Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Uncertainty Quantification
IF: 4.911 5-Year IF: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN Print: 2152-5080
ISSN Online: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2015014394
pages 453-468

A GRADIENT-ENHANCED SPARSE GRID ALGORITHM FOR UNCERTAINTY QUANTIFICATION

Jouke H. S. de Baar
Mathematical Sciences Institute, Australian National University, John Dedman Building 27, Union Lane, Canberra, ACT, 2601, Australia
Brendan Harding
Mathematical Sciences Institute, Australian National University, John Dedman Building 27, Union Lane, Canberra, ACT, 2601, Australia

ABSTRACT

Adjoint-based gradient information has been successfully incorporated to create surrogate models of the output of expensive computer codes. Exploitation of these surrogates offers the possibility of uncertainty quantification, optimization and parameter estimation at reduced computational cost. Presently, when we look for a surrogate method to include gradient information, the most common choice is gradient-enhanced Kriging (GEK). As a competitor, we develop a novel method: gradient-enhanced sparse grid interpolation. Results for two test functions, the Rosenbrock function and a test function based on the drag of a transonic airfoil with random shape deformations, show that the gradient-enhanced sparse grid interpolation is a reliable surrogate that can incorporate the gradient information efficiently for high-dimensional problems.


Articles with similar content:

THE METHOD OF FAILURE PATHS FOR REDUCED-ORDER COMPUTATIONAL HOMOGENIZATION
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 5
Caglar Oskay, Paul Sparks
POLYNOMIAL-CHAOS-BASED KRIGING
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 2
Joe Wiart, Bruno Sudret, Roland Schobi
SPARSE GENERALIZED MULTISCALE FINITE ELEMENT METHODS AND THEIR APPLICATIONS
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 1
Wing Tat Leung, Eric T. Chung, Yalchin Efendiev, Guanglian Li
BAYESIAN MULTISCALE FINITE ELEMENT METHODS. MODELING MISSING SUBGRID INFORMATION PROBABILISTICALLY
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 2
Wing Tat Leung, B. Mallick, Yalchin Efendiev, N. Guha, V. H. Hoang, S. W. Cheung
VARIABLE-SEPARATION BASED ITERATIVE ENSEMBLE SMOOTHER FOR BAYESIAN INVERSE PROBLEMS IN ANOMALOUS DIFFUSION REACTION MODELS
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 3
Yuming Ba, Na Ou, Lijian Jiang