2, pp. 676–695, 2001.

  15. Dejam, M., Hassanzadeh, H., and Chen, Z., Capillary Forces between Two Parallel Plates Connected by a Liquid Bridge, J. Porous Media, vol. 18, no. 3, pp. 179–188, 2015.

  16. Domenico, S., Effect of Brine-Gas Mixture on Velocity in an Unconsolidated Sand Reservoir, Geophys., vol. 41, no. 5, pp. 882– 894, 1976.

  17. Domenico, S., Elastic Properties of Unconsolidated Porous Sand Reservoirs, Geophys., vol. 42, no. 7, pp. 1339–1368, 1977.

  18. Gassmann, F., Uber die Elastizitat Poroser Medien, Vierteljahrsschrift der Naturforschenden Geselschaft in Z¨urich, vol. 96, pp. 1–23, 1951.

  19. Gomez, C.T., Dvorkin, J., and Vanorio, T., Laboratory Measurements of Porosity, Permeability, Resistivity, and Velocity on Fontainebleau Sandstones, Geophys., vol. 75, pp. E191–E204, 2010.

  20. Hashin, Z. and Shtrikman, S., A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials, J. Mech. Phys. Solids, vol. 11, no. 2, pp. 127–140, 1963.

  21. Jain, M.K., Numerical Solution of Differential Equations, Hoboken, NJ: Wiley Eastern Ltd., 1979.

  22. Johnson, D.L., Koplik, J., and Dashen, R., Theory of Dynamic Permeability and Tortuosity in Fluid-Saturated Porous Media, J. Fluid Mech., vol. 176, pp. 379–402, 1987.

  23. Kelder, O. and Smeulders, D.M., Observation of the Biot SlowWave inWater-Saturated Nivelsteiner Sandstone, Geophys., vol. 62, no. 6, pp. 1794–1796, 1997.

  24. Kepkay, P. and Cooke, R., Velocity of Sound as a Function of Bubble Distribution in Gas-Bearing Sediments, Geophys. Res. Lett., vol. 5, no. 12, pp. 1071–1073, 1978.

  25. Liu, J., Muller, T.M., Qi, Q., Lebedev, M., and Sun, W., Velocity-Saturation Relation in Partially Saturated Rocks: Modelling the Effect of Injection Rate Changes, Geophys. Prospecting, vol. 64, no. 4, pp. 1054–1066, 2016.

  26. Lo, W.C., Sposito, G., and Majer, E., Wave Propagation through Elastic Porous Media Containing Two Immiscible Fluids, Water Resour. Res., vol. 41, W02025, no. 2, 2005.

  27. Lu, J.F., Hanyga, A., and Jeng, D.S., A Mixture-Theory-based Dynamic Model for a Porous Medium Saturated by Two Immiscible Fluids, J. Appl. Geophys., vol. 62, no. 2, pp. 89–106, 2007.

  28. Macias, L.A., Savioli, G.B., Santos, J.E., Carcione, J.M., and Gei, D., Analysis of Capillary Pressure Effect on the Seismic Response of a CO2-Storage Site Applying Multiphase Flow andWave Propagation Simulators, Int. J. Greenhouse Gas Control, vol. 39, pp. 335–348, 2015.

  29. Meng, Q., Liu, H., and Wang, J., A Critical Review on Fundamental Mechanisms of Spontaneous Imbibition and the Impact of Boundary Condition, Fluid Viscosity and Wettability, Adv. Geo-energy Res., vol. 1, pp. 1–17, 2017.

  30. Mochizuki, S., Attenuation in Partially Saturated Rocks, J. Geophys. Res.: Solid Earth, vol. 87, no. B10, pp. 8598–8604, 1982.

  31. Oura, H., Sound Velocity in the Snow Cover, Low Temp. Sci. Series A, Phys. Sci., vol. 9, pp. 171–178, 1952.

  32. Papageorgiou, G. and Chapman, M., Wave-Propagation in Rocks Saturated by Two Immiscible Fluids, Geophys. J. Int., vol. 209, no. 3, pp. 1761–1767, 2017.

  33. Plona, T.J., Observation of a Second Bulk Compressional Wave in a Porous Medium at Ultrasonic Frequencies, Appl. Phys. Lett., vol. 36, no. 4, pp. 259–261, 1980.

  34. Qi, Q., Muller, T.M., Gurevich, B., Lopes, S., Lebedev, M., and Caspari, E., Quantifying the Effect of Capillarity on Attenuation and Dispersion in Patchy-Saturated Rocks, Geophysics, vol. 79, no. 5, pp. WB35–WB50, 2014.

  35. Ravazzoli, C. and Santos, J., A Theory for Wave Propagation in Porous Rocks Saturated by Two-Phase Fluids under Variable Pressure Conditions, Bolletino di Geofisica Teorica ed Applicata, vol. 46, pp. 261–285, 2005.

  36. Ravazzoli, C., Santos, J., and Carcione, J., Acoustic and Mechanical Response of Reservoir Rocks under Variable Saturation and Effective Pressure, J. Acoust. Soc. Am., vol. 113, no. 4, pp. 1801–1811, 2003.

  37. Santos, J.E., Corber´o, J.M., and Douglas Jr, J., Static and Dynamic Behavior of a Porous Solid Saturated by a Two-Phase Fluid, J. Acoust. Soc. Am., vol. 87, no. 4, pp. 1428–1438, 1990a.

  38. Santos, J.E., Douglas Jr, J., Corbero, J., and Lovera, O.M., A Model for Wave Propagation in a Porous Medium Saturated by a Two-Phase Fluid, J. Acoust. Soc. Am., vol. 87, no. 4, pp. 1439–1448, 1990b.

  39. Santos, J.E., Gauzellino, P.M., Savioli, G.B., and Martinez Corredor, R., Numerical Simulation in Applied Geophysics, J. Comput. Sci. Technol., vol. 13, pp. 137–142, 2013.

  40. Santos, J.E., Gauzellino, P.M., Savioli, G.B., and Martinez Corredor, R., Numerical Simulation in Applied Geophysics, Berlin: Springer, 2016.

  41. Santos, J.E., Ravazzoli, C.L., Gauzellino, P.M., Carcione, J.M., and Cavallini, F., Simulation of Waves in Poro-Viscoelastic Rocks Saturated by Immiscible Fluids: Numerical Evidence of a Second Slow Wave, J. Comput. Acoust., vol. 12, no. 1, pp. 1–21, 2004.

  42. Santos, J.E., Savioli, G.B., and Martinez Corredor, R., Slow Waves in a Poroelastic Solid Saturated by Multiphase Fluids, Poromechanics VI, pp. 1674–1681, 2017.

  43. Stoll, R.D. and Bryan, G.M., Wave Attenuation in Saturated Sediments, J. Acoust. Soc. Am., vol. 47, no. 5B, pp. 1440–1447, 1970.

  44. Tian, Y.C., Ma, J.W., and Yang, H.Z., Wavefield Simulation in Porous Media Saturated with Two Immiscible Fluids, Appl. Geophys., vol. 7, no. 1, pp. 57–65, 2010.


Articles with similar content:

Multigrid Solution of Modified Reynolds Equation Incorporating Poroelasticity and Couple Stresses
Journal of Porous Media, Vol.10, 2007, issue 2
Ramesh B. Kudenatti, Nagendrappa Bujurke
COMBINED POROUS AND MAGNETIC EFFECTS ON SOME FUNDAMENTAL MOTIONS OF NEWTONIAN FLUIDS OVER AN INFINITE PLATE
Journal of Porous Media, Vol.21, 2018, issue 7
Constantin Fetecau, Rahmat Ellahi, Nehad Ali Shah, Masood Khan
SLIP EFFECTS IN THE HYDROMAGNETIC FLOW OF A VISCOELASTIC FLUID THROUGH POROUS MEDIUM OVER A POROUS OSCILLATORY STRETCHING SHEET
Journal of Porous Media, Vol.20, 2017, issue 3
Muhammad Sajid, Nasir Ali, Sami Ullah Khan, Zaheer Abbas
THE ROLE OF FRACTURE CAPILLARY PRESSURE ON THE BLOCK-TO-BLOCK INTERACTION PROCESS
Journal of Porous Media, Vol.21, 2018, issue 11
Morteza Dejam
BEYOND TANNER'S LAW: ROLE OF CONTACT LINE EVAPORATION ON THE SPREADING OF VISCOUS DROPLET
Interfacial Phenomena and Heat Transfer, Vol.3, 2015, issue 3
David Brutin, Wassim Bou-Zeid