Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Uncertainty Quantification
IF: 3.259 5-Year IF: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Print: 2152-5080
ISSN Online: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2016016805
pages 429-443

A MULTIMODES MONTE CARLO FINITE ELEMENT METHOD FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM COEFFICIENTS

Xiaobing Feng
Department of Mathematics, The University of Tennessee, Knoxville, Tennessee 37996, USA
Junshan Lin
Department of Mathematics and Statistics, Auburn University, Auburn, Alabama 36849, USA
Cody Lorton
Department of Mathematics and Statistics, University of West Florida, Pensacola, Floridas 32514, USA

ABSTRACT

This paper develops and analyzes an efficient numerical method for solving elliptic partial differential equations, where the diffusion coefficients are random perturbations of deterministic diffusion coefficients. The method is based upon a multimodes representation of the solution as a power series of the perturbation parameter, and the Monte Carlo technique for sampling the probability space. One key feature of the proposed method is that the governing equations for all the expanded mode functions share the same deterministic diffusion coefficient; thus an efficient direct solver by repeatedly using the LU decomposition of the discretized common deterministic diffusion operator can be employed for solving the finite element discretized linear systems. It is shown that the computational complexity of the algorithm is comparable to that of solving a few deterministic elliptic partial differential equations using the director solver. Error estimates are derived for the method, and numerical experiments are provided to test the efficiency of the algorithm and validate the theoretical results.


Articles with similar content:

AN ADAPTIVE REDUCED BASIS COLLOCATION METHOD BASED ON PCM ANOVA DECOMPOSITION FOR ANISOTROPIC STOCHASTIC PDES
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 3
Heyrim Cho, Howard C. Elman
ADAPTIVE SELECTION OF SAMPLING POINTS FOR UNCERTAINTY QUANTIFICATION
International Journal for Uncertainty Quantification, Vol.7, 2017, issue 4
Casper Rutjes, Enrico Camporeale, Ashutosh Agnihotri
TIME AND FREQUENCY DOMAIN METHODS FOR BASIS SELECTION IN RANDOM LINEAR DYNAMICAL SYSTEMS
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 6
John D. Jakeman, Roland Pulch
REITERATED MULTISCALE MODEL REDUCTION USING THE GENERALIZED MULTISCALE FINITE ELEMENT METHOD
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 6
Wing Tat Leung, Maria Vasilyeva, Eric T. Chung, Yalchin Efendiev
VARIABLE-SEPARATION BASED ITERATIVE ENSEMBLE SMOOTHER FOR BAYESIAN INVERSE PROBLEMS IN ANOMALOUS DIFFUSION REACTION MODELS
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 3
Yuming Ba, Na Ou, Lijian Jiang